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M-ary Bayes Estimator Selection for QuikSCAT
Simultaneous Wind and Rain Retrieval

Michael P. Owen and David G. Long, Fellow, IEEE

Abstract—While originally designed only for wind measure-
ment, the QuikSCAT scatterometer is capable of making wind and
rain estimates over the ocean. Three separate estimators are used,
a wind-only estimator, a rain-only estimator, and a simultaneous
wind–rain estimator. No one of the estimators is suitable under all
wind and rain conditions. We therefore propose a Bayesian estima-
tor selection technique whereby the appropriate estimator can be
selected from the estimates themselves. This paper introduces the
Bayes estimator selection technique and discusses its application
to QuikSCAT wind and rain estimation for conventional (25-km)
resolution products. Results indicate that using Bayes estimator
selection can improve both the bias and mean-squared error of
wind estimates in both raining and nonraining conditions, as well
as provide an improved rain flag.

Index Terms—Bayes estimation, QuikSCAT, resolution en-
hancement, scatterometry, simultaneous wind/rain retrieval, wind
retrieval.

I. INTRODUCTION

W IND and rain estimation over the ocean is possible using
data provided by the QuikSCAT scatterometer. The

QuikSCAT scatterometer is designed to measure the radar cross
section or backscatter of the ocean. A model function is used to
infer the most likely wind vector to have produced the observed
measurements [1]–[3]. Unfortunately, rain adversely affects
wind estimation. It is estimated that rain affects 4% to 10%
of all QuikSCAT observations. Recently, rain retrieval from
QuikSCAT measurements has been demonstrated [4]–[6]. To
account for rain, three slightly different estimation techniques
may be employed: wind-only (WO), simultaneous wind–rain
(SWR), and rain-only (RO) estimators. The performance of
each estimator is dependent on the underlying wind–rain condi-
tions. Each estimation technique is best under certain backscat-
ter conditions, and no single technique is suitable for all
conditions. By adaptively selecting the estimator most appro-
priate to the true conditions, the overall wind and rain measure-
ment performance can surpass that of any individual estimator.

In this paper, we introduce Bayes estimator selection, a
technique whereby a single “best” estimator is selected for each
wind–rain condition. We then apply the technique to QuikSCAT
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wind and rain estimation. Section II discusses and motivates
the multiple estimator problem, Section III gives relevant
background information about the QuikSCAT scatterometer,
Section IV introduces Bayes estimator selection in a general
sense, Section V discusses the application of Bayes estimator
selection to QuikSCAT wind and rain estimation, Section VI
gives an overview of Bayes estimator selection results, and
Section VII concludes.

II. PROBLEM FORMULATION

The QuikSCAT scatterometer was designed for the express
purpose of wind estimation over the ocean. The traditional wind
estimation process that retrieves only the near-surface wind
is what we term the WO estimation in the following discus-
sion [7]. QuikSCAT WO estimates have good performance in
most wind conditions; however, the estimates can be degraded
by rain. Rain contamination has been traditionally dealt with
using one of several rain flagging techniques to identify rain
contaminated winds (see, for example, [8]). Rain-flagged wind
estimates have typically been discarded.

SWR estimation has been proposed as an alternative solution
to rain flagging of rain-contaminated winds [4]. SWR estima-
tion improves WO estimation by adjusting the WO model to
account for both wind and rain effects on the radar backscatter
[9], [10]. Replacing the wind model with the joint wind–rain
model and estimating both the wind and the rain is what we
term the SWR estimation [4], [10]. However, for nonraining
cases, SWR estimation can degrade the performance compared
to WO estimation. This is due, in large part, to the fact that
noise in the backscatter measurements can sometimes cause
nonraining observations to resemble raining cases, resulting in
cases where SWR estimation has a nonzero rain estimate yet no
rain is occurring. To minimize this SWR sensitivity to nonrain
observations, SWR estimation in this paper is constrained to
ignore solutions with zero rain rates and zero wind speeds. This
makes SWR estimation distinct from WO estimation and RO
estimation since they cannot retrieve the same solutions.

For rain events with high rain rates and rain-dominated
backscatter [11], the wind and rain estimates for SWR esti-
mation may be degraded. Essentially, for certain wind speed
and rain rate combinations, the wind–rain model breaks down
due to high rain-induced attenuation and the consequent loss of
wind signal, causing the SWR estimates to be inaccurate. For
these rare high rain cases, wind cannot be estimated, although
RO estimation can provide accurate results [6].

In RO estimation [6], the wind model is discarded entirely,
and only the rain model is used; hence, only a rain estimate
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is produced. RO estimation makes the assumption that wind
has essentially no effect on the radar backscatter, which can
occur under high rain conditions. For these cases, the rain
accuracy is much improved by this assumption versus using
SWR estimation.

In summary, there are three different estimation techniques
which are appropriate under different conditions. Each per-
forms well under appropriate conditions; however, if the esti-
mator is used outside of the intended conditions, the estimator
performance is degraded. There is therefore no single estimator
that is suitable for all conditions. Instead of choosing one esti-
mator and using it under all conditions, we propose a Bayesian
estimator selection method whereby the three estimators are
compared and a single estimate is chosen from the various
estimates from the set of estimators.

III. BACKGROUND

Before discussing estimator selection, an overview of the
QuikSCAT scatterometer and wind and rain estimation is pru-
dent. QuikSCAT measures the normalized radar backscatter σo

of the Earth’s surface at the Ku-band. Measurements are
made using a rotating dual-polarization antenna which forms a
1800-km-wide swath on the surface.

A. Wind and Rain Estimators

For a wind vector w = [s, d] with wind speed s and direction
d, rain rate r, and a wind–rain vector ϑ = [w, r], the backscatter
σo can be modeled phenomenologically as [4], [5], [9]

σo = αrσw + σe (1)

where σw is the backscatter from the ocean surface due to wind,
αr(r) is the attenuation factor of the ocean wind backscatter
due to atmospheric rain, and σe(r) is the effective rain backscat-
ter from both the rain volume scattering and attenuated surface
scattering due to additional splashes and waves. For wind and
rain retrieval, the phenomenological model is calculated for
each measurement using

Mr(ϑ, χ, ψ, p) = M(w, χ, ψ, p)αr(r, p) + σe(r, p) (2)

where Mr(ϑ, χ, ψ, p) is the combined wind and rain model.
Here, M(w, χ, p) is the wind geophysical model function
(GMF) which gives the expected wind backscatter for a wind
vector w given the antenna azimuth angle χ, incidence angle
ψ, and polarization p. The rain model terms αr(r, p) and
σe(r, p) correspond to the phenomenological model of (1) with
subscripts to indicate that they are functions of rain rate r and
polarization p.

In this paper, the wind backscatter GMF M(w, χ, p) refers
to the standard QuikSCAT QMOD4 GMF [12]. The QMOD4
GMF has been demonstrated to be an appropriate model for
Ku-band backscatter for QuikSCAT observation geometry;
however, for hurricane-force winds (> 30 m/s), the GMF has
limited validity due to backscatter saturation. Since an as-
sessment of the QuikSCAT GMF is beyond the scope of this

paper, we acknowledge the GMF limitations and focus the
results portion of this paper on conditions in which the National
Centers for Environmental Prediction (NCEP) model winds are
low to moderate (< 20 m/s).

The rain attenuation and backscatter model parameters are
specified in [4] and are assumed to be independent of wind
velocity and antenna azimuth angle. Because the terms χ, ψ,
and p are determined by the measurement geometry, we sim-
plify the notation in the following by dropping them and leaving
only the wind and rain dependence.

Wind and rain estimation is performed using the backscat-
ter model and the QuikSCAT backscatter measurement noise
model. The measurement model assumes a Gaussian noise
distribution with mean Mr(ϑ) and can be written as

f(σo
i |ϑ) =

1√
2πς

exp

(
− 1

2ς2
(σo

i −Mr(ϑ))
2

)
(3)

where σo
i is the backscatter observation for the ith measure-

ment, ϑ is the true wind–rain vector, Mr(ϑ) is the model
backscatter as a function of the true wind–rain vector, and ς2

is the model variance. The model variance can be written as [4]

ς2 =
(
1 +K2

pc

) [
αr(r)

2M(w)2K2
pm + σe(r)

2K2
pe

]
+Mr(ϑ)

2K2
pc (4)

where Kpc is the normalized standard deviation of the com-
munication noise, Kpm is the normalized standard deviation
of the wind backscatter model, and Kpe is the normalized
standard deviation of the effective rain backscatter model. The
communication noise term for QuikSCAT is modeled as

Kpc =

√
α+

β

Mr(ϑ)
+

γ

Mr(ϑ)2
(5)

where the parameters α, β, and γ are geometry and resolution
dependent [13].

Maximum likelihood estimates for wind and rain can be
formed using the log-likelihood function of the measurement
model [7]. The maximum likelihood estimate is the wind–rain
vector which maximizes the likelihood function and can be
written as

ϑ̂=argmax
ϑ

∑
i

(
−log(

√
2πς)− 1

2ς2
(σo

i −Mr(ϑ))
2

)
(6)

where the summation is over the vector of backscatter observa-
tions. The WO, RO, and SWR estimators are each calculated
similarly and differ only by the models used for the mean
and variance in (3). For WO estimation, Mr(ϑ) = M(w).
For RO, Mr(ϑ) = σe(r). Moreover, for SWR, Mr(ϑ) is used
as defined in (2). The variance model for each estimator also
changes accordingly, see Table I.

The simple phenomenological model in (1) can be used to
motivate each estimation technique. When rain is not present,
i.e., αr = 1 and σe = 0, σo is only a function of σw, and WO
estimation produces the best estimate. Similarly, when σo is
dominated by σe and αr, i.e., αr � 1, RO estimation is appro-
priate. When the wind and rain signals are of similar magnitude,
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estimating them jointly using SWR estimation produces the
best performance. In essence, depending on the true conditions,
one of the estimators produces a better estimate of wind, wind
and rain, or rain.

B. Estimator Bounds

Before discussing estimator selection, it is important to quan-
tify the limitations of each of the estimators. One method to
quantify estimator performance is to evaluate the theoretic lim-
itations of each estimator using the Cramer–Rao bound (CRB).
As discussed previously, the introduction of contamination due
to unmodeled phenomena causes a bias in the estimates. Thus,
we must adopt the biased form for the CRB. The CRB for WO,
SWR, and RO retrieval [5], [14] can be written as

E
[
(ϑ̂− ϑ)(ϑ̂− ϑ)T

]
≥ ∂E[ϑ̂]

∂ϑ
J−1(ϑ)

[
∂E[ϑ̂]

∂ϑ

]T

(7)

where the elements Jij of the Fisher information matrix J are

Jij(ϑ) =

N∑
k=1

∂Mrk

∂wi

1

ς2k

∂Mrk

∂wj
+

∂ς2k
∂wi

1

2ς4k

∂ς2k
∂wj

. (8)

Here, the Fisher information is represented for wind and rain
estimation. The Fisher information for WO estimation is a
special case of the wind and rain information where the rain
rate is 0. Note that for WO retrieval, J is a 2 × 2 matrix since
ϑ̂ = ŵ, whereas for SWR retrieval, J is a 3 × 3 matrix since
ϑ̂ = (ŵ, r̂).

The biased CRB can be calculated similarly for rain-
contaminated WO retrieval by adjusting the Fisher-information
matrix for the rain contamination

Jij(ϑ) =

N∑
k=1

∂Mk

∂wI

α2
r

ς2k

∂Mk

∂wj
+

∂ς2k
∂wi

1

2ς4k

∂ς2k
∂wj

. (9)

Like the WO Fisher information, the rain-contaminated Fisher
information is a 2 × 2 matrix since ϑ̂ = ŵ. However, for rain
contamination, the Fisher information is also dependent on r,
so we can write Jij(w, r).

Similarly, the biased CRB can be calculated for wind-
contaminated RO retrieval using

J(w, r)=

N∑
k=1

(
Mk

∂αr

∂r
+

∂σe

∂r

)2
1

ς2k
+

∂ς2k
∂r

1

2ς4k

∂ς2k
∂r

. (10)

Here, we have explicitly separated the wind vector w and rain
rate r in the notation to make it clear that the derivatives are
with respect to the rain rate and that the wind contamination is
a function of the wind vector. Also note that the RO CRB is a
scalar value that is only valid for the rain rate estimate.

The CRBs for 25-km-resolution wind speed and rain esti-
mators are shown in Fig. 1. To jointly compare the bounds on
wind and rain estimation accuracy, we form an overall CRB
by taking a linear combination of the wind speed and rain
rate bounds for each estimator where the weighting coefficients
are selected to reflect the relative importance that we place on

wind or rain accuracy. Comparing the estimation bounds for the
several estimators makes it apparent that there are regions in the
wind and rain space where a particular estimator outperforms
the others. For example, Fig. 1 indicates that ignoring rain
under low rain conditions, as the WO estimator does, results
in wind estimates with a lower overall mean-squared error.
Similarly, when the wind speed is low and the rain rate is
moderate to high, the RO estimator has lower mean-squared
error than the SWR estimator. Fig. 2 summarizes Fig. 1 by
indicating the estimator which has the minimum overall CRB
for each wind and rain vector. Finally, note that the SWR
estimates often have a larger bound than either the WO or the
RO estimators. This observation is central to the remainder of
this paper and prompts the following question: If one estimator
does not always have the lowest overall CRB, how can the
estimator with the lowest overall CRB be selected consistently?

IV. M-ARY BAYES ESTIMATOR SELECTION

M-ary Bayes estimator selection is a modification of the
Bayes decision theory. It operates on the estimates produced by
M different estimators. In M-ary Bayes estimator selection, we
attempt to select one “best” estimate from among M candidate
estimates. To introduce the method, we follow the discussion
and notation for the Bayes decision theory outlined in [15].

The object of the Bayes decision technique is to choose a
decision rule that minimizes the Bayes risk function given a
realization x of the observation random variable X. For estima-
tor selection, the “observations” are the various estimates, and
the parameter θ corresponds to true conditions. Although in the
previous section, ϑ referred specifically to a wind vector, here,
we generalize and treat ϑ as a realization of the random variable
θ which represents the true conditions. The observations, or
estimates, are realizations xi of the random variable X. The
decision rule φj(xi) is the rule for choosing estimate xj as the
best based on the observation of the estimate being tested xi.

The loss function L[ϑ, φj(xi)] represents the loss resulting
from choosing the estimate xj when ϑ is the true condition. For
our application, we choose the loss function

L [ϑ, φj(xi)] = C(ϑ,xj) (κjδij + τj(1− δij)) (11)

where C(ϑ,xj) is a cost function, i.e., the cost of selecting xj

using the decision rule φj when ϑ is the true condition. Because
the decision rule φj selects estimate xj regardless of the esti-
mate being tested, the cost of a decision rule φj only depends
on the estimate xj . The term (κjδij + τj(1− δij)), where κj

and τj are scalar weighting factors and δij is a Kronecker
delta function, allows the loss function to vary depending on
which estimate is being tested. For example, when κj = 1 and
τj = 0, the loss function for the decision rule is zero when
testing other estimators. When κj = 0 and τj = 1, the loss is
zero when testing the selected estimator but nonzero when other
estimators are tested. The κj and τj terms thus allow for tuning
the algorithm to meet the desired specifications. The weighting
coefficients κj and τj must be related; however, we postpone
the definition of their relationship until later.
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Fig. 1. CRBs in decibels on wind speed and rain rate for the various estimators. (Upper left) CRB for SWR wind speed. (Upper right) CRB for WO wind speed.
(Lower left) CRB for SWR rain rate. (Lower right) CRB for RO rain rate. Note that each estimator has a region in wind speed and rain rate where the CRB is
lower than the others. The bounds shown are for a single wind direction (53◦) and cross-track location (cell 13) which have performance that is representative of
all other wind directions. Estimator characteristics have some slight changes as a function of cross-track location due to the changing observation geometry but
are generally similar. For reference, the smoothed boundaries from Fig. 2 are included in each image.

Fig. 2. Estimators with total minimum normalized CRB as a function of wind
speed and rain rate: (white) WO, (gray) SWR, and (black) RO. As expected, the
WO estimator is best for low rain rates and substantial wind speed, the SWR
estimator is best for comparable wind speed and rain rate, and the RO estimator
is best when the wind is low and rain is substantial.

A. Bayes Risk

Using the established notation, the risk function R(ϑ, φj) is
defined to be the expected loss of using decision rule φj under
the true conditions ϑ

R(ϑ, φj) =EX (L [ϑ, φj(xi)])

=
M∑
i=0

L [ϑ, φj(xi)] fX|θ(xi|ϑ)

=

M∑
i=0

C(ϑ,xj)(κjδij + τj (1− δij)) fX|θ(xi|ϑ)

=C(ϑ,xj)
(
τj

(
1− fX|θ(xj |ϑ)

)
+ κjfX|θ(xj |ϑ)

)
=C(ϑ,xj)

(
τjfX|θ(∼ xj |ϑ) + κjfX|θ(xj |ϑ)

)
(12)

where EX denotes the expectation operator over X and we
define the density fX|θ(∼ xj |ϑ) = 1− fX|θ(xj |ϑ).
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The Bayes risk r(Fθ, φj) is the posterior expected risk
function

r(Fθ, φj) =Eθ (R(ϑ, φj))

=

∫
θ

R(ϑ, φj)fθ(ϑ)dϑ

=

∫
θ

C(ϑ,xj)
(
τjfX|θ(∼ xj |ϑ) + κjfX|θ(xj |ϑ)

)
× fθ(ϑ)dϑ. (13)

Using the Bayes rule, the Bayes risk can be rewritten in terms
of expectations resulting in

r(Fθ, φj) = τjEθ|∼X [C(ϑ,xj)] f(∼ xj)

+κjEθ|X [C(ϑ,xj)] f(xj) (14)

where Eθ|∼X[C(ϑ,xj)] represents the expected loss associated
with the estimate given that it is not the best and Eθ|X[C(ϑ,xj)]
is the expected loss associated with the estimate xj given that it
is the best. This formulation gives insight into the role of τj and
κj . We can interpret the Bayes risk for a given estimator rule as
a weighted linear combination of the expected loss given that
the estimator is the best and the expected loss given that the
estimator is not the best.

To compare the Bayes risk for the different estimators, it is
important that the risks be comparable. A major impediment to
this utility are the weighting factors f(xj) and f(∼ xj). If an
estimator is superior more often than the others, then the Bayes
risk for that estimator is more strongly weighted. This effect is
ameliorated by defining τj and κj such that

τj =
τ

f(∼ xj)
(15)

κj =
κ

f(xj)
(16)

where τ and κ are weighting factors that apply to all estimates.
The Bayes risk can then be written

r(Fθ, φj) = τEθ|∼X [C(ϑ,xj)] + κEθ|X [C(ϑ,xj)] . (17)

Thus, the Bayes risk for a given estimator is a linear com-
bination of the conditional expected costs. Without loss of
generality, we can add the constraint τ + κ = 1. This additional
constraint defines the Bayes risk for an estimator as a convex
combination of the expected costs.

The Bayes decision rule for estimator selection is the rule
that minimizes the Bayes risk. Such a rule can be written as

k = argmin
j

r(Fθ, φj) (18)

= argmin
j

τEθ|∼X [C(ϑ,xj)] + κEθ|X [C(ϑ,xj)] (19)

where k indicates that estimator xk is the best.
Although, notationally, M-ary Bayes estimator selection is

similar to traditional Bayes decisions, the M-ary Bayes decision
concept is distinct. In the Bayes decision theory, decisions are
based on realizations of a random variable. Bayes estimator
selection makes a distinction from Bayes decisions because
the random variable realizations are parameter estimates made
from other observations. With this generalized perspective, the

estimates can be produced with any estimation method, such
as maximum likelihood, maximum a posteriori, or any other
function of the measurements. Additionally, Bayes estimator
selection places no constraints on the dimensionality of the es-
timators, which can be different for each. The lack of constraint
on the dimensionality makes this technique particularly useful
to QuikSCAT wind and rain estimation.

B. Cost Function

With the basic framework of Bayes estimator selection estab-
lished, the structure can be adapted to meet particular perfor-
mance criteria for the estimators xi. The desired performance
criteria are specified by means of the cost function C(ϑ,xi),
which reflects the goal of choosing the best estimator given the
observations.

Although there are many cost functions which could be
appropriate for a particular problem, for this case, we consider
the squared error of the observed estimator xi given ϑ, the true
conditions. The cost function C(ϑ,xi) is written as

C(ϑ,xi) = (ϑ− x̂i)
2 (20)

where

(ϑ− x̂i)
2 ∆
= (ϑ− x̂i)

TN(ϑ− x̂i) (21)

is a shorthand notation for the total normalized squared error. In
this case, the matrix N is a diagonal matrix with normalization
coefficients to ensure the vector components are comparable.
Inserting this cost function into (17) results in

r(Fθ, φj)=τEθ|∼X

[
(ϑ− x̂j)

2
]
+ κEθ|X

[
(ϑ− x̂j)

2
]
. (22)

This notation helps clarify the meaning of the Bayes risk in
estimator selection. The Bayes risk for a decision is a linear
combination of the expected squared error given that the esti-
mator is the best and the expected squared error of the estimator
given that it is not the best. Thus, while the ideal selection is
the estimator with minimum squared error, the Bayes estimator
selection decision can be interpreted as approximating the ideal
selection by choosing the estimator with minimum expected
squared error.

To use this mechanism for estimator selection, the condi-
tional density fX|θ(xj |ϑ), referred to as the estimator perfor-
mance prior; the prior fθ(ϑ); the normalization matrix N ; and
the weighting factors κ and τ must first be determined. Once
these have been determined, the selection of a best estimator,
in a minimum expected-squared-error sense, is straightforward
using (18) and (22).

C. Optimality

The squared-error cost function of (20) specifies that Bayes
estimator selection chooses the estimator with minimum
squared error. The optimal estimator selection is defined as
selecting the decision rule corresponding to the estimate that
has minimum squared error. It is not possible to perfectly
choose the optimal selections; however, optimal estimator
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TABLE I
WIND AND RAIN ESTIMATOR SUMMARY

selection performance can be approached by maximizing the
probability of selecting the optimal decision rule.

The conditional probability of selecting the optimal decision
rule given the true conditions can be expressed as

p(φopt|ϑ) =
M∑
j=1

p (φj |C(ϑ,xj) < C(ϑ,xi)∀i �= j) (23)

which can be used to calculate the overall probability of select-
ing the optimal decision p(φopt) using the Bayes rule

p(φopt) =

∫
p(φopt|ϑ)fθ(ϑ)dϑ. (24)

For Bayes estimator selection with the specified loss func-
tion, the weighting parameters τ and κ can be viewed as param-
eters which allow for tuning to achieve optimal performance.
As τ and κ are related, the optimal operating point can be
determined by solving

∂p(φopt)

∂κ
= 0 (25)

for κ. Although in general there is no closed form for p(φopt),
it can be approximated reliably via Monte Carlo simulation.

D. Limitations and Advantages

There are several advantages of adopting the Bayes estimator
selection technique. For instance, there is no requirement on
how the estimators are formed. For example, the estimates
can be maximum a posteriori estimates, maximum likelihood
estimates, or a combination of the two. This advantage allows
estimates to be formed with or without priors. Furthermore, the
technique can be adapted to include multiple priors based on
factors not normally included in the estimation process. For
example, in the case of wind and rain estimation, such priors
could include regional or topographic features, wind models for
hurricanes or other phenomena, latitude-dependent rain models,
or other models which may be appropriate to a local area.
Considering such priors is beyond the scope of this paper.

A principle advantage of the method is that the dimen-
sionality of the estimators need not be identical. Thus, an
estimator can estimate only a subset of parameters involved.
This can reduce variability and sensitivity to particularly noisy
or dominant components. This allows Bayes estimator selec-
tion to produce overall performance improvements as some
component sensitivities are reduced by selecting estimators that
minimize such sensitivities. Finally, in addition to selecting
estimates that have lower overall error, the estimator selections
can be viewed as a type of contamination or impact flag. Such
a flag can indicate where a particular estimate component may
be particularly noisy or prone to error.

TABLE II
NORMALIZATION MATRIX VALUES

Despite these advantages, there are some limitations. As with
any Bayesian technique, the overall performance is strongly
dependent on the prior density. If the prior densities needed to
compute the posterior expected loss are poorly defined or un-
known, there may be little benefit in adopting a Bayes estimator
selection structure. However, in many cases, an approximate
prior is appropriate and can lead to overall performance im-
provement despite uncertainty in the prior. Another limitation
is that the computation of the posterior expected loss can be
computationally intense, particularly when it must be computed
for every estimator. Fortunately, the posterior expected loss can
be tabulated for many cases, and the real-time computation
can be significantly reduced by approximating the Bayes risk
calculation with a lookup table.

V. APPLICATION TO QUIKSCAT

A. Normalization

To apply Bayes estimator selection to QuikSCAT wind and
rain estimation, a normalization matrix N is required that
defines the relative importance of wind and rain error. It is
important that the normalization matrix be selected so that the
wind and the rain error are comparable. A useful normalization
matrix has the components shown in Tables I and II. Note
that the direction error is neglected. For QuikSCAT wind and
rain retrieval, there are multiple possible wind and rain vec-
tors, called “ambiguities,” for both WO and SWR estimations.
Typically, the wind speed and rain rates of the ambiguities are
comparable, but the wind direction estimates are separated by
90◦ or 180◦. Choosing a single ambiguity for each estimator
is termed “ambiguity selection” and is typically performed
independent of wind and rain estimation [16], although, in
some cases, model-based retrieval can minimize the need for
ambiguity selection [17]. Because of the ambiguous nature of
wind estimation, we ignore the ambiguity selection step and
choose a normalization of 0 for wind direction.

To account for the different wind speed and rain rate scales,
we use the normalized-squared-error cost function defined in
(21). The normalization matrix N is selected to weight the com-
ponents according to the selection criteria. For wind and rain
estimation, we select values for the matrix N to weight each
component according to the maximum retrievable value. Thus,
the normalization factors for wind speed and rain rate in Table II
are the reciprocal of the maximum retrievable value squared.
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Additionally, although directional ambiguities exist [18] in
both WO and SWR estimates, the estimated wind speeds and
rain rates for each estimator are typically quite close in magni-
tude for all ambiguities. In this paper, we simplify the ambiguity
selection process by always choosing the ambiguity which is
nearest to the NCEP model winds. Although always choosing
the ambiguity nearest NCEP winds simplifies the ambiguity
selection procedure, the low resolution of NCEP winds can
lead to selection errors. NCEP wind estimates are produced
at a lower temporal and spatial resolution than QuikSCAT
wind products, so there can be significant local variations.
Additionally, NCEP wind models do not account for rain
events or coastal topography, which can have small-scale but
significant influences on wind directions. However, to simplify
the estimator selection problem and minimize directional bias
from the estimators or NCEP winds, we choose to ignore the
estimated direction in the estimator selection error function.
Thus, the normalization factor for wind direction in Table II
is set to 0. Similarly, to calculate the squared error (21) for
estimators that do not estimate all parameters, the parameters
that are not estimated are treated as 0.

B. Wind–Rain Prior

The wind–rain prior fθ(ϑ) used in (22) requires knowledge
of the distribution of wind and rain. Since wind and rain inter-
actions are not entirely understood, we choose to approximate
the true wind–rain distribution using a combination of NCEP
wind estimates and measured rain data from the Tropical Rain
Measuring Mission Precipitation Radar (TRMM PR) [19]. Us-
ing data from one year of QuikSCAT and TRMM PR colocated
measurements, we form an empiric prior by binning numeric
wind estimates and measured rain rates. Limitations of this
prior are that it is susceptible to the bias of the NCEP-predicted
wind and the effects of the limited sample size of the data.

To mitigate bias due to the sample size of the data, we assume
that, on a global scale, the wind direction distribution is uniform.
Although this neglects orographic effects and trade winds, a
global prior is appropriate for wind estimation on a global scale.

After smoothing the prior, we adjust it to compensate for
bias from NCEP winds in the wind model. Although there
are several treatments to adjust and tune the winds, we limit
our adjustments to compensating for the fact that NCEP winds
poorly represent the highest wind speed cases. Since NCEP
winds are predicted at a lower resolution than QuikSCAT
products, the highest wind speeds are consistently averaged
out of the NCEP product since they are typically not sustained
over large areas. This is in addition to a fixed maximum model
wind speed used in NCEP winds. In essence, the wind speed
distribution of NCEP winds is truncated above a moderate wind
speed.

The distribution of wind speed has Weibull characteristics
[20]; therefore, to extend the wind–rain prior to high wind
speeds, we perform a nonlinear least squares fit of a Weibull
distribution to the empiric speed distribution for each rain rate
bin and wind direction. The resulting wind–rain distribution
shown in Fig. 3 is nearly identical to the empiric distribution
and includes a nonzero probability of high wind speeds. The

Fig. 3. Wind–rain prior distribution for a single wind direction. The color
scale represents the value of fθ(ϑ) in decibels for a specific wind speed and
rain rate. The solid line corresponds to the mean wind speed of the prior, and
the dashed lines mark one standard deviation above and below the mean. Note
that the standard deviation increases with rain rate. The zero rain rate prior is
plotted as well and corresponds to the lowest rain rate in the figure. Note that
the WO prior is significantly greater than the nonzero rain priors.

simple distribution fitting technique used here is adequate for
our needs, although other fitting techniques exist [20]–[22].

C. Estimator Performance Prior

The estimator performance prior fX|θ(xj |ϑ) reflects the
probability of an estimator having minimum squared error
given the true conditions. As there is no closed form for the
probability densities of each estimator, there is no closed form
for the estimator performance prior. This limitation can be
overcome in one of several ways. Here, we adopt a simple
method based on Monte Carlo simulation.

For each wind and rain vector, we generate multiple sim-
ulated backscatter observations. These are inputs to the WO,
SWR, and RO estimators. The estimator performance prior is
calculated from the estimates as the percentage of the realiza-
tions for which a given estimator has lower normalized squared
error than the other estimators according to (21).

Fig. 4 shows the Monte Carlo simulated estimator perfor-
mance prior for a fixed wind direction and cross-track location.
The SWR estimator is best for most wind and rain vectors.
As expected, however, when the wind speed is low and the
rain is high, the RO estimator is superior. Likewise, when the
wind is high and the rain is low, the WO estimator has better
performance. As expected, there are relatively few cases where
the RO estimator is superior.

D. Optimality

Finding the optimum operating point consists of finding the
value for κ that maximizes the probability of correct estimator
selection p(φopt). Lacking a closed form for the probability
densities of the individual estimators, we turn to Monte Carlo
simulation to approximate p(φj |C(ϑ,xj) < C(ϑ,xi)∀i �= j)
which can be used to calculate p(φopt).

The Monte Carlo simulation consists of generating 1000
independent backscatter realizations for each true wind and rain
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Fig. 4. Monte Carlo simulated probability of each estimator having minimum
squared error. Each image represents the percentage of the time that a given
estimator was selected for the underlying simulated wind and rain conditions.
(Top) WO. (Middle) SWR. (Bottom) RO.

vector. Bayes estimator selection is performed for candidate
values of κ on the resulting WO, SWR, and RO estimates.
The optimal value for κ is that which maximizes p(φopt). The
probability of correct estimator selection is shown as a function
of κ in Fig. 5.

An interesting feature of Fig. 5 is that wind direction can
influence the probability of correct selection even though the di-
rection error is ignored during estimator selection. Cross-track

Fig. 5. Probability of correct estimator selection as a function of cross-track
index. (Top) Best possible probability of correct selection given the wind
direction. (Middle) Worst case probability of correct selection given the wind
direction. (Bottom) Overall probability of correct estimator selection, for κ = 1
using all SWR rains and κ = 0 ignoring rains lower than 2 km · mm/h. Note
that there is a relatively strong directional dependence in the estimator selection
performance.

winds (90◦ and 270◦), a known signature of rain contamination,
have the lowest probability of correct selections. Near the nadir
track (cells 38 and 39), the probability of correct selection is
particularly low for along-track winds. This is not surprising as
the observation geometry for along-track winds is particularly
poor along the nadir track, so wind and rain estimates are
noisier than other swath locations. With noisier estimates, it is
more difficult to choose the estimate with minimum squared
error consistently, so the probability of correct selection drops.

Also shown in Fig. 5 is the probability of correct selection
corresponding to the worst case value of κ. The worst case
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performance has similar characteristics to the optimal perfor-
mance but is 16% lower for the worst cases. However, for
most cases, the difference between optimal and worst case
performance is 2% to 4% which indicates that estimator se-
lection is not particularly sensitive to the selected value for κ.
The minimum value of the worst case estimator selection
performance is 63%, which is a lower bound on the average
estimator selection performance. This is not a very high lower
bound, but it is almost twice the probability of correct selection
compared to a simple ternary randomized rule which would
choose correctly 33% of the time. The worst case estimator
selection performance occurs for cross-track winds for certain
observation geometries. Wind and rain estimation is particu-
larly difficult for these conditions as the wind and rain signals
are not orthogonal [4]. The worst case estimator selection per-
formance for other wind directions and observation geometries
is significantly better, thus allowing the average probability of
correct estimator selection to be above 80% for most cases.

The optimum value for κ has an interesting interpretation.
When κ = 1, the best estimator selection is given by mini-
mizing the error associated with the correct estimator. When
κ = 0, the optimum selection can be interpreted as choosing
the estimator that minimizes the error associated with using
an incorrect estimator. This interpretation leads to a simple
explanation for the optimum values of κ. When estimator noise
is high, it is best to minimize errors associated with incorrect
selections by setting κ close to 0. When estimator noise is
low, it is best to minimize the error associated with the correct
selection, so κ is close to 1.

The optimum value for κ based on Fig. 5 is 1 for all cross-
track locations. Based on the aforementioned interpretation,
this implies that estimator noise is high. This noise may be
largely attributed to the SWR estimator which has high noise
levels for low rain rates. Much of this noise can be removed by
discarding any SWR solution with a rain rate below a threshold.
Setting a threshold at 2 km · mm/h increases p(φopt) by up to
4% overall and changes the optimal κ value to 0, implying that
estimator noise levels for these cases are lower. Since the impact
of such low rains on the WO estimates is quite small and SWR
estimates are particularly noisy for low rains, thresholding low
rain rates for SWR reduces estimator noise without significantly
increasing the overall estimate error.

VI. RESULTS

We evaluate the performance of Bayes estimator selection in
several ways. First, we consider an illustrative case study. Then,
we evaluate the overall estimator selection skill and consider
how close Bayes estimator selection approaches the optimal
decision rule. Finally, we compare overall wind and rain per-
formance by comparing Bayes estimator selection performance
to that of the individual estimators.

A. Case Study

To illustrate the functionality of Bayes estimator selection on
real data, we consider a case study from QuikSCAT rev 2882
on January 7, 2000.

The WO estimates are shown in the upper left image of
Fig. 6. Comparing the WO estimates to the TRMM PR-
measured rain rates (lower left image in the same figures)
illustrates the effects of rain contamination. Rain events cause
an increase in the wind speed estimates as large as 10 to 20 m/s.
Note that, for this case, the true underlying wind field varies
between 5 and 10 m/s. In locations where TRMM PR did not
measure rain, the WO estimates are between 5 and 10 m/s due
to the underlying wind field.

The corresponding RO estimates are shown in the middle left
image of Fig. 6. Comparing the RO estimates to the TRMM PR
measurements shows that the RO estimates are spatially cor-
related with the TRMM PR-measured rain rates. As expected,
the RO estimates where TRMM PR measured no rain are
biased high.

The SWR estimates overcome many of the problems associ-
ated with the WO and RO estimators but also have limitations.
The SWR wind estimates are shown in the upper middle image
of Fig. 6, and the SWR rain estimates are shown in the center
image. The SWR wind estimates are visually noisier than the
WO estimates, particularly in areas where there is no rain.
The opposite is true of the SWR rain estimates. The SWR
rain estimates correspond well with the TRMM PR measured
rain estimates for moderate rain rates; however, for the most
extreme rain events, there is no SWR rain estimate. In essence,
this corresponds to the case where the rain backscatter so
completely dominates the wind backscatter that a wind estimate
is not possible. For rain-free and low-rain cases, the SWR
rain estimates are quite noisy, which helps illustrate why it
is reasonable to discard the lowest SWR rain estimates as
discussed in Section V-D.

The wind–rain estimates produced using the Bayes estimator
selection, in effect, attempt to use the best features of each
estimator. The Bayes-selected wind estimates are shown in
the upper right image of Fig. 6, the Bayes-selected rain rates
are shown in the middle right image, and the Bayes estimator
selections are shown in the lower right image. Note the visually
improved wind and rain performance. Rain estimates match the
TRMM PR measured rain rates quite well. The wind field is
visually smoother in nonraining conditions, and the high wind
speeds due to rain contamination are no longer apparent. For
reference, the ideal estimator selections, the selections which
minimize the normalized squared error between the estimate
and the true values, are shown in the bottom image. Note that
the Bayes estimator selections and the ideal selections are noisy
but are often identical.

Although there is significant improvement gained by using
the Bayes-selected estimates, some drawbacks remain. For the
highest rain rates, the RO estimator is selected, and conse-
quently, there is no wind estimate. Similarly, the wind estimates
corresponding to moderately high rain rates where the SWR is
selected have wind estimates which underestimate the true wind
speed. These wind underestimates correspond to cases in which
the rain attenuation of the wind signal is significant enough to
lower the wind estimates but not quite large enough to make
wind estimation impossible.

The visual correlation between the Bayes-selected rain esti-
mates and the TRMM PR measurements is good but gives no
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Fig. 6. 25-km-resolution estimator results and Bayes estimator selection for a particular case (QuikSCAT rev 2882 on January 7, 2000). The top row shows
wind speed (in meters per second) estimates with down-sampled direction vectors overlaid. From left to right: WO, SWR, and Bayes-selected wind. The middle
row shows rain estimates (dB · km · mm/h) with relevant direction vectors overlaid. From left to right: RO, SWR, and Bayes-selected rain. For comparison, the
bottom row shows the TRMM PR measured rain (dB · km · mm/h) with the (bottom left) NCEP wind vector field overlaid, the (bottom center) ideal estimator
selections, and the (bottom right) Bayes estimator selections. For estimator selections, 0 corresponds to a WO selection, 1 to an SWR, and 2 to a RO selection.
In each image, the selected wind vectors are those closest to the NCEP wind field. Note that the Bayes-selected estimates have visually less noise than the SWR
estimates and have smooth wind fields in nonraining cases.

information about the pointwise accuracy of the estimates. To
evaluate the pointwise performance of the estimator selection,
the selected rain estimates and the TRMM PR measurements
are shown in the scatter plots in Fig. 7. The correlation for
QuikSCAT rain estimates and TRMM PR rain measurements
above 5 dB · km · mm/h is 0.76.

B. Overall Decision Performance

To evaluate the performance of Bayes estimator selection,
a data set of QuikSCAT and TRMM PR-colocated observa-
tions from September 1999 to December 2005 is used in the
remainder of this paper. This evaluation data set contains over
1.2 million wind vector cells (WVCs) where QuikSCAT and
TRMM PR made nearly simultaneous observations, within
10 min, in the vicinity of a rain event. Although some wind
and rain cases are not found in the data set, the data set gives a
good idea of the general performance.

The success of the Bayes estimator selection technique can
be summarized most succinctly by determining how close
to optimal selection the technique performs on real data. As
discussed previously, optimal estimator selection consists of
selecting the estimate which has minimum squared error. The
percentage of time that the minimum-squared-error estimate is
selected gives a measure of the algorithm performance.

To demonstrate actual estimator selection performance,
Fig. 8 shows the percentage of time that the Bayes estimator
selections chose the optimal estimate as a function of NCEP
wind speed and TRMM PR rain rate.

Noticeably, there are some wind and rain combinations,
low wind speeds, and nonzero rain rates for which estimator
selection does not work well. Fortunately, the cases with poor
selection accuracy are relatively rare. Furthermore, although
the optimal estimator is not always selected for many of these
cases, the difference between the WO and SWR estimators is
small. For example, during low winds and nonzero rain, the
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Fig. 7. 25-km-resolution Bayes-selected rain estimates as a function of
TRMM PR-measured rain rates. Both axes show rain rate in dB·km·mm/h.
The red points correspond to SWR rain estimates, the black to RO estimates,
and the green show TRMM PR rain rates corresponding to WO selections. The
one-to-one line is shown for comparison. Note that, above a TRMM rain rate of
5 dB, the correlation between QuikSCAT estimates and TRMM measurements
is clear.

Fig. 8. Probability of correct estimator selection as a function of NCEP wind
speed and TRMM PR rain rate. Nonraining performance is shown as rain rates
below 0 dB · km · mm/h. Data are missing for some wind and rain vectors
which did not occur in the data set. Note that, although there is poor selection
performance for some cases (low speed and nonzero rain in particular), the
probability of correct selection is high for the most common winds and rains.

probability of optimal selection is low as the WO estimate is
typically selected when the SWR is often the best. For low
rains, the effects of rain are small, so a choice of the WO
estimate when the SWR is better only causes a small change in
the overall error. This is also true for moderate to high speeds
when the rain is low.

The probability of wind and rain conditions occurring, given
that the probability of correct estimator selection is in a certain
range, is shown in Table III. As shown in the table, wind and
rain conditions for which the estimator selection performance
is poor are relatively rare.

As expected, the Bayes estimator selections are the best for
conditions with wind speeds which are close to the mean of

TABLE III
PROBABILITY OF WIND AND RAIN VECTOR GIVEN

THE ESTIMATOR SELECTION PERFORMANCE

the wind and rain prior used to calculate the Bayes risk. This
implies that the estimator selection algorithm is sensitive to the
wind and rain prior. This sensitivity can be reduced by using a
prior selection technique to be discussed in a following paper.

An evaluation of the effectiveness of Bayes estimator selec-
tion looks at the performance of the Bayes-selected estimates
compared to the performance of the individual estimators as
well as the optimally selected estimates. To make such a com-
parison, we first define rain impact. Rain impact is a condition
in which the rain has a large enough impact on the WO estimate
that the SWR or RO estimate has minimum squared error. This
is equivalent to the optimal estimator selection being SWR or
RO. With this definition for rain impact, the optimal estimator
selections are the WO estimator when there is no rain impact
and the SWR estimator when there is rain impact. Fig. 9 com-
pares the wind estimate effects of rain impact using the WO es-
timates, the Bayes-selected estimates, and the SWR estimates.

Without Bayes estimator selection or something equivalent,
only a single estimator is used. There are two choices, use the
WO estimator all the time and discard rain-impacted winds, or
reduce rain impact by using the SWR estimator all the time.
Choosing the SWR estimator can reduce the impact of rain
but suffers degraded performance when there is no rain. Bayes
estimator selection balances both the strengths and weaknesses
of the individual estimators by making an optimal choice be-
tween them. Fig. 9 shows that choosing the first option has good
wind performance in conditions with no rain impact, but there
is strong bias and high variability in rain impact conditions.
On the other hand, Fig. 9 shows that using the SWR estimates
gives good wind performance in rain-impact conditions but has
biased performance in conditions without rain. Bayes estimator
selection attempts to obtain optimal performance, using the WO
estimates when there is no rain impact and the SWR estimates
when there is. Thus, as shown in Fig. 9, the Bayes estimator
selections have wind performance which is similar to that of
the WO estimates when there is no rain impact and the SWR
estimates when there is rain impact.

To evaluate the accuracy of the rain estimates, Fig. 10 shows
a scatter density plot of the TRMM PR-measured rain rates
and the Bayes-selected QuikSCAT rain rate estimates. We note
that the QuikSCAT rain rates are relatively unbiased compared
to the TRMM PR observations, although there is significant
variability in the rain estimates. A more complete discussion
of SWR rain accuracy can be found in [5].

C. IMUDH Comparison

The impact-based multidimensional histogram (IMUDH)
rain flag is a modified version of the multidimensional his-
togram (MUDH) rain flag [8] that is included with standard
QuikSCAT 25-km wind estimates [12]. IMUDH is designed
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Fig. 9. Scatter densities (in decibels) for NCEP and QuikSCAT wind estimates for conditions (top row) with a rain impact, i.e., the optimal selection is the SWR
estimator, and (bottom row) without a rain impact, for which the optimal selection is the WO estimator. From left to right, the columns show the WO estimates, the
Bayes-selected estimates, and the SWR estimates. Each figure also includes the mean of the QuikSCAT estimates (solid black line) plus and minus one standard
deviation (dashed black lines). Note that the Bayes-selected estimates have significantly reduced the wind bias in rain impact cases for all but the lowest wind
speeds and have no bias in cases with no rain impact cases. Ideally, the Bayes estimates have the performance of the WO estimator in conditions with no rain
impact and the same performance as the SWR in conditions with rain impact. The differences observed are due to nonoptimal estimator selection.

Fig. 10. Normalized scatter density in decibels of Bayes-selected rain esti-
mates and TRMM PR rain measurements.

to indicate the likelihood of rain impact on a given wind
estimate. For the IMUDH rain flag, rain impact is defined as
the wind estimate being perturbed by rain from the true wind
by more than 2 m/s. Although this definition is different from
the definition of rain impact used previously in this paper, the
IMUDH rain flag is a useful comparison tool.

An evaluation of the effectiveness of Bayes estimator selec-
tion at reducing the effects of rain can be performed using the
IMUDH flag. Such a comparison requires knowledge of the true
conditions. Since true wind data are unavailable, the estimate
error for the WO, SWR, and Bayes-selected wind estimates

Fig. 11. Probability of the wind estimates having error greater than 3.92 m/s,
as a function of the IMUDH rain flag value. The IMUDH flag correctly predicts
the number of perturbed WO estimates, whereas the Bayes estimator selections
and SWR estimates are perturbed by rain far less often than predicted by the
IMUDH rain flag. The dashed line is a one-to-one line shown for comparison.

is calculated using NCEP model wind speeds, which have
additional uncertainty. The additional uncertainty in NCEP
wind speeds increases the probability that the wind estimates
have error greater than 2 m/s, the original threshold for wind
perturbation used in the IMUDH rain flag [12].

An appropriate IMUDH error threshold for use with NCEP
model winds can be obtained. The threshold is chosen by
minimizing the difference between the probability that the WO
estimate error is greater than the threshold and the probability
predicted by the IMUDH rain flag. For the comparison data in
this paper, the threshold that minimizes the difference between
WO estimate error and the IMUDH flag is 3.92 m/s. This value
allows us to use the IMUDH rain flag with NCEP winds as
validation wind data. Fig. 11 shows the probability of the WO,
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Fig. 12. Wind speed rms error (in meters per second) between the QuikSCAT estimated wind speed and the NCEP model wind speed for the (left) WO, (center)
BES, and (right) SWR wind speed estimates. Note that, although the BES rmse is slightly higher than the WO rmse for high wind and low rain, it is much lower
than the WO rmse for low to moderate winds with nonzero rain rates.

SWR, and Bayes-selected wind estimates having speed errors
greater than 3.92 m/s as a function of the IMUDH rain flag.

By construction, the WO estimates in Fig. 11 correspond
quite well with the IMUDH rain flag. The SWR wind es-
timates, however, have significantly lower rain perturbation
for high IMUDH values. For low IMUDH values, the SWR
speed estimates have more error than predicted by the IMUDH
rain flag. The speed estimates selected using Bayes estimator
selection have improved performance over both the WO and
SWR estimates. For low IMUDH values, the speed estimates
selected using Bayes estimator selection are perturbed similarly
or less often than the WO estimates, and for high IMUDH
values the selected speed estimates are perturbed far less often
than the WO estimates and only slightly more than the SWR
speed estimates.

Thus, the Bayes estimator selection (BES) performance as a
function of the IMUDH flag agrees with the rain-impact perfor-
mance shown in Fig. 9. In both cases, using the Bayes-selected
estimates results in improved performance over the individual
WO or SWR estimates for situations with and without rain
impact. To summarize, Bayes estimator selection, as applied
to QuikSCAT wind and rain retrieval, can reduce the effects
of rain impact, thereby improving wind estimates by reducing
rain contamination. It also produces estimates of the rain for
rain-impacted situations.

D. Wind Speed Accuracy

A final simple measure of Bayes estimator selection per-
formance is the wind speed rms error. Since QuikSCAT was
intended to measure near-surface wind vectors, a measure of
the utility of the Bayes estimator selection technique is to
quantify the improvement to this specific function. As noted
previously, although NCEP wind data are subject to a number
of limitations, on a large scale, it provides a useful comparison
data set for this analysis.

The wind speed rms error is calculated for the WO, SWR,
and Bayes estimator selected wind estimates as a function
of NCEP wind speed and TRMM PR measured rain rate for
the data set described in Section VI-B. Fig. 12 shows the
calculated rms error levels for the evaluation data set. As might
be expected, the WO esimates have lower wind speed rms
error for conditions with low rain. The SWR wind speed rms

error is lower than the WO for moderate to high rain rates but
is higher for low rain rates with high wind speeds. However,
BES provides overall better performance since it is designed to
choose the WO estimates for nonraining cases and the SWR
estimates during rain events.

As indicated by the Bayes-selected wind speed rms error in
Fig. 12, the rms error is lower than the WO estimates for low
to moderate winds during rain events but is slightly higher than
the WO rms error for high wind speeds with low rain rates.
However, for moderate winds and low to moderate rains, the
Bayes-selected wind speed rms error is lower than either the
WO and SWR rms error. Thus, as hoped, the Bayes estimator
selection technique balances the strengths of the WO and SWR
wind estimates, producing wind estimates and rain estimates
which can have lower rms error than either the WO or SWR
estimates individually.

VII. CONCLUSION

Bayes estimator selection is a unique way of addressing
QuikSCAT wind and rain estimation. Rather than relying solely
on one type of estimator, we can use Bayes estimator selec-
tion to reduce the effects of rain impact without discarding
information. This improves the overall quality and reliability
of the wind and rain estimates. Furthermore, Bayes estimator
selection is a highly flexible and robust technique which can be
adapted to a variety of problems regardless of estimator type or
dimension. Although the technique does not always make the
optimal selections, it does so a large majority of the time. This
reliability makes Bayes estimator selection a valuable tool to
increase the functionality of QuikSCAT data products as well
as those from other scatterometers such as ASCAT.
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