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Optimal Estimation of Calibration Parameters in
Polarimetric Microwave Radiometers

Derek Hudson and David G. Long, Fellow, IEEE

Abstract—Methods for internal calibration of a certain
class of microwave polarimetric radiometers are presented by
Piepmeier. In that work, the calibration parameters are estimated
algebraically. We demonstrate that Bayesian estimation decreases
the root-mean-square error of the estimates by a factor of two.
This improvement is obtained by using knowledge of the noise
structure of the measurements and by utilizing all of the informa-
tion provided by the measurements. Drawbacks are the increased
complexity of the method and an increase in computation. We
also extend the method to estimate several hardware component
parameters of interest in system calibration.

Index Terms— Polarimetric radiometer, radiometer calibration,
Stokes parameters.

I. INTRODUCTION

RADIOMETER calibration is the process of estimating
radiometer channel gains and the internal noise (repre-

sented by an equivalent noise temperature) generated by the ra-
diometer. Because the gains and noise temperatures can change
rapidly during operation, internal calibration is performed fre-
quently during radiometer operation. Internal calibration is
accomplished by applying “known” inputs and measuring the
voltage outputs of the radiometer. For the calibration scheme
considered in this paper, the known inputs are internal sources
(hot and cold sources of temperature TH and TC) rather than
external targets. For this calibration scheme, the estimation of
antenna gains is a separate process and, hence, is not addressed
in this paper.

Internal calibration of radiometers which measure the third
Stokes parameter (TU ) can be accomplished using an additional
“known” input TCN , which is split and fed into both the vertical
and horizontal channels so that the fluctuations in the electric
fields of the two channels are correlated, simulating a third
Stokes parameter input (see [1, Fig. 1]). This technique is
introduced in [1] for microwave radiometers which use a hybrid
coupler to synthesize ±45◦ linear polarizations from vertical
and horizontal signals. The noise-free forward model for the
calibration measurements of such a radiometer is given in
Section II. The algebraic method of [1] for estimating channel
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gains and temperatures using this noise-free forward model is
summarized in Section III.

In the remainder of this paper, we improve on the method
of [1]. In Section IV, we expand the forward model to include
the noise in the measurements and then solve the calibration
problem using Bayes’ theorem rather than algebraically as
was done in [1]. This results in a joint probability distribution
function (pdf) for the calibration parameters.

This joint pdf itself is the most complete answer to the
calibration problem and is explored in Section VI. In Section V,
we compare numerical estimates extracted from this pdf with
the algebraic estimates of [1]. We show that our estimates are
optimal in the sense of minimizing the root-mean-square error
(rmse). They are unbiased, and their rmse is approximately half
the rmse of the algebraic estimates.

Section VII explores an extension. We use Bayes’ theorem
to find the first ever estimates and pdfs for the hardware
parameters that comprise the end-to-end radiometer channel
gains. Finally, conclusions are offered in Section VIII.

II. CALIBRATION FORWARD PROBLEM

The noise-free forward model for a single cycle of the
full (Case 4) polarimetric radiometer calibration algorithm de-
scribed in [1] can be written as

⎡
⎢⎣

vv,C vv,H vv,CH vv,CN

vh,C vh,H vh,CH vh,CN

vp,C vp,H vp,CH vp,CN

vm,C vm,H vm,CH vm,CN

⎤
⎥⎦=

⎡
⎢⎣

Gvv 0 0
0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU

⎤
⎥⎦

×

⎡
⎣TC +T1 TH +T1 TC +T1 TC + 1

2TCN +T1

TC +T2 TH +T2 TH +T2 TC + 1
2TCN +T2

0 0 0 ±TCN

⎤
⎦ . (1)

This forward model is in [1, eq. (3)], with ov, oh, op, and om

being given in [1, eq. (8)] and with the vector [Tv Th TU ]T
being replaced by a matrix.

On the left side are the 16 voltages which are measured in one
radiometer calibration cycle: For each of the four calibration
looks (cold load, hot load, mixed load, and cold load plus cor-
related noise load), the voltage outputs of the four polarimetric
channels (v, h, p, and m) are measured.

On the right side of (1) are ten calibration parameters which
are unknown to some degree: eight radiometer gains Gxx plus
two receiver noise temperatures (mostly determined by the
noise figures of the first-stage amplifiers) T1 and T2.

The four columns of the rightmost matrix in (1) represent
the brightness temperature inputs used in the four calibration
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Fig. 1. Marginal pdfs for the eight radiometer gains and two noise temperatures, along with various estimates of the parameters. The height scale is arbitrary,
being the number of samples in each bin. As we use more samples to generate the empirical pdfs, the empirical pdfs match the Gaussian fits more closely. The
“true” parameter values used for this simulation were randomized, rather than the typical values in Table I.

subcycles. By rows, the top row has temperature inputs to the
vertically polarized (v) channel, the second row has inputs
to the horizontally polarized (h) channel, and the third row
has third Stokes parameter inputs (representing correlation
between the vertically and horizontally polarized signals TU )
(see [1, Fig. 1]).

For this paper, we pretend that TC , TH , and TCN are per-
fectly known. Optimal estimation of them from thermometer
measurements, on-ground calibration, and the voltages on the
left side of (1) is left for future work.

Various expansions of this model are possible. An addi-
tional column, the vector [Tv + T1 Th + T2 TU ]T, could be
added to the right side, and a column of corresponding voltages
could also be added to the left side. This vector contains the Tv ,
Th, and TU brightnesses of the scene under observation, whose
estimation is the goal of radiometry. We have left off these
columns in order to simplify the problem, focusing only on the
estimation of the calibration parameters. However, this paper
can readily be extended to the larger problem. Other possible
extensions include the following: 1) allowing for nonzero gains
where there are zeros (although approximating them as zero
is fairly accurate); 2) adding a small TU term, generated by
the radiometer, to the last row of the temperature matrix;
3) jointly estimating many consecutive sets of the calibration
parameters, exploiting the correlation between them to improve
the estimates; and 4) adapting the method expounded in this
paper to other classes of radiometers by using their forward
models in place of (1).

III. ALGEBRAIC ESTIMATION

(PIEPMEIER’S METHOD [1])

Estimating the ten calibration parameters on the right side
of (1) by the method of [1] can be summarized as follows.
It is algebraic, making no attempt to model the noise in the
measurements.

Gvv is estimated using vv,C and vv,H , which is the conven-
tional cold/hot calibration method of nonpolarimetric radiome-
ters. From (1), the equations for these two voltages have the
same form as in [1, eq. (20)], viz.,

[
vv,C

vv,H

]
=

[
TC 1
TH 1

] [
Gvv

GvvT1

]
. (2)

Solving for Gvv , the estimate is

Ĝvv =
vv,H − vv,C

TH − TC
(3)

as in [1, eq. (21)]. T1 is estimated by solving the same equations
for T1, yielding

T̂1 =
−TCvv,H + THvv,C

vv,H − vv,C
. (4)

Estimation of Ghh and T2 from vh,C and vh,H is similar.
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The gains Gpv , Gph, and GpU are found in [1, eq. (41)],
which are reproduced here (with op being expanded and the
minor correction that Gpm is replaced by Gph)⎡
⎢⎣

vp,C

vp,H

vp,CH

vp,CN

⎤
⎥⎦ =

⎡
⎢⎣

TC TC 0 1
TH TH 0 1
TC TH 0 1

TC + 1
2TCN TC + 1

2TCN ±TCN 1

⎤
⎥⎦

×

⎡
⎢⎣

Gpv

Gph

GpU

GpvT1 + GphT2

⎤
⎥⎦ . (5)

Note that this also follows from (1). To obtain Gpv , Gph, and
GpU , both sides of (5) are multiplied on the left by the inverse
of the 4 × 4 matrix in (5). Gmv, Gmh, and GmU are found
similarly, using the measurements vm,C , vm,H , vm,CH , and
vm,CN .

Note that both the 4 × 4 matrix in (5) and its inverse have a
condition number (for the two-norm) of about 3000 when we
use the following load temperatures typical of NASA’s near-
future Aquarius radiometer: TC = 288 K and TH = TCN =
800 K [2]. This suggests that noise in the voltage measurements
can disturb the estimates significantly. This may explain why
our optimal estimates of the last six gains are the most improved
compared with algebraic estimates (see Table II, as will be
described later). Also, note that four of the available mea-
surements, vv,CH , vv,CN , vh,CH , and vh,CN , are not used in
this method. Nevertheless, the method of Piepmeier [1] works
well (evidence for this is given by the first row of numbers in
Table II, as will be described later).

IV. BAYESIAN ESTIMATION

The algebraic estimation method sketched in the previous
section is not unique. For example, Gvv could also be estimated
using

Ĝvv =
vv,H − vv,CH

TH − TC
. (6)

A better estimate would be an average of (3) and (6) be-
cause the noise in each estimate is somewhat different and is
therefore reduced by averaging. Information on Gvv is also
contained in the measurement vv,CN , and similarly with the
other nine calibration parameters. How can we combine all
of the information in the voltages to get the most accurate
estimates of the ten calibration parameters? The answer is
to approach the problem using probability theory rather than
algebraically. By using Bayes’ theorem, a pdf can express all

the information on a parameter that is available from various
measurements, from the noise-free forward model, and from a
probabilistic description of the noise [3]. Let v be the vector
of measurements (voltages) in (1), and let m be the vector of
calibration parameters (the eight gains plus T1 and T2). Then,
Bayes’ theorem tells us that the pdf for the parameters, given
the voltages, is

p(m|v) =
p(v|m)p(m)

p(v)
. (7)

The pdf p(m) represents prior or external information on the
model parameters, and similarly with p(v). In this paper, we
assume that no prior or external information is available. The
absence of information can be represented by a constant pdf,
so that p(m) and p(v) are both constants. Then, p(m)/p(v) is
another constant, c′, and

p(m|v) = c′p(v|m). (8)

The remainder of this section finds p(m|v) explicitly.

A. Pdf for the Voltages, Given the Parameters, p(v|m)

We first elaborate the probability distribution for voltages,
given a set of calibration parameters, p(v|m).

1) Noise Model: Equation (1) is a noise-free forward model
for the 16 voltages from the calibration parameters. However,
the temperature inputs in the last matrix of (1) are only mean
values. Actual thermal emissions fluctuate. These random fluc-
tuations can be treated as Gaussian noise (commonly called
NEΔT ) that is added to each “true” (mean-value) temperature
in the forward model. Therefore, the forward model with noise
included is (9), shown at the bottom of the page, where the ni

terms are added noise.
The noise term n1 represents the total fluctuation away from

TC + T1 during the first calibration subcycle. It is zero-mean
Gaussian noise with a standard deviation (STD) that is equal to
the mean temperature divided by the root of the time bandwidth
product, (TC + T1)/

√
Bτc, where B is the sensor bandwidth

and τc is the calibration integration time [4, eq. (6.51)]. n2−n9

are similar.
The noise terms n1−n6 are all independent of one another

(and of n7−n9) for one or both of the following reasons:
1) They originate from different sources (the v-channel hot
and cold inputs, as well as the amplifiers producing T1, are
separate from the h-channel inputs and the amplifiers producing
T2, see [1, Fig. 1]), and 2) they are realized during different
calibration subcycles (i.e., are different realizations of the noise,
and the rapidity of the fluctuations means that the realization

⎡
⎢⎣

vv,C vv,H vv,CH vv,CN

vh,C vh,H vh,CH vh,CN

vp,C vp,H vp,CH vp,CN

vm,C vm,H vm,CH vm,CN

⎤
⎥⎦ =

⎡
⎢⎣

Gvv 0 0
0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU

⎤
⎥⎦

·

⎡
⎣TC + T1 + n1 TH + T1 + n3 TC + T1 + n5 TC + T1 + 1

2TCN + n7

TC + T2 + n2 TH + T2 + n4 TH + T2 + n6 TC + T2 + 1
2TCN + n8

0 0 0 TCN + n9

⎤
⎦ (9)
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during one interval is independent of the realization during
the next interval [5]). The noise terms n7−n9 are not inde-
pendent of one another because they all originate (at least in
part) from the correlated calibration source; they are treated in
Appendix A2.

Even though n1−n6 are independent of one another, there
is correlation among the voltages on the left side of (9). For
example, vp,C and vm,C are both functions of n1 and n2 and
are therefore correlated. All the correlations that exist among
the voltages can be summarized in a covariance matrix C that is
derived in Appendix A. As a result, the probability distribution
for v, given m, is a 16-dimensional Gaussian pdf, with mean
being given by the right-hand side of (1) denoted g(m),

p(v|m) =
1√

(2π)16|C|
e−

1
2 (v−g(m))TC−1(v−g(m)). (10)

2) Eigendecomposition of Singular C: The covariance ma-
trix C is a function of the calibration parameters m. Numerical
calculations using arbitrary values for m show that, although
C is 16 × 16, its rank r is consistently only nine. From
a theoretical standpoint, this corresponds to the nine noise
sources on the right-hand side of (9).

Because C is not full rank, it cannot be inverted. It also has
16 − r = 7 eigenvalues with value zero so that |C| = 0. How
do we evaluate (10) in this situation?

Consider the eigendecomposition of C

C = [V DV T] = [V1 V2] diag ([Λ 0])
[
V T

1

V T
2

]
(11)

where the r = 9 columns of V1 are eigenvectors with nonzero
eigenvalues Λ, whereas the seven columns of V2 are eigenvec-
tors with eigenvalues that are equal to zero, and diag(·) is a
diagonal matrix with the elements of the argument along its
diagonal. Matrix theory tells us that, because C is symmetric,
V ≡ [V1 V2] is unitary (because V is real, it is also an orthog-

onal matrix). Therefore, V Tv =
[

V T
1

V T
2

]
v is a rotation of the

voltages.
Consider a partition of these rotated voltages into V T

1 v and
V T

2 v. The covariance of V T
2 v is

Cov
(
V T

2 v
)

=
〈(

V T
2 v −

〈
V T

2 v
〉) (

V T
2 v −

〈
V T

2 v
〉)T

〉
(12)

=V T
2

〈
(v − 〈v〉) (v − 〈v〉)T

〉
V2 (13)

=V T
2 Cov(v)V2 (14)

=V T
2 CV2 = [0] (15)

where the last step follows from the fact that the columns of
V2 are eigenvectors of C with eigenvalues that are equal to
zero. Because the variances of the elements of V T

2 v (diagonal
elements of Cov(V T

2 v)) are zero, V T
2 v is a constant vector.

That is, for a given m, V T
2 v will be the same for any realization

of the voltages.
With m being given, we can find the particular v = g(m)

corresponding to the voltages obtained when all nine noise
sources happen to be zero. Then, because V T

2 v is constant for a
given m as just shown, we can write V T

2 v = V T
2 g(m) for any

realization of v.
This last expression is a constraint when evaluating p(v|m).

It says that the pdf is concentrated on a manifold (in the
16-dimensional space of voltages) defined by V T

2 v =
V T

2 g(m). For any v which does not satisfy this constraint (i.e.,
does not lie on the manifold), p(v|m) = 0.

Next, consider the rotated voltages V T
1 v. By the same steps

as in (12)–(15), we find that

Cov
(
V T

1 v
)

= V T
1 CV1 = V T

1 [V1 V2] diag ([Λ 0])
[
V T

1

V T
2

]
V1

= V T
1 V1diag(Λ)V T

1 V1 = diag(Λ). (16)

This covariance matrix is invertible, and its determinant is the
product of the elements of Λ. We can eliminate the singularities
in (10) by reducing the dimensionality of the Gaussian pdf
p(v|m) from 16 to r = 9, using V T

1 v and its nonsingular
covariance matrix in place of v and C (also, note that the mean
of V T

1 v is V T
1 g(m)).

In summary, to deal with the singularities in (10), we rotate
and partition our measurements v into measurements (V T

2 v)
which provide a constraint and those (V T

1 v) which provide a
smaller dimensional pdf, so that (10) can be rewritten as (17),
shown at the bottom of the page.

In Appendix B, we derive V2 analytically and show that the
constraint V T

2 v = V T
2 g(m) reduces to

Gpv = Gvv
(vp,Cvh,H − vh,Cvp,H)
(vv,Cvh,H − vh,Cvv,H)

Gph = Ghh
(vp,Cvv,H − vv,Cvp,H)
(vh,Cvv,H − vv,Cvh,H)

(18)

Gmv = Gvv
(vm,Cvh,H − vh,Cvm,H)
(vv,Cvh,H − vh,Cvv,H)

Gmh = Ghh
(vm,Cvv,H − vv,Cvm,H)
(vh,Cvv,H − vv,Cvh,H)

(19)

GmU = GpU

· GmvGhhvv,CN +GmhGvvvh,CN−GvvGhhvm,CN

GpvGhhvv,CN +GphGvvvh,CN−GvvGhhvp,CN
.

(20)

p(v|m) =

{
1√

(2π)9|diag(Λ)|
e−

1
2 [V T

1 v−V T
1 g(m)]T·diag(Λ)−1·[V T

1 v−V T
1 g(m)], if V T

2 v = V T
2 g(m)

0, if V T
2 v �= V T

2 g(m)
(17)



HUDSON AND LONG: OPTIMAL ESTIMATION OF CALIBRATION PARAMETERS 3227

Fig. 2. Dots showing the Gvv and T1 coordinates of samples of p(m|v).
The density of dots illustrates the 2-D joint pdf p(Gvv , T1|v). The samples are
from the same simulation that produced Fig. 1.

B. Posterior Pdf p(m|v)

We are now ready to present a key result of this paper,
p(m|v), which is the pdf for the calibration parameters, given a
set of measured voltages. As shown in (8), we obtain it from
(17) by simply reversing the roles of input and output and
multiplying by a normalizing constant (we will not attempt
to find the constant because it is not necessary for finding
estimates and because the pdf can be displayed in unnormalized
form). Explicitly, p(m|v) is given in (21), shown at the bottom
of the page, where we show that V1 and Λ are functions of the
unknown m (through C) and where c is an unknown constant.

V. MAP ESTIMATION

A. Theory

In general, the most complete answer to an estimation prob-
lem is a joint pdf on the variables of interest [6], in our case,
(21). A joint pdf usually contains much more information than
merely reporting numbers and STDs for the variables (this is
illustrated in Section VI-B2). The increase in computing power
over the last few decades enables us to begin the use of pdfs,
such as p(m|v), as inputs and outputs to algorithms, rather
than simple estimates and their uncertainties. It is our hope
that science and engineering will move in that direction. In this
section, however, we follow the tradition by reporting simple
numerical estimates and their uncertainties (rmse).

From the joint pdf p(m|v), what should we extract and report
as estimates of the calibration parameters? Of all possible esti-
mates of m from v, the minimum-mean-square-error (mmse)
estimate is the mean of p(m|v), i.e., its expected value with
respect to m [7].

Fig. 3. Depiction of the 2-D joint pdf implied by reporting only marginal
means and variances—using the means and variances of the samples in Fig. 2.

Fig. 4. Dots showing the Gvv and Gpv coordinates of samples of p(m|v).
The density of dots illustrates the 2-D joint pdf p(Gvv , Gpv |v).

Finding the mean of p(m|v) is difficult, but a shortcut is
available. Marginal 1- and 2-D pdfs for one or two of the
parameters are obtained by integrating p(m|v) with respect to
the remaining parameters. Typical examples of these pdfs are
shown in Figs. 1–4 (the generation of such figures is explained
in Section VI). From such examples, it appears that p(m|v)
is unimodal and symmetric in most (if not all) cases. This is
confirmed by the Gaussian structure of (21). These properties
signify that the mean of p(m|v) is the same as its mode (at
least as a good approximation if not exactly). Finding the mode
is easier than finding the mean; therefore, we use the mode as
our primary estimate. We examine the properties of the mode
in detail in this section and return to consider the mean in
Section VI-B3.

p(m|v) =

{
c

|diag(Λ(m))|
1
2
e−

1
2 [V T

1 (m)v−V T
1 (m)g(m)]T·diag(Λ(m))−1·[V T

1 (m)v−V T
1 (m)g(m)], if (18)−(20) are satisfied

0, otherwise
(21)
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TABLE I
GAIN-RELATED PARAMETERS TYPICAL OF AN L-BAND

RADIOMETER AND USED IN SIMULATIONS

p(m|v) is often called the posterior distribution because it
is the distribution for m after measuring data v. The mode
of p(m|v) is the set of parameters m, which maximizes the
posterior distribution. Therefore, it is referred to as the max-
imum a posteriori (MAP) estimate. Because our p(m|v) is
equal to a constant times p(v|m) (due to the absence of prior
information), the MAP estimate is equivalent to the maximum-
likelihood estimate, which is obtained by considering p(v|m)
to be a function of m and finding the m which maxi-
mizes it.

Finding the value of m which maximizes p(m|v) can be
cast as a standard multidimensional optimization problem. It
is readily accomplished by a blackbox minimization algorithm
such as MATLAB’s fminsearch (although more advanced tech-
niques could find it with less computation). The search can be
initialized using the algebraic estimate of m (see Section III).
To limit the search to m which satisfies the constraint, we only
search over the five parameters Gvv , Ghh, GpU , T1, and T2.
When the other five are needed, they are generated from the
constraint equations (18)–(20).

Note that it may be possible to find a closed-form expression
for the mean or the mode of p(m|v). If found, then the MAP
estimate would require much less computation than is required
by the brute force optimization method of the previous para-
graph. However, our attempts to find a closed-form expression
suggest that the task is difficult.

B. Simulation and Results

To compare MAP estimates with algebraic estimates, we
simulate the estimation process. Typical values of radiometer
hardware parameters defined in [1], which are obtained from
[1, Table I] and [2], are shown in Table I. These are used in
[1, eq. 17] to calculate typical values for the eight gains Gxx,
which are also shown in Table I.

For typical T1 and T2, we use 310 K; these, plus the eight
gains Gxx in Table I, are considered the “true” values in our
simulations (mtrue). For TC , TH , and TCN , we use 288, 800,

and 800 K, respectively. For τc, we use 9 ms (these T1, T2,
TC , TH , TCN , and τc are the anticipated values for NASA’s
upcoming Aquarius radiometer [2]).

From the aforementioned parameters, we next generate simu-
lated voltages. As discussed in Section IV-A2, we can find V T

2 v
as V T

2 g(mtrue). We also need realizations of V T
1 v. Because

V T
1 v is a linear combination of v, it is Gaussian as is v. We

know that V T
1 v has a mean of V T

1 g(m) and a covariance matrix
of diag(λ), so we can readily generate random realizations of
it by adding the mean to zero-mean Gaussian noise with that
covariance. Then, with V T

2 v and V T
1 v in hand, we can form v

by derotating (left multiplying by V ) because

V

[
V T

1 v
V T

2 v

]
= V (V Tv) = (V V T)v = v. (22)

With the simulated voltages, we then use the method of
Piepmeier [1], as summarized in Section III, to algebraically
estimate the ten calibration parameters. We repeat this for 106

different realizations of the voltages (the means stay the same,
but the noise changes). The bias of these 106 estimates is
computed as the difference between their mean and mtrue. The
STD of these 106 estimates is also computed. Finally, the rmse
of these 106 estimates is computed as the root sum square of the
bias and STD (this is equivalent to rmse =

√
〈(m̂ − mtrue)2〉,

where the averaging is over 106 realizations of noise).
This process is repeated for MAP estimates, and the results

are compared. For both estimation methods, and for all ten
parameters, the bias is less than 0.01% of the true parameter
values. The STD is therefore the same as the rmse, to four
significant digits. In the first two rows of Table II, we report
the rmse for each method and for each of the ten parameters, as
percentages of the true parameter values. In the third row, we
report the factor by which the rmse of MAP estimates is lower
than the rmse of algebraic estimates.

To summarize our results with a single number, we take the
average of these ten improvement factors, which is 2.04. That
is, the rmse of MAP estimates is about two times smaller than
the rmse of algebraic estimates.

To establish the accuracy of this number, the entire procedure
of the last four paragraphs is repeated 100 times to provide 100
estimates of the average improvement factor. The average of
these 100 numbers is 2.041, with an STD of 0.001.

Note that this improvement is independent of the available
integration time τc. For example, if τc is quadrupled (equivalent
to averaging four contiguous calibration looks), then the STD
(and hence rmse) of both methods drops by a factor of two. The
improvement factors reported in Table II remain the same. We
verified this for seven sets of 106 estimates.

The cost for the increased accuracy of MAP estimates is an
increase in computation. On average, a MAP estimate requires
40 000 times more computation than an algebraic estimate. This
could be reduced if pains were taken to increase the efficiency
of the search algorithm or of the eigendecomposition. Even so,
this is still quite tractable: a 2.4-GHz workstation finds the MAP
estimate of all ten parameters in about 0.06 s.

1) Improvement as a Function of mtrue: The improvement
in accuracy of MAP estimates (over algebraic estimates) is a
weak function of mtrue. If we repeat the earlier procedure
for 100 different values of mtrue’s, chosen randomly within
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TABLE II
RMSE RESULTS FOR 106 ESTIMATES FROM VOLTAGES GENERATED BY TYPICAL mtrue.

RMSE IS GIVEN AS A PERCENT OF THE TRUE PARAMETER VALUE

expected ranges,1 we find that the rmse of MAP estimates is
consistently the same as the values in Table II. The rmse of
algebraic estimates is slightly lower than the values in Table II,
resulting in an average improvement factor that ranges from
1.86 to 2.03, with the mean being 1.90.

VI. SAMPLING THE POSTERIOR PDF

We now turn to exploration of the more complete answer to
the calibration problem, the posterior pdf p(m|v).

If samples of p(m|v) are available, they can be used to
visualize the posterior pdf, to report it, or to calculate its mean
mmmse. In this section, we describe how to generate such
samples and then use them for the aforementioned purposes.

A. Sampling p(m|v) by the Rejection Method

Samples of the posterior pdf p(m|v) can be generated by
the well-known rejection method [6], [7]. First, samples of
Gvv , Ghh, and GpU are proposed from independent uniform
distributions. These distributions are centered on an initial
guess, such as the MAP estimate.

With the proposed Gvv , Ghh, and GpU coordinates, we next
find the proposed Gph, Gmh, Gpv , Gmv , and GmU coordinates
from the constraint equations (18)–(20). Also, T1 and T2 co-
ordinates are proposed from independent uniform distributions
centered on the initial guess. Each set of ten proposed coordi-
nates now comprises one proposed sample of p(m|v), which
we denote by mprop.

Because the constraint equations were used, each mprop

is a sample from a uniform distribution over a region of the
constraint manifold. Let the constant value of this uniform dis-
tribution be denoted by k. In order to correctly generate samples
of p(m|v), we must accept each mprop with probability P
where

P =
p(mprop|v)/k

maxm (p(m|v)/k)
=

p(mprop|v)
maxm (p(m|v))

. (23)

The numerator of (23) is readily calculated using (21), with
V1 and Λ being found from a numerical eigendecomposition
of C and C being calculated from mprop. The denominator of
(23) is the peak value of p(m|v). The search for this peak is

1cv , ch, cp, and cm are chosen independently from normal distributions with
mean of 450 and STD of 17 mV/mW. G1 is chosen from a normal distribution
with mean of 1.8 ∗ 107 and STD of 2.7 ∗ 106 W/W; 10 log10(g) is chosen
from a normal distribution with mean of zero and STD of 1 dB; s is chosen
from a normal distribution with mean of 1/

√
2 and STD of 0.02/

√
2; αe is

chosen from a normal distribution with mean of 0.934 and STD of 0.01; and T1

and T2 are chosen independently from normal distributions with mean of 310
and STD of 1 K. Also, TC is chosen from a normal distribution with mean of
288 and STD of 0.5 K, whereas TH and TCN are chosen independently from
normal distributions with mean of 800 and STD of 2 K.

the same search that finds the MAP estimate of m—i.e., the
denominator is simply p(mMAP |v).2

B. Using the Samples

1) Marginal Posterior Pdfs: Once we have a number of
samples of p(m|v), we can immediately obtain plots of the
marginal probability distribution for the ith parameter by sim-
ply binning the ith coordinate values of the samples (we believe
that this follows from [6]). Some marginal pdfs obtained in this
manner are shown in Fig. 1.

Fig. 1 shows that the marginal pdfs are symmetric. This
verifies the claim made earlier that our MAP estimates (modes
of marginal pdfs) are the same as mmse estimates (means of
marginal pdfs). As further proof, when mmse estimates (see
hereafter) are made, they have the same error statistics as MAP
estimates, as reported in Table II and Section V-B.

Fig. 1 also shows that the marginal pdfs are Gaussian (or at
least very nearly so). The Gaussians that are plotted have STD
from the second line of Table II. Hence, each marginal pdf can
be completely characterized by its mode (the MAP estimate)
and STD (= rmse of MAP estimates, given in Table II).

2) Additional Information in Joint Pdfs: Joint pdfs can con-
vey many times more information than marginal pdfs. For
example, consider Gvv and T1. The 2-D joint pdf for these
two parameters (made from the same samples as Fig. 1) is
shown in Fig. 2. This joint pdf contains significant correlation
information. For example, it shows that there is a fair chance
that Gvv ≈ 24.5 and T1 ≈ 311 but almost no chance that
Gvv ≈ 24.5 and T1 ≈ 304. If we had reported only the 1-D
marginal pdfs in Fig. 1, both possibilities would have appeared
equally likely.

The current practice of reporting only the mean and variance
for each parameter is equivalent, in effect, to reporting indepen-
dent 1-D marginal Gaussian pdfs for the parameters [6]. The
only joint pdf that can logically be reconstructed from marginal
pdfs is the product of the marginal pdfs (this follows from [6]).
An example of such a reconstruction is shown in Fig. 3. All
correlation information is lost, as well as any non-Gaussian
characteristics of the posterior pdf.

The situation is even more pronounced for the parameters
whose estimation is 100% correlated, due to the constraint
equations. For example, the 2-D joint pdf for Gvv and Gpv is
shown in Fig. 4. The pdf is completely concentrated along a
1-D line in the 2-D space. If only means and variances were
reported, the appearance would be similar to Fig. 3.

We have demonstrated that the most complete answer to an
estimation problem is a joint pdf, but how can a 10-D posterior
pdf be reported? We can report the equation for it, such as (21).

2Numerical note: The sampling process is much faster when all the Gxx

(or voltages) are scaled by an appropriate factor. A factor of 107 was used in
generating the figures.
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A numerical alternative is to simply report a large number
of samples because most, if not all, calculations done with
a posterior pdf can be done using these samples [6]. A very
succinct alternative is available when a multidimensional pdf is
sufficiently Gaussian, as in the present case. In such cases, all
of the information can be conveyed by a vector of means and a
covariance matrix.

3) MMSE Estimation: Another use for the samples of a
distribution is in calculating its mean. For example, to find
the ith coordinate of the mean, we simply average the ith
coordinate of the samples, which converges to the mean as
the number of samples increases [6]. The means found by
this method are shown in Fig. 1, from which it is also seen
that MAP and mmse estimates extracted from p(m|v) are
equivalent.

VII. INFORMATION ON HARDWARE PARAMETERS

As a tangential but useful extension of the previous results
in this paper, we can obtain information on the radiometer
hardware parameters that comprise the eight gains Gxx. The
definition of these gains in terms of hardware parameters, found
by comparing (1) and [1, eq. 17], is reproduced in (24), shown
at the bottom of the page. By simply replacing the eight gains
Gxx

3 in (21) with their component definitions on the right side
of (24), we immediately obtain the joint posterior pdf for the
eight hardware parameters G1, G2, αe, cv , ch, cp, cm, and s,
plus T1 and T2 (the bandwidth B could also be considered a
parameter, but for this paper, we treat it as a known constant; the
parameter k is Boltzmann’s constant). For brevity, we simply
summarize our discoveries about this pdf as follows.

First, the transformed constraint equations leave the follow-
ing six hardware parameters unconstrained: G1, G2, αe, cv , T1,
and T2. Next, the constraint equations dictate that the parameter
s is completely determined by the voltages

s =

√
AD +

√
ADBC

AD − BC
(25)

where

A ≡ vp,Cvh,H − vh,Cvp,H D ≡ vm,Cvv,H − vv,Cvm,H

B≡ vp,Cvv,H−vv,Cvp,H C ≡ vm,Cvh,H−vh,Cvm,H . (26)

There is no uncertainty in this estimate—it is not affected by
NEΔT (in simulation, therefore, this estimate is the exact
value of the true s; however, in real practice, the uncertainties
not captured by our model in (9), such as imperfect knowledge
of TC and TH , will cause this estimate to have some error). The

3Gxx are found both in m and in the constraint equations.

constraint also dictates that ch, cp, and cm are constrained as
follows:

ch = cv

√
AC

BD
(27)

cp = cv

√
A

E
√

D
(
√

AD −
√

BC) (28)

cm = − cv

√
C

E
√

B
(
√

AD −
√

BC) (29)

where E ≡ vv,Cvh,H − vh,Cvv,H . One interpretation of these
equations is that the ratio of any two cx is perfectly resolved,
which is equal to a function of the voltages.

Pdfs (2-D) for the unconstrained hardware parameters, which
are obtained using the technique of Section VI with the neces-
sary modifications, are shown in Fig. 5. Numerical simulation
verifies that s is perfectly resolved; therefore, pdfs for s are
omitted. Pdfs for ch, cp, and cm are not shown either, because
such pdfs are simply multiples of the pdfs involving cv , due to
(27)–(29).

Intuition suggests that the ability to perfectly resolve s must
be compensated by a lack of ability to resolve other parameters.
This is indeed the case: As shown by Fig. 5, cv , G1, and
G2 cannot be separately resolved. We can only resolve their
pairwise products (for example, cvG1 is a constant times Gvv ,
which was well resolved in the earlier sections of this paper).
Marginal pdfs for cv , G1, and G2 are essentially uniform.4

Our final observation is that αe is resolved well. The average
rmse of MAP estimates of αe is 0.33%, whether using the
typical values given in Table I or the randomized values for the
true hardware parameters. T1 and T2 are resolved as accurately
as before (see Table II and Fig. 1).

VIII. CONCLUSION

In this paper, we have demonstrated optimal estimation of
calibration parameters in polarimetric microwave radiometers
which use hybrid coupler-based correlators to measure the
third Stokes parameter, such as NASA’s upcoming Aquarius
radiometer. By exploiting statistical knowledge of measurement
noise using Bayesian estimation, the rmse is reduced by a factor
of two compared to estimation without such knowledge. Most
of the principles that we have employed are well known in
estimation theory; however, this paper is their first published
application to microwave radiometer calibration. Many exten-
sions of this paper can be made by expanding the forward model
to include other unknowns and/or other measurements.

4These uniform marginal pdfs are only limited by prior knowledge. However,
if we have tighter prior knowledge on one parameter, for example, on cv , then
good resolution of a product such as cvG1 can cause tighter bounds on the
other parameter G1. This effect can be seen in several subplots of Fig. 5.

⎡
⎢⎣

Gvv 0 0
0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU

⎤
⎥⎦ ≡ kB

⎡
⎢⎣

cvG1 0 0
0 chG2 0

cps
2G1 cp(1 − s2)G2 cps

√
1 − s2αe

√
G1G2

cm(1 − s2)G1 cms2G2 −cms
√

1 − s2αe

√
G1G2

⎤
⎥⎦ (24)
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Fig. 5. Two-dimensional pdfs for the four unconstrained radiometer hardware parameters and two noise temperatures. The density of dots illustrates the pdfs,
whereas asterisks show the location of the true parameter values. The bounding boxes show the bounds of the uniform pdfs from which samples were proposed.
These plots illustrate that it is only possible to obtain useful estimates of the hardware parameters αe, T1, and T2 (in addition to s, which is not illustrated).

This paper has also illustrated the fact that much more
information can be conveyed by a posterior probability dis-
tribution for a set of parameters than by simple estimates
comprised only of marginal means and variances. Finally, we
have demonstrated the acquisition of information on the eight
hardware parameters that comprise the overall channel gains in
the class of radiometer which is analyzed in this paper. Two
of these hardware parameters can be accurately estimated from
calibration measurements; for the other six, only products or
ratios of pairs of hardware parameters can be resolved.

We note that the forward model (1) is based on a number of
stated assumptions—see Section II—and our simulations incor-
porate those assumptions. In future work, we hope to assess the
validity of these assumptions and the consequent predictions of
this paper by testing the proposed method on real radiometer
data. Future work can also assess the improvement in scene
brightness temperature accuracy that can be achieved by using
the methodology of this paper rather than algebraic estimation.

APPENDIX A

A. Derivation of Covariance Matrix C

Using the information stated in Section IV-A1 about the nine
noise variables, we derive here the variances and covariances
of the voltages in (9). Each column of voltages is independent
of the voltages in the other columns, so we proceed column by
column.

1) First Three Columns: Consider the first column of volt-
ages in (9). There are just two noise terms, and they are
independent of one another because they are from different
sources. Therefore, vv,C and vh,C are independent. All other
relationships have nonzero correlation

Cov(vv,C , vp,C) = Cov(Gvvn1, Gpvn1)
= E

(
GvvGpvn2

1

)
= GvvGpv

(TC + T1)2

Bτc
. (30)

Similarly we have

Cov(vh,C , vp,C) = GhhGph
(TC + T2)2

Bτc
(31)

Cov(vv,C , vm,C) = GvvGmv
(TC + T1)2

Bτc
(32)

Cov(vh,C , vm,C) = GhhGmh
(TC + T2)2

Bτc
. (33)

For the final covariance for this column

Cov(vp,C , vm,C)= E ((Gpvn1 + Gphn2)(Gmvn1 + Gmhn2))
= E

(
GpvGmvn2

1 + GphGmhn2
2

)
= GpvGmv

(TC + T1)2

Bτc

+ GphGmh
(TC + T2)2

Bτc
. (34)
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By inspection, the four variances (diagonal terms) are
G2

vv((TC + T1)2/Bτc), G2
hh((TC + T2)2/Bτc), G2

pv((TC

+ T1)2/Bτc) + G2
ph((TC + T2)2/Bτc), and G2

mv((TC +
T1)2/Bτc) + G2

mh((TC + T2)2/Bτc).
The variances and covariances of the second column of

voltages in (9) are the same as those of the first column,
except replacing (TC + T1) and (TC + T2) with (TH + T1)
and (TH + T2), respectively. The variances and covariances of
the third column are the same as those of the first one, except
replacing (TC + T2) with (TH + T2).

2) Fourth Column: The variances and covariances of the
fourth column are quite different because TCN is a component
of all three inputs. We first rewrite the calibration inputs (TC

for both the vertical and horizontal channels, TCN/2, T1, and
T2) in terms of electric fields.

The v-channel cold load emits an electric field, which we
denote by c1. Its second moment (defined as 〈c2

1〉, where 〈·〉
is the ensemble average) is TC (here and hereafter, we ignore
the constant that converts the product of two electric fields to
a brightness temperature). The v-channel low-noise-amplifier
(LNA) noise is another source, whose equivalent electric field
(referred to the input of the first LNA so that it is on the
same level as c1) is denoted by r1. Its second moment is T1.
Similarly, the h-channel cold load outputs c2, with second
moment TC , and the h-channel LNA noise is r2, whose second
moment is T2.

The correlated calibration source (shown in [1, Fig. 1]) emits
an electric field n with second moment TCN . When the energy
from this source is split between the vertical and horizontal
channels, the electric field in each channel is then n/

√
2, whose

second moment is TCN/2.
The five electric fields just described (c1, r1, c2, r2, and n)

are independent of one another because of their distinct origins.
They are all zero-mean normal random variables.

The voltages in the fourth column on the left side of (1) are
found by summing these electric fields, squaring, integrating,
and multiplying by a channel gain

vv,CN = GvvI (35)

vh,CN = GhhJ (36)

vp,CN = GpvI + GphJ + GpUK (37)

vm,CN = GmvI + GmhJ + GmUK (38)

where

I ≡ 1
τc

τc∫
0

(
c1 +

n√
2

+ r1

)2

dt (39)

J ≡ 1
τc

τc∫
0

(
c2 +

n√
2

+ r2

)2

dt (40)

K ≡ 1
τc

τc∫
0

n2dt. (41)

Note that K arises from the correlation of the inputs to the
hybrid coupler.

Because all these voltages are expressed in terms of I , J ,
and K, all the variances and covariances can also be expressed

in terms of the variances and covariances of I , J , and K.
As shown in [5], I , J , and K can be rewritten as sums of
independent samples

I =
1

Nc

Nc∑
i=1

(
c1,i +

ni√
2

+ r1,i

)2

(42)

where Nc = 2Bτc, and similarly with J and K. In the remain-
der of this section, we use (42) to find the means, variances,
and covariances of I , J , and K and then of vv,CN , vh,CN ,
vp,CN , and vm,CN . These derivations are similar to those in
[8, Appendix].

Means and variances of I , J , and K: First, using the
independence of each of the Nc samples from one another and
of the five electric fields from one another, the means of I , J ,
and K are

〈I〉 =
〈
(c1 + n/

√
2 + r1)2

〉
=

〈
c2
1 + n2/2 + r2

1 + 2c1n/
√

2 + 2c1r1 + 2nr1/
√

2
〉

= TC + TCN/2 + T1 ≡ TT1 (43)

〈J〉 =
〈
(c2 + n/

√
2 + r2)2

〉
= TC + TCN/2 + T2 ≡ TT2 (44)

〈K〉 = 〈n2〉 = TCN . (45)

These means coincide with the final column of the temperature
matrix in (1), verifying our formulation of the problem in terms
of electric fields. To determine variance

Var(I) =

〈
1

Nc

Nc∑
i=1

(
c1,i +

ni√
2

+ r1,i

)2

× 1
Nc

Nc∑
j=1

(
c1,j +

nj√
2

+ r1,j

)2
〉

− TT12 (46)

=
1

N2
c

〈
Nc∑
i=1

Nc∑
j=1

(
c1,i +

ni√
2

+ r1,i

)2

×
(

c1,j +
nj√

2
+ r1,j

)2
〉

− TT12. (47)

Separating the expected value operation into terms for which
i �= j and for which i = j

Var(I) =
1

N2
c

(
Nc∑
i=1

Nc∑
j=1( �=i)

〈(
c1,i +

ni√
2

+ r1,i

)2

×
(

c1,j +
nj√

2
+ r1,j

)2
〉

+
Nc∑
i=1

〈(
c1,i +

ni√
2

+ r1,i

)4
〉)

− TT12.

(48)

Using the independence of samples i and j, the independence
of c1, n, and r1 from everything but themselves, and the known
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fourth moment of zero-mean normal random variables

Var(I)=
1

N2
c

(
Nc∑
i=1

〈(
c1,i +

ni√
2

+ r1,i

)2
〉

×
Nc∑

j=1( �=i)

〈(
c1,j +

nj√
2

+ r1,j

)2
〉

+
Nc∑
i=1

3

〈(
c1,i +

ni√
2

+ r1,i

)2
〉2 )

−TT12.

(49)

Then, using (43)

Var(I) =
1

N2
c

(
NcTT1(Nc − 1)TT1 + 3NcTT12

)
− TT12

=
2

Nc
TT12 (50)

and we finally arrive at the ensemble variance

Var(I) =
TT12

Bτc
and similarly, Var(J) =

TT22

Bτc
. (51)

Also

Var(K) =

〈
1

Nc

Nc∑
i=1

n2
i

1
Nc

Nc∑
j=1

n2
j

〉
− T 2

CN

=
1

N2
c

〈
Nc∑
i=1

Nc∑
j=1

n2
i n

2
j

〉
− T 2

CN (52)

=
1

N2
c

⎛
⎝ Nc∑

i=1

Nc∑
j=1( �=i)

〈
n2

i n
2
j

〉
+

Nc∑
i=1

〈
n4

i

〉⎞⎠− T 2
CN

(53)

=
1

N2
c

⎛
⎝ Nc∑

i=1

〈
n2

i

〉 Nc∑
j=1( �=i)

〈
n2

j

〉
+

Nc∑
i=1

3
〈
n2

i

〉2

⎞
⎠− T 2

CN

(54)

=
1

N2
c

(
Nc(Nc−1)T 2

CN +3NcT
2
CN

)
−T 2

CN

=
T 2

CN

Bτc
. (55)

Covariances of I , J , and K: Derivation of the covari-
ances of I , J , and K is similar

Cov(I, J) =

〈
1

Nc

Nc∑
i=1

(
c1,i +

ni√
2

+ r1,i

)2 1
Nc

×
Nc∑
j=1

(
c2,j +

nj√
2

+ r2,j

)2
〉

− TT1 TT2

(56)

=
1

N2
c

〈
Nc∑
i=1

Nc∑
j=1

(
c1,i +

ni√
2

+ r1,i

)2

×
(

c2,j +
nj√

2
+ r2,j

)2
〉

− TT1 TT2.

(57)

The expected value operation separates into terms for which
i �= j and for which i = j

Nc∑
i=1

Nc∑
j=1( �=i)

〈(
c1,i +

ni√
2

+ r1,i

)2 (
c2,j +

nj√
2

+ r2,j

)2
〉

+
Nc∑
i=1

〈(
c1,i +

ni√
2

+ r1,i

)2 (
c2,i +

ni√
2

+ r2,i

)2
〉

. (58)

Using the independence of samples i and j, the independence
of c1, c2, r1, and r2 from everything but themselves, and the
known fourth moment of zero-mean normal random variables,
this becomes

NcTT1(Nc − 1)TT2 + Nc

[
TT1 TT2 +

T 2
CN

2

]

= N2
c TT1 TT2 + Nc

T 2
CN

2
. (59)

Putting this back into (57)

Cov(I, J) =
T 2

CN

4Bτc
. (60)

Similarly we have

Cov(I,K) =

〈
1

Nc

Nc∑
i=1

(
c1,i +

ni√
2

+ r1,i

)2 1
Nc

Nc∑
j=1

n2
j

〉

− TT1 TCN (61)

=
1

N2
c

〈
Nc∑
i=1

Nc∑
j=1

(
c1,i +

ni√
2

+ r1,i

)2

n2
j

〉

− TT1 TCN (62)

=
1

N2
c

⎛
⎝ Nc∑

i=1

〈(
c1,i +

ni√
2

+ r1,i

)2
〉

Nc∑
j=1( �=i)

〈
n2

j

〉

+
Nc∑
i=1

〈(
c1,i +

ni√
2

+ r1,i

)2

n2
i

〉⎞
⎠

− TT1 TCN

=
1

N2
c

(
NcTT1(Nc − 1)TCN + Nc

×
[
TCTCN +

〈n4〉
2

+ T1TCN

])
− TT1 TCN (63)

=
1

N2
c

(
− NcTT1TCN + NcTCN

×
[
TC +

3
2
TCN + T1

])

= − TT1 TCN

Nc
+

(TT1 + TCN )TCN

Nc
(64)

leaving

Cov(I,K)=
T 2

CN

2Bτc
and similarly Cov(J,K)=

T 2
CN

2Bτc
. (65)
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Variances of the voltages: Now that the means, variances,
and covariances of I , J , and K are known, we can find the
means, variances, and covariances of the voltages in (66)–(70),
shown at the bottom of the page.

vp,CN is identical to vm,CN —same realizations of
noise–except for multiplication by different Gxx. Therefore,
variances and covariances of the first will be identical to those
of the second if we simply replace Gpx with Gmx, as indicated
in (71), shown at the bottom of the page.

Covariances of the voltages: The covariances of vv,CN

with the other voltages are found as follows:

Cov(vv,CN , vh,CN )

= GvvGhhCov(I, J)

= GvvGhh
T 2

CN

4Bτc
(72)

Cov(vv,CN , vp,CN )

= Cov(GvvI,GpvI + GphJ + GpUK) (73)

= Gvv [GpvVar(I) + GphCov(I, J) + GpUCov(I,K)]

(74)

= Gvv

[
Gpv

TT12

Bτc
+ Gph

T 2
CN

4Bτc
+ GpU

T 2
CN

2Bτc

]
(75)

= Gvv
4GpvTT12 + GphT 2

CN + 2GpUT 2
CN

4Bτc
(76)

and similarly

Cov(vv,CN , vm,CN )

= Gvv
4GmvTT12 + GmhT 2

CN + 2GmUT 2
CN

4Bτc
. (77)

Likewise, the covariances of vh,CN with the vp,CN and
vm,CN are

Cov(vh,CN , vp,CN )

= Cov(GhhJ,GpvI + GphJ + GpUK) (78)

= Ghh [GpvCov(I, J) + GphVar(J) + GpUCov(J,K)]

(79)

= Ghh

[
Gpv

T 2
CN

4Bτc
+ Gph

TT22

Bτc
+ GpU

T 2
CN

2Bτc

]
(80)

= Ghh
GpvT 2

CN + 4GphTT22 + 2GpUT 2
CN

4Bτc
(81)

Cov(vh,CN , vm,CN )

= Ghh
GmvT 2

CN + 4GmhTT22 + 2GmUT 2
CN

4Bτc
. (82)

The final covariance is longer

Cov(vp,CN , vm,CN )

=Cov(GpvI+GphJ+GpUK,GmvI+GmhJ+GmUK) (83)

= GpvGmvVar(I) + GphGmhVar(J) + GpUGmUVar(K)

+ (GpvGmh + GphGmv)Cov(I, J)

+ (GpvGmU + GpUGmv)Cov(I,K)

+ (GphGmU + GpUGmh)Cov(J,K) (84)

Var(vv,CN )= G2
vvVar(I)= G2

vv

TT12

Bτc
(66)

Var(vh,CN ) =G2
hhVar(J)= G2

hh

TT22

Bτc
(67)

Var(vp,CN ) =Var(GpvI + GphJ + GpUK)

= Var(GpvI)+Var(GphJ)+Var(GpUK)+2[GpvGphCov(I, J)+GpvGpUCov(I,K)+GphGpUCov(J,K)] (68)

=G2
pv

TT12

Bτc
+ G2

ph

TT22

Bτc
+ G2

pU

T 2
CN

Bτc
+ 2GpvGph

T 2
CN

4Bτc
+ 2GpvGpU

T 2
CN

2Bτc
+ 2GphGpU

T 2
CN

2Bτc
(69)

=
G2

pvTT12 + G2
phTT22 +

(
G2

pU + GpvGph/2 + GpvGpU + GphGpU

)
T 2

CN

Bτc
(70)

Var(vm,CN ) =
G2

mvTT12 + G2
mhTT22 +

(
G2

mU + GmvGmh/2 + GmvGmU + GmhGmU

)
T 2

CN

Bτc
(71)
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which expands and then simplifies to

Cov(vp,CN , vm,CN )

=
1

4Bτc

[
4GpvGmvTT12 + 4GphGmhTT22

+ (4GpUGmU + GpvGmh + GphGmv

+ 2GpvGmU + 2GpUGmv + 2GphGmU

+ 2GpUGmh)T 2
CN

]
. (85)

3) Summary: Entire C: To recapitulate

C =

⎡
⎢⎣

CC 0 0 0
0 CH 0 0
0 0 CCH 0
0 0 0 CCN

⎤
⎥⎦ (86)

where CC , CH , CCH , and CCN are given in (87)–(90), shown
at the bottom of the page, (note that the matrices in these

equations are all symmetric; to make them fit better, only the
upper triangular elements are given),where

P ≡G2
pvTT12 + G2

phTT22

+
(
G2

pU + GpvGph/2 + GpvGpU + GphGpU

)
T 2

CN

M ≡G2
mvTT12 + G2

mhTT22

+
(
G2

mU +GmvGmh/2+GmvGmU +GmhGmU

)
T 2

CN

Y ≡GpvGmvTT12 + GphGmhTT22

+
(

GpUGmU +
GpvGmh

4
+

GphGmv

4
+

GpvGmU

2

+
GpUGmv

2
+

GphGmU

2
+

GpUGmh

2

)
T 2

CN .

B. Derivation of the Constraint Equations

1) Finding V2 (Eigenvectors of C for which λ = 0): Due
to the block diagonal structure of C, it has four eigenvec-
tors of the form [a b c d 0 0 0 0 0 0 0 0 0 0 0 0]T,
where [a b c d]T is an eigenvector of CC ; four of the form
[0 0 0 0 a b c d 0 0 0 0 0 0 0 0]T, where [a b c d]T is an eigen-
vector of CH ; four of the form [0 0 0 0 0 0 0 0 a b c d 0 0 0 0]T,
where [a b c d]T is an eigenvector of CCH ; and four of the
form [0 0 0 0 0 0 0 0 0 0 0 0 a b c d]T, where [a b c d]T is
an eigenvector of CCN . Each of CC , CH , and CCH has two
eigenvalues (λ) that are equal to zero, whereas CCN has only
one. This is easily confirmed numerically; theoretically, it is

CC =
1

Bτc

⎡
⎢⎢⎢⎢⎢⎢⎣

G2
vv(TC + T1)2 0 GvvGpv(TC + T1)2 GvvGmv(TC + T1)2

G2
hh(TC + T2)2 GhhGph(TC + T2)2 GhhGmh(TC + T2)2

G2
pv(TC + T1)2 + G2

ph(TC + T2)2 GpvGmv(TC + T1)2

+GphGmh(TC + T2)2

G2
mv(TC + T1)2

+G2
mh(TC + T2)2

⎤
⎥⎥⎥⎥⎥⎥⎦

(87)

CH =
1

Bτc

⎡
⎢⎢⎢⎢⎢⎢⎣

G2
vv(TH + T1)2 0 GvvGpv(TH + T1)2 GvvGmv(TH + T1)2

G2
hh(TH + T2)2 GhhGph(TH + T2)2 GhhGmh(TH + T2)2

G2
pv(TH + T1)2 + G2

ph(TH + T2)2 GpvGmv(TH + T1)2

+GphGmh(TH + T2)2

G2
mv(TH + T1)2

+G2
mh(TH + T2)2

⎤
⎥⎥⎥⎥⎥⎥⎦

(88)

CCH =
1

Bτc

⎡
⎢⎢⎢⎢⎢⎢⎣

G2
vv(TC + T1)2 0 GvvGpv(TC + T1)2 GvvGmv(TC + T1)2

G2
hh(TH + T2)2 GhhGph(TH + T2)2 GhhGmh(TH + T2)2

G2
pv(TC + T1)2 + G2

ph(TH + T2)2 GpvGmv(TC + T1)2

+GphGmh(TH + T2)2

G2
mv(TC + T1)2

+G2
mh(TH + T2)2

⎤
⎥⎥⎥⎥⎥⎥⎦

(89)

CCN =
1

Bτc

⎡
⎢⎢⎣

G2
vvTT12 GvvGhh

T 2
CN

4 Gvv
4GpvTT12+GphT 2

CN+2GpU T 2
CN

4 Gvv
4GmvTT12+GmhT 2

CN+2GmU T 2
CN

4

G2
hhTT22 Ghh

GpvT 2
CN+4GphTT22+2GpU T 2

CN

4 Ghh
GmvT 2

CN+4GmhTT22+2GmU T 2
CN

4
P Y

M

⎤
⎥⎥⎦ (90)
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because the first three columns of (9) have two noise sources
each, whereas the last one has three.

Eigenvectors of CC , CH , and CCH for which λ = 0: CC ,
CH , and CCH can all be written in the abbreviated forms

1
Bτc

⎡
⎢⎣

v2T 0 vpT vmT
0 h2U hqU hnU

vpT hqU p2T + q2U pmT + qnU
vmT hnU pmT + qnU m2T + n2U

⎤
⎥⎦ (91)

where the only difference between CC , CH , and CCH is
whether T and U are defined using TC or TH . The eigenvectors
of this matrix are found by using the defining equation of an
eigenvector with λ = 0,

⎡
⎢⎣

v2T 0 vpT vmT
0 h2U hqU hnU

vpT hqU p2T + q2U pmT + qnU
vmT hnU pmT + qnU m2T + n2U

⎤
⎥⎦

⎡
⎢⎣

a
b
c
d

⎤
⎥⎦=

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ .

(92)

From the first two of the four equations in (92)

a = −cp + dm

v
b = −cq + dn

h
. (93)

Using these to substitute for a and b in the third and fourth
equations in (92), these equations reduce to

0c + 0d = 0 0c + 0d = 0. (94)

Any c and d will satisfy these equations. We choose simple but
nontrivial values: c = 1, d = 0 and c = 0, d = 1. Then, using
(93), the eigenvectors are⎡

⎢⎣
−p/v
−q/h

1
0

⎤
⎥⎦

⎡
⎢⎣
−m/v
−n/h

0
1

⎤
⎥⎦ . (95)

Eigenvectors can be scaled arbitrarily. Scaling by −vh and
undoing the abbreviations, the eigenvectors with λ = 0 are⎡

⎢⎣
GhhGpv

GvvGph

−GvvGhh

0

⎤
⎥⎦

⎡
⎢⎣

GhhGmv

GvvGmh

0
−GvvGhh

⎤
⎥⎦ . (96)

Note that these are exactly the same for CC , CH , and CCH

because they do not depend on T and U .
Eigenvector of CCN for which λ = 0: A process similar

to that of the previous subsection, although more tedious,
leads to

Eigenvector of CCN with λ = 0 is

⎡
⎢⎢⎣

GpvGmU−GpU Gmv

Gvv
GphGmU−GpU Gmh

Ghh

−GmU

GpU

⎤
⎥⎥⎦ .

(97)

2) Forming Constraint Equations From V2: For fixed v and
unknown m, the constraint is

V T
2 (m)v = V T

2 (m)g(m) (98)

where we explicitly show that V2 is formed from the unknown
m (through C).

First six constraint equations: Having found the eigen-
vectors that form V2 in Appendix A.2.1, we can expand the first
six of the seven equations in (98) and simplify them to obtain

GhhGpvvv,C + GvvGphvh,C =GvvGhhvp,C (99)
GhhGpvvv,H + GvvGphvh,H =GvvGhhvp,H (100)

GhhGpvvv,CH + GvvGphvh,CH =GvvGhhvp,CH (101)
GhhGmvvv,C + GvvGmhvh,C =GvvGhhvm,C (102)
GhhGmvvv,H + GvvGmhvh,H =GvvGhhvm,H (103)

GhhGmvvv,CH + GvvGmhvh,CH =GvvGhhvm,CH . (104)

Multiplying (99) by vv,H/vv,C and subtracting (100) leaves

Gph(vh,Cvv,H/vv,C − vh,H) = Ghh(vp,Cvv,H/vv,C − vp,H).
(105)

Similarly, from (99) and (101), we obtain

Gph(vh,Cvv,CH/vv,C − vh,CH) =

Ghh(vp,Cvv,CH/vv,C − vp,CH). (106)

Solve (106) for

Ghh = Gph
(vh,Cvv,CH/vv,C − vh,CH)
(vp,Cvv,CH/vv,C − vp,CH)

(107)

then substitute it into (105) to obtain

Gph(vh,Cvv,H/vv,C − vh,H) =

Gph
(vh,Cvv,CH/vv,C − vh,CH)
(vp,Cvv,CH/vv,C − vp,CH)

(vp,Cvv,H/vv,C − vp,H).

(108)

This last equation cannot be solved for Gph—it merely reveals
redundancy in the data and that (105) and (106) are redundant
constraint equations.

Similarly, from (102) and (103), we obtain

Gmh(vh,Cvv,H/vv,C−vh,H)=Ghh(vm,Cvv,H/vv,C−vm,H)
(109)

or an expression that is numerically equivalent from (102)
and (104).

A similar procedure produces constraint equations for Gpv

and Gmv in terms of Gvv. In summary, we end up with the four
constraint equations

Gpv =Gvv
(vp,Cvh,H − vh,Cvp,H)
(vv,Cvh,H − vh,Cvv,H)

Gph =Ghh
(vp,Cvv,H − vv,Cvp,H)
(vh,Cvv,H − vv,Cvh,H)

(110)

Gmv =Gvv
(vm,Cvh,H − vh,Cvm,H)
(vv,Cvh,H − vh,Cvv,H)

Gmh =Ghh
(vm,Cvv,H − vv,Cvm,H)
(vh,Cvv,H − vv,Cvh,H)

(111)

or two alternative (but numerically equivalent) sets obtained by
finding, for example, the equation relating Gph and Ghh from
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GpvGmU − GpUGmv

Gvv
vv,CN +

GphGmU − GpUGmh

Ghh
vh,CN − GmUvp,CN + GpUvm,CN

=
GpvGmU − GpUGmv

Gvv
GvvTT1 +

GphGmU − GpUGmh

Ghh
GhhTT2

− GmU (GpvTT1 + GphTT2 + GpUTCN ) + GpU (GmvTT1 + GmhTT2 + GmUTCN ) (112)

(99) and (101) or from (100) and (101). Thus, of (99)–(101),
any one is completely redundant, and the same goes for
(102)–(104). Hence, rather than six equations in six unknowns,
we only have four equations in six unknowns.

Last constraint equation: Using the last eigenvector with
λ = 0, as derived in Appendix B1, the final constraint equation
is expressed in (112), shown at the top of the page. The entire
right side cancels itself out. Then, multiplying both sides by
GvvGhh

(GpvGmU − GpUGmv)Ghhvv,CN+

(GphGmU − GpUGmh)Gvvvh,CN−

GmUGvvGhhvp,CN + GpUGvvGhhvm,CN = 0. (113)

Solving this for

GmU = GpU

·GmvGhhvv,CN + GmhGvvvh,CN − GvvGhhvm,CN

GpvGhhvv,CN + GphGvvvh,CN − GvvGhhvp,CN
.

(114)
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