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Reconstruction From Aperture-Filtered Samples With
Application to Scatterometer Image Reconstruction
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Abstract—This paper approaches scatterometer image recon-
struction as the inversion of a discrete noisy aperture-filtered
sampling operation. Aperture-filtered sampling is presented and
contrasted with conventional and irregular sampling. Discrete
reconstruction from noise-free aperture-filtered samples is investi-
gated and contrasted with conventional continuous reconstruction
approaches. The discrete approach enables analytical treatment
of the reconstruction grid resolution and the effective resolution
imposed by the sampling and reconstruction operations. The
noisy case is also explored. A reconstruction estimator based on
maximum a posteriori (MAP) estimation is proposed to recover
the conventional samples from noisy scatterometer measurements.
This approach enables the scatterometer noise distribution to be
appropriately accounted for in the reconstruction operation. The
MAP and conventional reconstruction approaches are applied
to the SeaWinds scatterometer and the Advanced Wind Scat-
terometer, and the effective resolution of the different methods
is analyzed. The MAP approach produces results consistent with
the well-established scatterometer image reconstruction (SIR) al-
gorithm. The MAP approach significantly enhances the resolution
at the expense of increased noise. Although a detailed noise-ver-
sus-resolution tradeoff analysis is beyond the scope of this paper,
the new framework allows for a more general treatment than the
ad hoc tuning parameters of the SIR algorithm.

Index Terms—Inverse problems, irregular sampling, maximum
a posteriori (MAP) estimation, scatterometer image reconstruction.

I. INTRODUCTION

A SCATTEROMETER is an active microwave device
(radar) that measures the normalized radar cross section

(σ0) averaged spatially over an aperture function. Typically,
each radar pulse is partitioned into several measurements using
range-Doppler processing so that the spatial aperture function
of each measurement is a combination of the antenna footprint
and range-Doppler processing. The sampling geometry results
in irregularly spaced aperture functions with different shapes.
A scatterometer makes several measurements with different
azimuth angles, incidence angles, and, possibly, polarizations
of the same spatial region.

Since scatterometers make multiple overlapping measure-
ments of the Earth’s surface, these measurements may be
combined to produce σ0 images. These images provide valu-
able geophysical information for land and ice studies [1], [2].
Several imaging methods have been proposed for scatterometer

Manuscript received December 23, 2009; revised August 10, 2010; accepted
September 19, 2010. Date of publication December 10, 2010; date of current
version April 22, 2011.

B. A. Williams was with the Electrical and Computer Engineering Depart-
ment, Brigham Young University, Provo, UT 84602 USA. He is now with the
Jet Propulsion Laboratory, Pasadena, CA 91109 USA.

D. G. Long is with the Electrical and Computer Engineering Department,
Brigham Young University, Provo, UT 84602 USA (e-mail: long@ee.byu.edu).

Digital Object Identifier 10.1109/TGRS.2010.2086063

image reconstruction. Perhaps, the most simple is to create a
gridded product by averaging all measurements whose centers
fall into a particular grid element. Gridding produces relatively
low-resolution images. Another imaging technique employs a
weighted average on a higher resolution grid. This is the basis of
the averaging (AVE) algorithm [3], which sets the value of each
pixel to the average of all the σ0 measurements, weighted by the
value of the respective aperture functions at each pixel. Some
common methods that further enhance the resolution are based
on the additive algebraic reconstruction technique (AART) or
the multiplicative algebraic reconstruction technique (MART)
[3], [4]. For the noisy scatterometer σ0 imaging problem, the
MART algorithm tends to produce a less noisy estimate of
the conventional samples than the AART algorithm. Practical
considerations lead to the scatterometer image reconstruction
(SIR) algorithm, which is a normalized version of MART that
tends to converge faster and with less noise [3], [4].

Scatterometer σ0 imaging algorithms proposed in the litera-
ture [3], [4] are based on continuous noise-free reconstruction
operators. Continuous reconstruction operations allow for a
very general but somewhat restricted result. More practical
results can be obtained by considering the discrete inverse prob-
lem. For example, continuous methods do not use knowledge
of the noise distribution and do not provide a simple method
of determining the resolution, while a discrete approach can
handle both these issues directly. Note also that the commonly
used SIR algorithm is tuned using ad hoc methods in order to
reduce the effects of noise and the filtering artifacts imposed by
the aperture functions. These ad hoc methods make it difficult to
analytically evaluate the quality of the estimates. An estimator
that uses the noise distribution can be expected to perform
better, is theoretically more appropriate, and allows the quality
of the estimates to be analyzed using standard estimation-theory
tools.

Although for some scenarios, the scatterometer image re-
construction problem is well posed (meaning that there are
enough linearly independent measurements to estimate each
pixel of the image), in most practical applications, the problem
is ill posed. Thus, some form of regularization is required to
estimate the σ0 image from the scatterometer measurements.
The AVE, AART, MART, and SIR algorithms all have a built-in
regularization, but, as noted earlier, they do not fully account for
noise.

Reconstruction techniques based on ill-posed inverse-
problem theory and convex regularization have been developed
for remotely sensed data [5], [6]. However, these methods are
developed primarily for synthetic aperture radar and impose
some implicit assumptions, such as coherent measurement sce-
narios, that are not appropriate for scatterometry. A slightly
more generic approach is required for scatterometry.
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This paper treats scatterometer image reconstruction as the
inversion of a noisy aperture-filtered sampling operation, where
the noise can be expressed as additive but need not be inde-
pendent of the signal (i.e., such as the case with fading). The
sampling model is presented and made discrete, and noise-
free reconstruction is explored and contrasted with conven-
tional approaches. Reconstruction from noisy aperture-filtered
samples is then examined. A reconstruction estimator based
on maximum a posteriori (MAP) estimation is proposed for
σ0 imaging from scatterometers. Examples from the Advanced
Wind Scatterometer (ASCAT) and the SeaWinds scatterometer
are illustrated, and the resolution enhancement is compared
with conventional approaches.

The focus of this paper is to develop a theoretical framework
that allows the scatterometer noise model to be appropriately
accounted for in the image-reconstruction problem, to present
analytical results concerning resolution that were previously
unobtainable, and to develop the first step toward an optimal
reconstruction estimator. Although a new reconstruction algo-
rithm is developed, in practice, the results are not expected to
be a significant improvement over the SIR algorithm, which has
been empirically tuned for decades to tradeoff noise and reso-
lution and perform well for scatterometer applications. Rather,
consistency between the results simultaneously validates both
the rigorous and empirical methods. The MAP approach pro-
duces a higher resolution estimate than the SIR algorithm at the
expense of also enhancing the noise. The new framework allows
for a more general approach to optimizing the noise-versus-
resolution tradeoff, although a detailed noise-versus-resolution
analysis is beyond the scope of this paper.

This paper is organized as follows. Section II examines and
contrasts conventional, irregular, and aperture-filtered sampling
theories. Section III explores inverse operators for the discrete
noise-free case and develops theoretical tools to analyze res-
olution. Section IV discusses estimation from noisy samples
and develops a scatterometer image reconstruction estimator
that directly accounts for scatterometer noise and compares
the results with conventional approaches. Finally, Section V
concludes this paper.

II. SAMPLING

Sampling is the process of converting a continuous-index
signal, such as a scalar- or vector-valued function, into a
discrete-index signal, termed as a sequence. In a Hilbert space
(i.e., a complete vector space with an inner product defined
[7]), sampling can be represented as a series of inner prod-
ucts with sampling functions [8]. This section contrasts con-
ventional regular sampling, irregular sampling, and sampling
with irregularly spaced aperture functions (i.e., aperture-filtered
sampling) in a Hilbert space. A discrete-sampling formula-
tion is considered, and the scatterometer-sampling model is
presented.

A. Sampling Formulations

In conventional sampling theory, the sampling of a
continuous-index signal s(x) in a Hilbert space can be rep-
resented by performing an inner product with a Dirac delta
function centered at the sample location xn for regularly spaced
samples (i.e., for the 1-D case, xn = nt, where t is the sample

spacing and n is an integer) [8]. This sampling produces a
sequence in which each sample represents the value of the
original signal at the corresponding sample location. This for-
mulation also applies to irregular sampling with irregularly
placed xn’s. The sampling operation can be written as a vector
of inner products

�s =

⎡
⎢⎣
s[x1]

...
s[xN ]

⎤
⎥⎦ =

⎡
⎢⎣
∫
δ(x− x1)s(x)dx

...∫
δ(x− xn)s(x)dx

⎤
⎥⎦ (1)

where �s is the vector of samples of the continuous-index signal
and N is the total number of samples. While in theory N
may be infinite, for all practical applications, N must be finite.
In this formulation, s[xn] is the value of s(x) evaluated at
x = xn.

Note that if s(x) is bandlimited to ω0, the delta func-
tions may be replaced with sinc functions sinc(ω0(x−
xn)) = sin(πω0(x− xn))/πω0(x− xn), and the same result
is obtained. Also, if the signal is bandlimited and peri-
odic, the delta functions may be replaced with Dirichlet
kernels D(ω0(x− xn)) = sin((2ω0 + 1)(x− xn)/2)/(2ω0 +
1) sin((x− xn)/2), with integration over only one signal
period. For regular sampling of bandlimited signals, the orig-
inal continuous-index signal can be reconstructed with sinc-
function interpolation, while the bandlimited periodic signals
can be recovered with Dirichlet-kernel interpolation. These
interpolation operations are equivalent to low-pass filtering
[8]. For irregular sampling, bandlimited signals can be recon-
structed from irregularly spaced samples as long as the samples
are sufficiently dense [4], [9]–[11].

For a more general sampling operation, the delta functions
in (1) can be replaced with arbitrary aperture functions An(x)
that may have a different functional form (shape) for each
sample. Sampling with arbitrary aperture functions produces
the sampling operation

�g =

⎡
⎢⎣
∫
A1(x)s(x)dx

...∫
AN (x)s(x)dx

⎤
⎥⎦ = As(x) (2)

where A is the sampling operator and �g represents the aperture-
filtered samples. We use the notation �g instead of �s to represent
the aperture-filtered samples since the samples do not neces-
sarily represent the value of the original signal at a particular
location due to the aperture function. Bandlimited signals can
be reconstructed from samples made with distributed sam-
pling functions [11], [12]. However, these results apply to
general bandlimited signals, and more practical results may
be found for the finite discrete case (i.e., bandlimited periodic
signals).

If the aperture functions are bandlimited, the sampling oper-
ation can be expressed as (see Appendix I)

�g =

⎡
⎢⎣

�AT
1 �s
...

�AT
N�s

⎤
⎥⎦ = A�s = As(x) (3)

where A is a matrix operator that operates on the conven-
tional regularly spaced samples �s of the bandlimited version
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of the continuous-index signal s(x), �An’s represent conven-
tional sampling of the bandlimited aperture functions, and T
represents the transpose (or Hermitian transpose for complex
signals). The same result is obtained if s(x) is bandlimited even
if each An(x) is not bandlimited, where the rows of A are
conventional samples of bandlimited versions of the aperture
functions. Moreover, if s(x) or each An(x) is bandlimited and
periodic, A is a finite-dimensional matrix and can be analyzed
with standard linear algebra (see Appendix I).

Having a discrete mapping from the conventional samples to
the aperture-filtered samples allows a unique approach to re-
construction. Reconstructing the original signal can be thought
of as first reconstructing �s from �g by inverting A and then
performing Dirichlet-kernel interpolation on the reconstructed
�s to produce the continuous-index signal s(x). Reconstruction
from aperture-filtered samples is discussed in more detail in
Section III.

B. Discrete Processing of Continuous-Index Signals

In practice, sampling is limited to a finite number of samples.
With a finite number of samples, the signal may be treated
as bandlimited and periodic. Constraining the signal to be
bandlimited and periodic may seem restrictive but, as noted
in Appendix I-B, is appropriate for most practical applications.
That is, most practical signals can be approximated arbitrarily
close by a bandlimited periodic signal. This approximation may
introduce aliasing, but the aliasing is negligible if the bandlimit
and the period are chosen appropriately.

For the rest of this paper, we restrict our attention to periodic
bandlimited signals, although the bandlimit may be arbitrarily
high. This restriction greatly simplifies the mathematics and
allows the reconstruction analysis to be performed using linear
algebra instead of real analysis, i.e., using matrix theory instead
of linear operator theory. Furthermore, focusing on discrete
problems allows analysis of the noisy inverse problem using
standard estimation theory.

The choice of the signal bandlimit and period is problem
dependent. A general signal period may be chosen as anything
larger than the extent of the data or region that is to be
processed. Once a signal period is selected, an appropriate
bandlimit can be imposed. If the signal bandlimit or signal
spectrum is known, a bandlimit may be chosen to minimize
aliasing, but for many applications, no a priori knowledge
about the signal is available. Nevertheless, there may be a
fundamental bandlimit imposed by the aperture functions. If
every aperture function is bandlimited by some ω0, the sam-
pling operation on the continuous-index signal is equivalent to
the same sampling operation on the bandlimited version of the
signal. This equivalence implies that no portion of the signal
with frequency content higher than ω0 can be recovered. Thus,
assuming a bandlimit that is the highest bandlimit of the aper-
ture functions is sufficient to recover all the information about
the signal that is possible from the aperture-filtered samples
alone. If the aperture functions are not bandlimited, a high
bandlimit may be chosen so that the resulting aliasing is suf-
ficiently small. The bandlimit and period determine the number
of conventional samples required to represent the continuous-
index signal, as well as the sample spacing (i.e., the pixel or grid
resolution).

C. Scatterometer-Sampling Model

In scatterometry, σ0 measurements represent noisy aperture-
filtered samples of the 2-D σ0 field. The σ0 field may be recon-
structed using various slice measurements of a similar flavor
(i.e., that have the same geometry, frequency, and polarization).
Measurements of a given flavor sample the same σ0 field
and can be combined. Furthermore, for land and ice imaging
purposes, all slices of a given polarization and frequency may
be combined by assuming negligible azimuthal variation and by
adjusting the σ0 values to a common incidence angle [3]. In this
paper, we deal primarily with the SeaWinds scatterometer and
ASCAT. For SeaWinds, the incidence-angle adjustment is not
necessary since the slices of a given polarization have a similar
incidence angle. For ASCAT, incidence-angle normalization to
40◦ is used.

SeaWinds is a Ku-band scatterometer that orbits the Earth
in a Sun-synchronous near-polar orbit. The instrument has a
scanning pencil-beam antenna with two beams at different
incidence angles and polarizations. The v-pol beam is at a
nominal incidence angle of 54◦, while the h-pol beam is at
an incidence angle of 46◦. The two scanning beams produce
a swath with four “flavors” (v-pol fore and aft looking and
h-pol fore and aft looking) in the inner portion of the swath
and two flavors in the outer portion of the swath where there is
only one beam. The backscatter return from each pulse from
each beam is partitioned into several “slices” using range-
Doppler processing. Each slice is considered to be statistically
independent, and each has its own aperture function or slice
spatial response function [13].

The ASCAT scatterometer is a C-band v-pol instrument
in near-polar orbit that has two sets of three stationary fan-
beam antennas pointed at different azimuth angles. The system
applies a type of pulse compression to obtain range resolution,
producing slice σ0 measurements with a relatively wide range
of incidence angles. This sampling results in a swath in which
each point is sampled by multiple beams with differing azimuth
angles [14].

Although SeaWinds and ASCAT cover a large percentage
of the Earth’s surface daily, the σ0 fields are generally recon-
structed only over particular regions of interest. That is, we are
only interested in a region of finite extent, which means that the
signal and the slice response functions can be assumed to repeat
periodically outside the region of interest.

The SeaWinds and ASCAT scatterometers are designed for
large-scale ocean-wind vector measurements rather than σ0

imaging. Although it is possible to use several days’ worth
of data to obtain a determined or overdetermined sampling
operator (or sampling matrix), for many practical scatterome-
ter imaging applications, scatterometer-sampling operators are
underdetermined. That is, the scatterometer image reconstruc-
tion problem is generally ill-posed, meaning that we are
attempting to estimate more parameters than we have in-
dependent measurements. This suggests that there is no
unique reconstruction and that additional constraints on the
signal must be applied in order to reconstruct σ0 images.
In the next two sections, we consider both the well-posed
(fully determined or overdetermined sampling matrix) and
ill-posed (underdetermined sampling matrix) cases for com-
pleteness but focus much of the discussion on the ill-posed
case.
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III. NOISE-FREE RECONSTRUCTION

This section considers discrete reconstruction from noise-
free aperture-filtered samples. The ability to reconstruct the
original signal depends on whether the mapping A is reversible.
The system�g = A�s represents a linear system of equations. De-
pending on the structure of the forward operator A, the system
may be fully determined, overdetermined, or underdetermined.
Each of the three cases is considered in the following, and the
conditions required for exact reconstruction from the aperture-
filtered samples are explored. Optimum inverse mappings that
enable reconstruction of �s from �g are also presented for the
overdetermined, fully determined, and underdetermined cases.
Resolution limits imposed by the sampling are also explored,
and the optimum pixel resolution for the SeaWinds and ASCAT
scatterometers are derived.

A. Sampling Matrix: Overdetermined, Fully
Determined, or Underdetermined

Whether the sampling matrix A is overdetermined, fully
determined, or underdetermined depends on the density of
the samples, the signal bandlimit, the signal period, and the
linear independence of the aperture functions. As noted in the
following and in Appendix I, the reconstructed signal bandlimit
is limited by the highest bandlimit of the aperture functions,
i.e., the number of conventional samples in the region of inter-
est, and the condition of the sampling matrix are determined
completely by the sensor. A fully determined system results
if each aperture function is linearly independent and if the
number of aperture-filtered samples is equal to the number
of conventional samples required to represent the bandlimited
periodic signal. An overdetermined system results if there are
more aperture-filtered samples than the required number of
conventional samples and if the number of linearly independent
aperture functions is equal to the number of required conven-
tional samples. An underdetermined system results if there are
fewer aperture-filtered samples than the required number of
conventional samples or if the number of linearly independent
aperture functions is less than the required number of conven-
tional samples.

Reconstructing the conventional samples �s from the aperture-
filtered samples �g requires a slightly different reconstruction
operation for each of the three cases: fully determined, overde-
termined, and underdetermined. First, the conventional samples
are reconstructed from the aperture-filtered samples; then, for
each case, the reconstruction of the continuous-index signal is
performed using Dirichlet-kernel interpolation with the recon-
structed conventional samples

ŝ(x) =
∑
xn

ŝ[xn]D (ω0(x− xn)) (4)

where ŝ[xn] is the reconstructed conventional sample corre-
sponding to location xn and D(ω0(x− xn)) is the Dirichlet
kernel with the same period and bandlimit imposed on the
signal.

1) Fully Determined Case: For the case when the system
is fully determined, matrix A is square and full rank. In this
case A is invertible, and there exists a unique mapping from
the aperture-filtered samples �g back to the conventional samples

�s. Therefore, if A is an N ×N full-rank matrix, every signal
that can be represented by N conventional samples can be
reconstructed from the aperture-filtered samples.

For this case, the discrete reconstruction operation is

�̂s = A−1�g (5)

where �̂s represents the reconstructed conventional samples and
A−1 is the standard matrix inverse of A. The continuous-index
signal is reconstructed using (4), where �̂s is the vector form of
the reconstructed discrete signal ŝ[xn].

2) Overdetermined Case: The overdetermined case occurs
when A has more rows than columns and is a full-row rank.
By discarding redundant samples, a consistent overdetermined
system may be transformed into a determined system without
loss of information. That is, the aperture-filtered samples that
correspond to the linearly dependent rows of A may be dis-
carded, producing a mapping from �s to the remaining aperture-
filtered samples that is square and full rank and that represents
a fully determined system. Thus, if A is an M ×N matrix
with N linearly independent rows, every signal that can be
represented by N conventional samples can be reconstructed
from the aperture-filtered samples.

When A is overdetermined, instead of discarding data, a least
square inverse may be used for the reconstruction operation. A
least square approach produces the same result in theory but
is numerically more stable. Furthermore, with additive white
Gaussian noise, the least square inverse produces the minimum-
variance unbiased estimate of the conventional samples [7],
[15]. Applying the least square inverse results in the discrete
reconstruction operation

�̂s = (ATA)−1AT�g. (6)

The continuous-index signal is reconstructed using (4).
3) Underdetermined Case: The underdetermined case oc-

curs if the row rank of A is less than the number of con-
ventional samples required to represent the bandlimited signal.
For this case, there is no one-to-one mapping that maps the
range space of A back to the entire domain of A. When A
is underdetermined, there is no unique inverse; nevertheless,
additional constraints may be imposed in order to obtain a
pseudoinverse. Here, some practical results are summarized
and contrasted with the conventional SIR approaches, while
Appendix II considers the underdetermined case in detail.

Since there are several different constraints that can be im-
posed to obtain a pseudoinverse, there are also several different
pseudoinverses that can produce a different reconstruction from
the same data. One of the most common constraints is the
minimum-norm constraint which results in the Moore–Penrose
pseudoinverse [7]. Note that the AART algorithm also employs
the minimum-norm constraint and so the AART algorithm
converges to the same result as the Moore–Penrose pseudoin-
verse followed by Dirichlet interpolation. The Moore–Penrose
pseudoinverse is particularly useful because it is also a linear
inverse. This condition is not generally the case for other
constraints. For example, the maximum-entropy constraint used
in the MART and SIR algorithms results in a nonlinear recon-
struction operation. Although the MART and SIR methods tend
to produce a less noisy reconstruction with actual data, for the
noise-free treatment here, the Moore–Penrose pseudoinverse
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is suggested, and the scatterometer noise is handled explicitly
later.

The reconstruction of the conventional samples from the
aperture-filtered samples using the Moore–Penrose pseudoin-
verse is expressed as

�̂s = A†�g (7)

where �̂s represents the reconstructed conventional samples and
A† is the Moore–Penrose pseudoinverse of A defined by

A† = VA(ΣA)
−TUT

A (8)

where UAΣAV
T
A is the singular value decomposition of A and

(ΣA)
−T is defined as the transpose of ΣA with the nonzero el-

ements replaced by their reciprocals [7]. The reconstruction of
the continuous-index signal is performed using Dirichlet-kernel
interpolation with the reconstructed conventional samples as
described in (4).

B. Pixel and Effective Resolution

The optimum uniform-sample spacing (i.e., pixel resolution)
and optimum bandlimit to use when reconstructing the signal
have not been extensively explored in literature. A bound on
the frequency recoverability from irregular sampling theory is
given in [4] (i.e., there is a bandlimit such that every signal
with that bandlimit can be recovered). The bound is determined
by the sampling density, suggesting that the reconstruction
grid resolution is a function of the irregular sampling den-
sity. However, for aperture-filtered sampling, assuming that
the signal has a lower bandlimit than the highest bandlimit of
the aperture functions may introduce aliasing. With aperture-
filtered samples, the sample spacing must be determined by the
bandlimit or approximate bandlimit of the aperture functions
rather than by just the density of the aperture-filtered samples.
The density of the samples is related to the condition of the sam-
pling matrix (whether it is overdetermined, fully determined, or
underdetermined) and does not directly impose a bandlimit on
the signal.

1) SeaWinds and ASCAT Resolution: Here, the optimal reg-
ular pixel gridding is considered for the SeaWinds and ASCAT
scatterometers. The pixel resolution for each scatterometer is
derived from the narrow width of the measurement response
functions.

The image grid pixel size is determined by the bandlimit of
the slice spatial response functions. Fig. 1 shows typical 6-dB
contours of the slice spatial response functions for a given pulse
from SeaWinds and from ASCAT [16], [17]. For SeaWinds,
the 6-dB slice contours are approximately 6 km in the narrow
direction and 25 km wide in the long direction. For ASCAT, the
contours are about 4.2 km in the narrow direction and 20–35 km
in the long direction. To obtain a nominal pixel resolution,
each of the slice response functions is approximated by a sinc-
squared function that has the same 6-dB width as the slices in
the narrow and long directions. The sinc-squared functions can
be represented by regular samples with spacing corresponding
to about half the narrow 6-dB beamwidth. This sample spacing
is scaled by a factor of 1/

√
2 to allow for the worst case slice

orientation with respect to the gridding axes (i.e., 45◦). For
SeaWinds, the sinc-function approximation suggests a nominal

Fig. 1. Typical slice spatial response functions from SeaWinds and ASCAT
for one pulse. The 6-dB contours are shown. The boxes with the circles in them
are ASCAT SZF (slice) measurements; the contours on the left are SeaWinds
slices.

conventional-sample spacing of about 6 km/2
√
2 ≈ 2.12 km

[18]. This sample spacing is consistent with the 2.225-km pixel
spacing found empirically to be approximately the resolution-
enhancement limit for SeaWinds. For ASCAT, the pixel res-
olution is about 4.2 km/2

√
2 ≈ 1.5 km. Note that the range

filtering of the σ0 values performed onboard the ASCAT space-
craft degrades the effective reconstruction resolution. Thus,
for ASCAT, a coarser conventional-sample spacing may be
appropriate. From empirical observations, it seems that the
resolution-enhancement limit is about 4 to 6 km for ASCAT.
To be consistent between the data sets, we process both the
SeaWinds and ASCAT data on the standard 2.225-km grid.

2) Effective Resolution: Since scatterometer-sampling op-
erators are typically underdetermined, the effective resolution
may be different from the pixel resolution defined by the
bandlimit of the aperture functions. Furthermore, the effective
resolution may vary throughout the swath. We define the effec-
tive resolution in terms of the width of the point-target response
to the sampling and reconstruction operation.

For the linear reconstruction operations outlined previously,
the resolution of the reconstructed images is only a function of
the sampling matrix A and the reconstruction operation. If A is
fully determined or overdetermined, then the resolution of the
reconstructed images is the Nyquist sampling corresponding
to the highest bandlimit of the aperture functions and is shift
invariant. However, if A is underdetermined, then the resolution
limit is as defined earlier, but the effective resolution may
be lower and may vary throughout the image. The effective
resolution at location i of the image can be defined by the
width of the impulse response (at location i) of the sampling
and reconstruction operation and can be calculated analyti-
cally, independent of the signal. The impulse response for the
Moore–Penrose pseudoinverse �hi at location i is defined as

�hi = A†A�δi (9)

where �δi is a discrete delta function centered at location i.
Since the AART algorithm employs the same constraint as the
Moore–Penrose pseudoinverse, this effective-resolution result
also applies to the AART algorithm (in the limit of infinite
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iterations). Note that if a nonlinear reconstruction operation is
applied, the effective resolution may be a function of the signal
as well as the sampling.

Recall that the MART and the SIR algorithms employ a
maximum-entropy constraint. When the sampling matrix is
underdetermined, applying a maximum-entropy constraint does
not result in a linear inverse operation. That is, the discrete ver-
sions of the MART and SIR reconstruction operations cannot
be expressed as a matrix applied to the data. Therefore, the
effective resolution of these methods is more difficult to analyze
theoretically.

IV. NOISE

This section considers how noise added to the aperture-
filtered samples affects the signal recovery. A noise model is
introduced and optimality criteria are presented. Reconstruction
from noisy aperture-filtered samples is explored. A scatterome-
ter image reconstruction estimator is presented based on MAP
estimation, and an example is illustrated. The MAP resolution
enhancement is compared with conventional approaches. Meth-
ods of reducing the noise or variability of the estimates are
discussed.

A. White Gaussian Noise

As previously noted, prior scatterometer reconstruction
methods did not incorporate the measurement noise model.
Neglecting noise entirely is equivalent to assuming additive
white Gaussian noise, and it can be shown that for white
Gaussian noise, the reconstruction operators shown previously
are the minimum-variance unbiased estimators of the con-
ventional samples [7], [15]. For many applications, the noise
can be modeled as additive white Gaussian noise; however,
for scatterometry, this is only a good approximation in some
very restrictive situations, such as when the image is relatively
constant. Scatterometry has a more complicated noise model,
and this is one reason why the MART and SIR algorithms tend
to produce a less noisy reconstruction than the AART method.
Using knowledge of the scatterometer noise model, it may be
possible to obtain a more ideal reconstruction estimator while
appropriately accounting for the noise.

B. Noise Model

For the noise model, it is assumed that a zero-mean random
variable �ν is added to the aperture-filtered samples �g. The noisy
sampling operation may be written as

�gν = �g + �ν = A�s+ �ν (10)

where �ν is the noise random vector and �gν represents the noisy
aperture-filtered samples.

Noisy scatterometer σ0 measurements can be represented as
Gaussian random variables, where the variances are quadratic
functions of the means [19]. This noise distribution embodies
the receiver noise as well as fading. Measurements are assumed
to be statistically independent. The noise distribution has the
form

f(�gν |�g) =
exp

{
− 1

2 (�gv −A�s)TR−1(�gv −A�s)
}

(2π)
M
2 |R| 12

(11)

where M is the number of noisy aperture-filtered samples (i.e.,
the length of �gv), which may be greater than N (i.e., the length
of �s) for an overdetermined system. The covariance R of the
vector of σ0 measurements is a diagonal matrix, and each
diagonal element Ri,i can be expressed as

Ri,i =αi(�gi)
2 + βi�gi + γi

=αi

(
�AT
i �s

)2

+ βi
�AT
i �s+ γi (12)

where gi = �AT
i �s is the ith noise-free σ0 measurement and αi,

βi, and γi are parameters that are a function of the scatterometer
design and the measured receiver noise power [19]. With noise,
a reconstruction estimator of �s from the noisy �gν is defined to
reconstruct the signal.

C. Optimality Criteria

We seek an optimal estimator in the sense that the estimates
are unbiased and have the minimum covariance of all possible
estimators. Depending on the structure of the noise process, the
estimator may be linear or nonlinear. A lower bound on the
covariance of any unbiased estimator is the Cramer–Rao bound
[7], [20]. The unbiased estimator that achieves the Cramer–Rao
bound is the optimal estimator.

The Cramer–Rao lower bound on the covariance R(�̂s) of
any unbiased estimator is the inverse of the Fisher information
matrix J(�s)

R(�̂s) ≥ J(�s)−1 (13)

in the sense that R(�̂s)− J(�s)−1 is positive semidefinite, where
the components of J(�s) are defined as [7]

Ji,j(�s) = E

(
∂

∂si
log {f(�gν |�g)}

)(
∂

∂sj
log {f(�gν |�g)}

)

(14)

where f(�gν |�g) is the joint probability density function (pdf) of
the noisy samples given the noise-free samples and si and sj
represent the ith and jth components of the noise-free discrete
signal �s. The covariance in (13) represents the minimum covari-
ance that can be obtained with any unbiased estimator, although
a biased estimator may produce a lower covariance.

D. Reconstruction Estimators

In this section, reconstruction approaches from noisy data are
examined for the case in which the Fisher information matrix is
invertible and the case in which it is singular. For each case,
methods of obtaining estimates with low bias and low expected
squared error are explored.

1) Invertible Fisher Information Matrix: Note that J(�s) is
an N ×N matrix, where N is the length of the vector �s. If
A is fully determined or overdetermined, then generally, J(�s)
is invertible. If J(�s) is invertible, every bandlimited periodic
signal that can be represented by N conventional samples is
observable in the sense that the conventional samples may be
estimated with finite precision or variance of the estimates
from the aperture-filtered samples. If J(�s) is invertible, each
conventional sample may be estimated directly; however, unless
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J(�s) is diagonal for every �s, the conventional samples must be
estimated simultaneously.

A minimum-variance unbiased estimator is desirable; how-
ever, in most applications, there is no general method to find
such an estimator. Nevertheless, maximum-likelihood (ML)
estimators are asymptotically unbiased and asymptotically ef-
ficient (i.e., minimum variance) [7]. For these reasons, we pro-
pose that, lacking further information, an ML approach be used
to estimate the conventional samples from the noisy aperture-
filtered samples when the Fisher information is invertible.

An ML estimate of the conventional samples �̂s can be
written as

�̂s = argmax
�s

{f(�gν |�g)} (15)

which is the argument that maximizes the likelihood (i.e.,
f(�gν |�g)) of obtaining the noisy aperture-filtered samples given
the noise-free aperture-filtered samples, where the noise-free
aperture-filtered samples are a function of the conventional
samples �g = A�s. Reconstruction of the continuous-index sig-
nal is accomplished via Dirichlet-kernel interpolation from the
ML estimates of the conventional samples.

2) Singular Fisher Information Matrix: If A represents an
underdetermined system, J(�s) is not invertible. A singular
Fisher information suggests that the parameters (i.e., the con-
ventional samples) are not observable from the data alone, i.e.,
the conventional samples cannot be estimated with any degree
of precision using only the noisy aperture-filtered samples.
However, if additional constraints are imposed, such as a signal
model or a prior distribution on the signal, estimates of the
conventional samples may be obtained.

There are three philosophically different approaches for
dealing with unobservable parameters: model-based estimation,
variational analysis, and Bayes estimation theory. Each of these
methods effectively injects prior information about the signal
so that the parameters that are unobservable from the aperture-
filtered samples alone become observable using the aperture-
filtered samples and the prior information.

For model-based estimation, a signal model is imposed such
that the parameters of the model are observable, and the cor-
responding Fisher information matrix for estimating the model
parameters is invertible. The signal is then reconstructed from
the model-parameter estimates. This method requires imposing
a signal model. If some knowledge of the structure of the signal
is available, a model that describes the signal structure may
be chosen. If prior knowledge of the signal is limited, it is
generally desirable to impose a model that preserves all the
information in the aperture-filtered samples and that minimizes
aliasing.

Variational analysis imposes additional constraints on the
ML objective function and simultaneously optimizes some
linear combination (usually a convex combination) of the ML
objective function with the constraints. This approach is similar
to how the information-preserving pseudoinverse is obtained
in Appendix II. For this method, the constraints can be cho-
sen somewhat arbitrarily. Furthermore, the relative weights
assigned to each constraint can also be chosen arbitrarily.
Although variational analysis is a powerful tool, unless there
is good reason to choose particular constraints and relative
weights, variational analysis is ad hoc.

Bayes estimation imposes prior information about the
signal via a prior distribution of the signal. The general
form of a Bayesian estimator modified for our application
is [7]

�̂s = argmin
�s

{∫
L(�s,�gν)f(�s|�gν)d�s

}
(16)

where L(�s,�gν) is a loss function and f(�s|�gν) is the conditional
posterior distribution. The most common loss functions are
the squared-error loss function and the uniform loss function.
Using a uniform loss function produces a MAP estimator which
has as its objective function, the ML pdf, scaled by the prior
distribution.

Bayes estimation is extremely powerful, but it implicitly
assumes that the signal is a random process, and it requires
knowledge of the signal distribution. Prior distributions can be
obtained for particular applications either empirically from a
collection of data, theoretically from knowledge of the physical
process that produces the signal, or by assuming a maximum-
entropy distribution given knowledge of a few qualities of the
signal (such as the signal mean, power, spectrum, or region of
support).

We take a Bayesian MAP estimation approach to solve the
noisy inverse problem when the sampling operator is underde-
termined. The MAP estimator can be expressed as

�̂s = argmax
�s

{f(�gν |�g)f(�s)} (17)

where f(�s) is the prior distribution of �s. Using a prior is
mathematically equivalent to (although philosophically differ-
ent from) assuming additional statistically independent data
representing noisy conventional samples. That is, performing
ML estimation with the aperture-filtered samples and the addi-
tional data, whose noise distribution is the prior, results in the
same exact expression as the MAP estimator.

With the scatterometer noise distribution, it is difficult to
verify if the MAP estimator is a minimum-variance unbi-
ased estimator. Nevertheless, since the MAP estimator can
be expressed as an ML estimator with additional data (as
described previously), it can exhibit similar asymptotic quali-
ties. The MAP estimator is a good candidate for many noise
distributions, often resulting in low-bias and low-variance
estimates.

E. Scatterometer Reconstruction Estimator

Here, we apply the MAP estimation approach to the SIR
problem. The MAP estimator can handle both the well-posed
and ill-posed problems, and, under certain conditions, MAP
estimation degenerates to ML estimation for well-posed prob-
lems. For completeness, the scatterometer ML estimator is
discussed in Appendix III.

1) MAP Reconstruction: Reconstruction is accomplished
by estimating the conventional (uniformly spaced) samples �s
of the σ0 field using a MAP estimator. The MAP estimator
searches for the conventional samples �s that maximize the
ML function scaled by the prior. This process is equivalent
to maximizing the linear combination of the log-likelihood
function and the log of the prior. The ML function is the pdf
of the noisy σ0 measurements, and the prior is a pdf of the σ0
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Fig. 2. Reconstructed σ0 images (in decibels) from SeaWinds and ASCAT over the Amazon using four days’ worth of data (JD 201-204) in 2008. Images
(a)–(c) are gridded images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. Images (d)–(f) are SIR images of SeaWinds h-pol, SeaWinds v-pol, and
ASCAT, respectively. Images (g)–(i) are MAP images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. The diagonal streaks in the river are actual
features.

image. The scatterometer noise model results in the MAP log-
likelihood objective function

LMAP=−
∑
i

⎡
⎢⎣
(
gν,i− �AT

i �s
)2

2Ri,i
+1/2 log{2πRi,i}

⎤
⎥⎦+log f(�s)

(18)

where f(�s) is the prior pdf.
The local maxima of the MAP objective function can be

found by setting the gradient equal to zero and solving the cor-
responding system of equations. However, the resulting system
of equations is somewhat complicated so we use a gradient-
search method to find a local maximum of (18) near an initial
guess. The gradient-search method begins with an initial value
computed using the AVE algorithm and moves incrementally in
the direction of the gradient until convergence to the maxima.

For practical purposes, the search method can be adjusted to
follow the gradient with respect to the parameters expressed in
decibels (i.e., we estimate the decibel image). This forces the
estimates to always be positive and makes it easier to handle
the update when the σ0 values have a low signal-to-noise ratio.
This approach also tends to converge faster than searching the
linear image.

2) Priors: The form of the prior depends on the application
and what assumptions about the signal are reasonable. The
standard approach to obtain a prior is using an empirical
distribution from a large collection of data. However, because
different surfaces (i.e., land, ice, ocean, or vegetation) have such
different responses, empirical priors for scatterometer imaging
applications may be multimodal and difficult to express as a
functional form that can be differentiated.

Another approach to obtain a prior is to employ a maximum-
entropy distribution. Using a maximum-entropy prior ensures
that the least amount of structure is imposed on the signal
under certain constraints (e.g., for a given mean and vari-
ance). For scatterometer imaging, a one-sided distribution is
appropriate since the noise-free σ0 measurements represent a

magnitude. The maximum-entropy one-sided distribution with
one parameter is the exponential distribution. The larger the
mean of the exponential distribution is, the larger is the entropy.
Thus, we may use an exponential distribution with an arbitrarily
large mean to regularize the problem. However, because of the
structure of the scatterometer noise, using an exponential prior
requires a large number of iterations for the gradient-search
algorithm to converge, which may not be practical.

For convenience, we use a log-normal prior with a mean as
the AVE image and a tunable variance. The smaller the variance
is, the closer is the estimate to the smooth AVE image. The
larger the variance is, the less the result is influenced by the
prior. A tunable variance allows a tradeoff between resolution
enhancement and noise amplification. This prior distribution for
each si can be expressed as

f(si)=
10

log(10)sip
√
2π

exp
(10 log10(si)−10 log10(si,AVE))

2

−2p2

(19)
where si,AVE is the AVE image value at index i and p is the
variance. For this paper, we set p to be very large in order to
obtain the highest resolution reconstruction, leaving the noise-
versus-resolution tradeoff for future investigation.

3) Example: Now, consider a practical example. Fig. 2
shows multiorbit gridded, SIR, and MAP images of the Ama-
zon made from SeaWinds and ASCAT data. For ASCAT, the
incidence-angle-normalized images are plotted. As expected,
the ASCAT effective resolution is lower due to onboard spatial
filtering. The results of the reconstruction algorithms, shown by
the bottom two rows of images in Fig. 2, enhance the resolution
compared with the gridded product (top row). The MAP images
(bottom row) contain more details than the SIR images (middle
row), although the MAP images seem to be noisier. The noise in
the MAP images can be attenuated by filtering the images or by
tuning the variance of the log-normal prior, which can produce
images of comparable quality with the SIR images.

Note the different responses of the surface to the different
polarizations and frequencies. This combined C- and Ku-band
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Fig. 3. (a) Monte Carlo simulation synthetic point target and spatial responses for the (b) AVE, (c) SIR, and (d) MAP reconstruction methods.

information may be valuable for land, forest, and ice studies.
Obtaining collocated measurements of both frequencies may
provide additional geophysical information about the state of
the surface, which is an additional incentive for the develop-
ment of a dual-frequency system [21].

F. Resolution Revisited

The effective resolution of the MAP and SIR reconstruc-
tion operations are difficult to evaluate analytically. Therefore,
Monte Carlo simulation is employed to evaluate the resolution
enhancement and the effective resolution of the different recon-
struction methods.

First, a synthetic point target is measured using actual Sea-
Winds sampling geometry for ten consecutive days. Using
more days’ worth of samples allows the noise to be more
suppressed in the reconstruction. Next, Monte Carlo noise is
added to these synthetic measurements, and the AVE, SIR, and
MAP reconstruction methods are applied. The resulting images
represent noisy realizations of the spatial response functions of
the different reconstruction methods. Fig. 3 shows a synthetic
point target and the noisy spatial response functions of the

AVE, SIR, and MAP reconstruction methods for a particular
noise realization. Moreover, Fig. 4 shows the profiles of the
horizontal and vertical cuts of the point-target-response images.
As expected, the AVE response is the smoothest and the most
spread out, and the peak value is the most attenuated of the
reconstruction methods. The SIR response is sharper than the
AVE, but not as sharp as the MAP response. The MAP result
has the sharpest response, and the height is recovered most
accurately, suggesting that the effective resolution of the MAP
result is higher than the AVE and SIR methods. Nevertheless,
the MAP image has the noisiest response.

Another general method for testing the effective resolution
in the presence of noise is spectral analysis. In conventional
signal processing, this is a powerful tool that can indicate the
frequencies where the noise begins to dominate the signal (i.e.,
where the spectrum levels out, indicating the highest frequency
where the signal is distinguishable from the noise). Although
spectral analysis is typically useful for resolution analysis,
because the noise of the reconstructed estimates is not isotropic,
the spectrum of the noise process is not defined, and spec-
tral analysis may be misleading. For this application, a more
sophisticated method must be applied to develop an optimal
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Fig. 4. (a) Horizontal and (b) vertical cuts of the point target and the AVE, SIR, and MAP spatial responses.

Fig. 5. (a) SIR image, (b) MAP image, and (c) filtered MAP image (in decibels) of the Weddell Sea using SeaWinds v-pol measurements on days 200–204
of 2008.

noise-versus-resolution tradeoff and to evaluate the resolution
of the signal that is “highly observable” (i.e., distinguishable
from the noise). Such a treatment is beyond the scope of this
paper and will be dealt with in a future paper.

G. Noise Reduction

The covariance of the estimates may be too large to be use-
ful for some applications. Potential noise-reduction operations
include filtering or averaging of the aperture-filtered samples
(prefiltering), low-order model-based estimation, Bayes esti-
mation with a more informative prior (i.e., a prior with lower
entropy), and filtering of the reconstructed signal (postfiltering).
Prefiltering the aperture-filtered samples reduces both the signal
power and the noise power, but it is difficult to track which
components of the signal and noise are being attenuated. Low-
order model-based methods may introduce aliasing. Bayes
estimation reduces noise but relies on knowledge of the signal.
Postfiltering of the estimates, however, reduces the total noise
power and the total signal power in a way that can be tracked
and that does not introduce aliasing. Thus, postfiltering may
be suitable for reducing the variability of the estimates if the
application requires.

We note that, although there may be more information in the
MAP images because they have a higher resolution, there may
not be much more useful information because of the higher
noise level. Both the methods of low-pass filtering the MAP
image and of applying an informative prior [i.e., reducing p in
(19)] can be tuned to produce images of comparable quality
to the SIR results. Nevertheless, the new approach allows
for a more general and more optimal noise-versus-resolution
tradeoff. A rigorous treatment of this tradeoff is beyond the
scope of this paper and is left for future investigation. For
the purpose of this paper, it is sufficient to verify that the
new approach can produce images of comparable quality to
the previous empirically tested SIR result—thus simultaneously
validating the empirical and rigorous approaches.

Fig. 5 shows a SIR image, a MAP image, and a filtered
MAP image of the Weddell Sea using four days worth of
SeaWinds v-pol data. The bright regions on the left and lower
left corner is the Antarctic Peninsula and the Ronne Ice Shelf,
respectively. The dark and gray regions are sea ice, while the
small bright targets are large tabular icebergs embedded in the
sea ice. The filtered MAP image is filtered with a simple 5 ×
5 pixel (i.e., 11 km) sliding averaging window. Although the
MAP image is more noisy than the SIR, the filtered MAP



WILLIAMS AND LONG: RECONSTRUCTION FROM APERTURE-FILTERED SAMPLES 1673

image has a similar noise level and resolves the same structures
as the SIR image. This consistency validates the new MAP
approach and suggests that the raw MAP estimates contain at
least as much information as the SIR results. Further, a more
optimal noise-versus-resolution tradeoff may be possible with
a filter that accounts for the spatially varying variability of the
estimates.

V. CONCLUSION

This paper has approached scatterometer image reconstruc-
tion as the inversion of a noisy aperture-filtered sampling
operation, focusing on bandlimited, periodic signals. Recon-
struction from noise-free and noisy samples are explored.
A more theoretically appropriate reconstruction algorithm is
proposed based on MAP estimation, which can reconstruct
more details than the SIR algorithm but with enhanced noise.
Examples from SeaWinds and ASCAT are presented.

This paper has presented several important observations and
results. They include the following: 1) deriving reconstruction
operations for the noisy and noise-free cases; 2) demonstrating
that in the noise-free case, exact reconstruction is guaran-
teed only when the sampling operation is fully determined
or overdetermined; 3) illustrating that prefiltering and model-
based methods are generally not equivalent to postfiltering
and may introduce undesirable artifacts, such as aliasing;
4) showing that the conventional-sample spacing (i.e., pixel res-
olution) for a given application is determined by the bandlimit
of the aperture-functions; and 5) presenting a theoretically
more appropriate scatterometer image reconstruction algorithm
based on MAP estimation.

Future work will consider noise-versus-resolution tradeoffs.
Analysis of the quality of the MAP estimates will also be
investigated in more detail. The theory will be modified to
include aperture-filtered sampling of fields that are related by
a pointwise nonlinearity, such as scatterometer ocean-surface-
wind field reconstruction. Bayes estimation with a quadratic
loss function will also be considered. Connections with syn-
thetic aperture array processing will also be explored.

APPENDIX I
DISCRETE EQUIVALENCE OF BANDLIMITED SIGNALS

Here, the conditions are considered under which the
continuous-index sampling operation A is equivalent to a dis-
crete linear operation on the conventional samples. First, it is
shown that if each An(x) is bandlimited, the sampling can
be represented by (3). The same result is obtained if s(x)
is bandlimited, even if each An(x) is not bandlimited. Next,
it is shown that if s(x) or each An(x) is bandlimited and
periodic, A is a finite-dimensional matrix and can be analyzed
with standard linear algebra. An argument for approximating
practical signals as bandlimited and periodic is also presented.

A. Discrete Equivalence

First, consider the case in which each An(x) is band-
limited to ω0 and both s(x) and each An(x) are in the Hilbert
space of square integrable functions (L2). From conventional
reconstruction theory, recall that any function f(x) that is ban-

dlimited to ω0 can be represented by sinc-function interpolation
from the conventional (uniformly spaced) samples f [xn], and
f(x) can thus be expressed as

f(x) =
∑
n

f [xn]sinc (ω0(x− xn)) . (20)

If each of the aperture functions An(x) are bandlimited to ω0,
each row of the sampling operation in (2) can be written as∫

An(x)s(x)dx =

∫ ∑
i

An[xi]sinc (ω0(x− xi)) s(x)dx

=
∑
i

An[xi]

∫
sinc (ω0(x− xi)) s(x)dx

=
∑
i

An[xi]sBL[xi] (21)

where sBL[xi] represents the conventional samples of a band-
limited version of s(x) and An[xi] represents the conventional
samples of the aperture functions. The sampling operation can
thus be written as a discrete linear operation on the samples of
a bandlimited version of the signal.

By a similar argument, if s(x) is bandlimited but the An(x)’s
are not necessarily bandlimited, a similar result is obtained∫

An(x)s(x)dx =

∫ ∑
i

sinc (ω0(x− xi))An(x)s[xi]

=
∑
i

An,BL[xi]s[xi] (22)

where An,BL[xi] represents the bandlimited version of the nth
aperture function.

Therefore, if either s(x) or each An(x) is bandlimited, the
formulation in (3) is obtained. Here, �s represents the sinc-
function samples of s(x) [i.e., conventional samples of a low-
pass filtered version of s(x)], and the rows of A represent
sinc-function samples of the aperture functions. In general,
�s and A are infinite dimensional.

It can be shown that A and �s are finite dimensional if
either the aperture functions or the signal are bandlimited and
periodic. Suppose that each An(x) is bandlimited and periodic.
Dirichlet-kernel interpolation then reconstructs the aperture
functions from conventional samples. Each row of the sampling
operation becomes

∫
P

An(x)s(x)dx =

∫
P

P∑
i=1

An[xi]D (ω0(x− xi)) s(x)dx

=
P∑

i=1

An[xi]

∫
P

D (ω0(x− xi)) s(x)dx

=

P∑
i=1

An[xi]sBL,P [xi] (23)

where D(ω0(x− xi)) represents the Dirichlet kernel,
sBL,P [xi] represents conventional samples of the bandlimited
periodic version of s(x), and P represents the fundamental
period of the aperture functions. Also, if the An(x)’s can be
represented as periodic but are not necessarily bandlimited but
s(x) is bandlimited and periodic, by symmetry, a similar result
is obtained with the periodic and bandlimited versions of the
aperture functions.
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Fig. 6. Spaces associated with the sampling matrix A and the mapping Ap.

B. Bandlimited Periodic Approximation of Practical Signals

Note the few fundamental qualities of signals in practical
applications: they have finite extent, have finite energy, are
bounded, and are generally continuous (or at least piecewise
continuous). Signals with finite extent can be extended to be
periodic, and if they satisfy the Dirichlet conditions, they can
be exactly represented by the Fourier series. The Dirichlet
conditions for the Fourier series require that a periodic signal
be absolutely integrable over a signal period, be of bounded
variation, and have finitely many discontinuities in order to be
represented exactly by the Fourier series [22]. Most practical
signals satisfy these conditions. Furthermore, above some fre-
quency, the energy in the Fourier series of the signal must de-
crease toward zero since practical signals have finite energy. For
a practical signal, a bandlimit and period may be chosen such
that a bandlimited periodic version of the signal exists where
the approximation error is sufficiently small. Thus, for practical
applications, most signals can be approximated arbitrarily close
by bandlimited periodic signals.

APPENDIX II
NOISE-FREE RECONSTRUCTION:

UNDERDETERMINED CASE

This appendix discusses reconstruction for the noise-free
underdetermined case. Different pseudoinverses of the sam-
pling matrix are considered, different methodologies of regular-
izing the problem are discussed, and a particular reconstruction
estimator is proposed.

The underdetermined case occurs if the row rank of A is less
than the number of conventional samples required to represent
the bandlimited signal. For this case, there is no one-to-one
mapping that maps the range space of A back to the entire
domain of A. If A is an underdetermined M ×N matrix, then
only some signals that can be represented by N conventional
samples may be reconstructed. That is, there is a subspace
of the domain of A over which an inverse mapping (i.e., a
pseudoinverse) may be defined. Here, restrictions on the class
of signals that allow every signal of the class to be recovered
for a given sampling are investigated.

The class of recoverable signals is a subspace of the signal
space. Fig. 6 shows the spaces associated with the sampling
matrix A and a pseudoinverse Ap. Here, A : S → G, where S
is the domain and represents the Hilbert space of conventional
discrete signals �s and G is the codomain and represents the
Hilbert space of aperture-filtered signals �g. Although A is not
invertible over the entire domain and codomain, the domain
and codomain may be restricted so that A is bijective over
these subspaces. In this case, there is a unique inverse over the

subspaces, which is a pseudoinverse of A. A pseudoinverse of
A is any mapping Ap : G → S (see Fig. 6) such that ApA�s =
�s for every �s in the range space of Ap, where Ap need not be a
linear operator.

There are generally several different subspaces over which an
inverse of A can be defined. Each such subspace is associated
with a different pseudoinverse. Restricting the codomain to any
subspace of the range space of A is sufficient to constrain A to
be a surjection (i.e., onto). Moreover, deciding which subspace
of S to use is equivalent to imposing a signal model. That
is, a signal model may be chosen whose range space spans a
subspace of S . Estimating the parameters of a low-order model
and then constructing an estimate of the signal �s using the
model and the estimated parameters constitute an inverse of A
over a subspace of S (i.e., a pseudoinverse of A).

Note that some pseudoinverses may not preserve all the in-
formation in the aperture-filtered samples. In order to preserve
all the information in the samples, the pseudoinverse must be
reversible by A. This information-preserving constraint can
be thought of as requiring each point in the range space of
A to map back to itself through the pseudoinverse followed
by the forward projection (i.e., AAp�g = �g for all �g in the
range space of A). This property does not necessarily hold
for every pseudoinverse mapping Ap, but there always exists
a pseudoinverse mapping that is information preserving.

An information-preserving pseudoinverse can be defined us-
ing constrained optimization, i.e., by choosing for each point �g
in the range space of A the point �s in S that maps to the point �g
that minimizes some metric d(�s, �z) defined in S . In other words,
we minimize d(�s, �z) subject to �g = A�s, where d(�s, �z) is a met-
ric that represents the distance between the vector �s and some
predetermined vector �z. �z may be a particular signal (e.g., an ex-
pected signal) for which we want to find the closest signal �s to �z
that produces the obtained aperture-filtered samples. For many
applications, �z is taken to be �0 so that d(�s,�0) is a vector norm.

Using the L2-norm d(�s,�0) = ‖x‖22 produces the Moore–
Penrose pseudoinverse [7]. This constrained optimization ap-
proach using the L2-norm is similar to what is done in the
AART and Grochenig’s irregular sampling theorem [4], [11].
Another common constraint used for nonnegative signals is
to maximize the signal entropy −

∑
i si log(si) subject to

�g = A�s. This is the basis for the MART and the SIR al-
gorithm [4]. Although the L2-norm constraint results in a
linear pseudoinverse, a different constraint may produce a
nonlinear pseudoinverse for a linear sampling operator. Formu-
lating the pseudoinverse as a constrained optimization problem
is powerful because it can be extended to general linear and
nonlinear operators.

It is interesting to consider what happens to signals that are
not in the range space of the pseudoinverse when the sampling
and reconstruction processes are applied. The reconstructed
signal is guaranteed to be in the range space of the pseudoin-
verse; however, if the original �s is not in the range space of the
pseudoinverse, the reconstructed signal may not be the closest
signal to �s in the range space of the pseudoinverse. This artifact
is a generalized form of aliasing. For a linear pseudoinverse,
if some portions of the original signal that are orthogonal to
the range space of the pseudoinverse are not mapped to zero
in the sampling operation, the energy in those components is
preserved in the aperture-filtered samples. The pseudoinverse
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then erroneously maps this energy into its range space. Unless
everything orthogonal to the range space of the pseudoinverse
is in the null space of the sampling operator, the pseudoinverse
introduces aliasing. The Moore–Penrose pseudoinverse forces
signal components orthogonal to its range space to be in the null
space of the sampling operator and is therefore an antialiasing
pseudoinverse, whereas reconstruction using the MART or SIR
algorithms may introduce aliasing and may even result in
multiple solutions.

If nothing is known about the signal, we suggest that the
structure to impose on the signal be a function of A so as
to force the pseudoinverse to be linear, information preserv-
ing, and antialiasing. Where no a priori knowledge of the
signal structure is available and noise is negligible, we pro-
pose that the reconstruction be done using the Moore–Penrose
pseudoinverse.

Using the Moore–Penrose pseudoinverse implies that for each
point in the range space of A, the simplest or lowest energy
signal that could have produced the aperture-filtered samples
is chosen as the inverse because the Moore–Penrose pseudoin-
verse can be obtained by minimizing the L2-norm, as described
earlier. This implication is consistent with the notion that
signals with low energy are easier to produce and more likely
to occur in nature than signals with high energy. The Moore–
Penrose pseudoinverse can also be calculated conveniently.

APPENDIX III
SCATTEROMETER ML ESTIMATOR

Here, the scatterometer ML reconstruction estimator is ob-
tained assuming that the sampling matrix is not underdeter-
mined. It is also shown that an analytic form for the estimator
may be obtained, although the expression is rather complicated,
and multiple solutions (local maxima) are possible.

The ML estimator for the scatterometer noise model searches
for the conventional samples �s that maximize the log-likelihood
function

LML = −
∑
i

⎡
⎢⎣
(
gν,i − �AT

i �s
)2

2Ri,i
+

1

2
log{2πRi,i}

⎤
⎥⎦ . (24)

The local maxima are obtained by setting the gradient to zero
and solving the resulting system of equations. The partial
derivative of LML with respect to the jth component of �s is

∂LML

∂sj
=
∑
i

−Ai,j

Ri,i

⎡
⎢⎣−gν,i+ �AT

i �s+αi
�AT
i �s

+ βi/2−

(
gν,i− �AT

i �s
)2(

αi
�AT
i �s+βi/2

)
Ri,i

⎤
⎥⎦

= �AT
j
�K(�s). (25)

Taking the partial derivatives with respect to each component
and setting them equal to zero produces the system

AT �K(�s) = �0 (26)

which implies that �K(�s) = �0 or that �K(�s) is in the null space
of AT . If A is fully determined or overdetermined, there is
no null space, and the only solutions are when �K(�s) = �0. If
each element of �K(�s) is set to zero, cubic equations in �AT

i �s
are obtained for each i that have at least one and up to three
real roots. Each of these roots can be solved analytically via the
cubic equation. The solutions to the entire system of equations
result in a linear system in �s. That is, if �z is a solution to
the cubic system of equations �K(�s) = �0, then �AT

i �s = zi for
each i, and the linear system A�s = �z is obtained. If A is fully
determined, then �̂s = A−1�z, and if it is overdetermined, then
�̂s = (ATA)−1AT�z.

There may be more than one maximum of LML. To find
the ML estimate, all of the local maxima must be found and
checked to see which one has the highest LML value. This
process is too cumbersome for a practical implementation and
so a simple gradient search is used to find a local maximum
near an initial guess.
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