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Abstract—The growing importance of polarimetric radiometers
has led to the need for a detailed theory for Stokes antenna temper-
atures. In this paper, we provide a full Stokes vector formulation
of an antenna temperature that accounts for the entire antenna
pattern, which includes polarization mixing in the main-beam
and sidelobe effects. To derive the Stokes antenna temperatures,
we follow the conventional methods in the Earth remote sensing
literature while relying on a coherency algebra approach from
radio astronomy. Connections and parallels to the conventional
approaches are noted along the way. We also introduce gener-
alizations of beam efficiency and cross polarization for use with
polarimetric radiometers. These provide important metrics in the
design of future systems.

Index Terms—Jones matrix, Mueller matrix, polarimetry,
polarization, radiometry, Stokes parameters.

I. INTRODUCTION

POLARIMETRIC radiometers, or microwave polarimeters,
are becoming increasingly important for Earth remote

sensing. Whereas conventional dual-polarization radiometers
only measure vertical and horizontal polarized brightness tem-
peratures, a polarimetric radiometer also measures the third
and fourth Stokes parameters. Polarimetric capabilities have
enabled the sensing of ocean-surface wind directions, as well
as the enhanced measurements of wind speed, among other
applications. Airborne radiometers based on polarization com-
biners and analog and digital correlators were used to make
some of the first nonnadir polarimetric measurements of the
sea surface, e.g., [1]–[4]. The first spaceborne polarimeter for
Earth observation, called WindSat, was designed for ocean-
surface wind-vector remote sensing and has produced com-
pelling results [5]. An investigation of antenna pattern effects
in polarimetric radiometers was performed for the WindSat
development by examining the effects of antenna main-beam
cross polarization imperfections on the retrieval of the ocean-
surface wind direction [6].

To extend the application of polarimetry to other geophysical
observations, implementation at L-band is planned for three
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upcoming sea-surface salinity and soil moisture spaceborne
missions: 1) Soil Moisture and Ocean Salinity (SMOS) [7];
2) Aquarius [8]; and 3) Soil Moisture Active/Passive [9] (which
was preceded by the Hydrosphere State (Hydros) study [10]1).
For these missions, polarimetric measurements at L-band will
primarily be used for correcting polarization rotations, includ-
ing the ionospheric Faraday rotation, which is particularly
important for the precision Aquarius radiometer [11], [12].
Because SMOS is a 2-D spatial interferometer, the instrument
polarization is necessarily mismatched with the Earth’s natural
basis in most directions [13]. Thus, measurement of the Stokes
visibilities is necessary for the complete correction of the in-
strumental polarization basis rotation [14]. Electronic polariza-
tion basis rotation can also be used to correct the effects induced
by the rotations of an observing platform [15], [16] or of a
reflector relative to a fixed feed horn [17]. This latter application
was planned for the Hydros radiometer, where a large 6-m aper-
ture precipitated the use of the fixed-feed rotating-reflector con-
figuration [18]. Although polarization rotation correction is the
primary motivation for L-band polarimetric measurements from
space, recent field experiments suggest the presence of signifi-
cant anisotropic and polarimetric signatures over land surfaces
[19], [20]. Further investigation of spaceborne polarimetric
measurements of land, sea, and ice surfaces are sure to provide
interesting new data and insights into the characteristics and
phenomena of these surfaces (e.g., [21]). Whereas polarimetry
for Earth observation has been developed only over the previous
two decades, it has been used in radio astronomy since at least
the 1950s. The applications range from detecting the temporal-
polarization signatures of pulsars to mapping the polariza-
tion of the cosmic microwave background [22], [23]. Despite
this breadth of potential applications, however, a development
of Stokes antenna temperatures is not yet available in the
literature.

A standard microwave remote sensing text [24] introduces a
scalar formulation for the antenna temperature as

TA =
Ae

λ2

∫
4π

FnTBdΩ (1)

where TB is the brightness temperature distribution, Fn is
the normalized antenna pattern, Ae is the effective aperture
area of the antenna, and λ is the wavelength of the mean
frequency of interest. Both TB and Fn are functions of di-
rection. It should be noted that the brightness temperature is
related to the incident-specific intensity by the Rayleigh–Jeans

1See http://hydros.gsfc.nasa.gov as of July 16, 2007.
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low-frequency approximation to Planck’s radiation law
[25] by

TB =
λ2

kB
I (2)

where kB is Boltzmann’s constant, λ is the wavelength, and I is
the specific intensity. Specific intensity has SI units of watts per
hertz per steradian per square meter (W · Hz−1 · sr−1 · m−2).
A polarimetric version of (1) is needed—a theory of Stokes
antenna temperatures.

The reception of partially polarized radiation by a single-
port antenna was formulated several decades ago by Ko [26].
His theory for an effective aperture and antenna temperature
was based on the coherency matrix used throughout the optics
literature [27]. In another communication, Ko derived what
he coined the Stokes vector of the antenna, which can be
used to determine the available power at an antenna port due
to an incident field in terms of its Stokes vector [28]. The
coherency matrix formulation of an effective aperture is the
basis of polarized antenna temperature formulations in both
radio astronomy and remote sensing literature. Indeed, in their
fundamental work on the recovery of dual-polarized brightness
temperatures, Claassen and Fung, in part, used Ko’s theory
to compute dual-polarized antenna temperatures [29]. They
were the first to address the effects of antenna cross polariza-
tion and the polarization mismatch that occurs between the
antenna pattern and the Earth’s surface. The antenna pattern
correction (APC) algorithm for the Scanning Multichannel
Microwave Radiometer was based on this formulation [30].
With but one exception to date, the APC literature only covers
scalar and dual-polarization cases (the exception deals with
the full Stokes vector, but only within the main beam and
not in the sidelobe and back lobe [6]). However, the vec-
tor radiative transfer (VRT) theory, which is used to model
brightness temperature distributions, has been rigorously de-
veloped to handle the full Stokes vector [25], [31], [32]. The
polarimetric connection between the VRT theory and Earth
observation instrument models has yet to be fully made and is
developed here.

This paper is an update to the important works of the past and
contains the development of a full Stokes vector formulation of
an antenna temperature. We follow the derivation method of
Claassen and Fung [29]; however, in that 1974 work, only the
vertical and horizontal polarized brightness temperatures were
derived, as the utility of the third and fourth Stokes parameters
in passive microwave remote sensing were unknown at that
time. Thus, we use their approach to derive similar relations for
all of the four Stokes parameters while relying on the coherency
algebra approach set forth by Hamaker et al. [33], along with
its relationship with Stokes algebra [34]. The parallels and
similarities to this past work are drawn along the way to provide
a concise and, hopefully, clear derivation and expression of
Stokes antenna temperatures. Finally, some new interpretations
of antenna pattern properties such as beam efficiency and
cross polarization for polarimetric radiometers are discussed
and applied to polarization-correlating and polarization-adding
radiometers.

Fig. 1. Earth (v̂e−ĥe) and antenna (̂a−b̂) polarization bases for a wave

propagating along the k̂-direction.

II. INCIDENT FIELDS

Quasi-monochromatic plane waves that arise from a bright-
ness distribution propagate toward the antenna in direction k̂.
The electric field at position −→r is

e(t,−→r , k̂) =
[

ev(t, k̂)
eh(t, k̂)

]
e−j 2π

λ k̂·−→r (3)

where the vector is in the Earth’s natural polarization basis
v̂e−ĥe. The quantity e is a time-varying vector phasor ex-
pressed in a root-mean-square amplitude. We define the polar-
ization vectors such that the horizontal vector is perpendicular
to the Earth normal as

ĥe =
k̂ × n̂e

|k̂ × n̂e|
(4a)

v̂e = ĥe × k̂ (4b)

where n̂e is the local Earth’s surface normal unit vector
(see Fig. 1).

The intensity and polarization state of this wave can be
described by its coherency vector [33]

E(k̂) = 〈e ⊗ e∗〉 =




〈
|ev|2

〉
〈eve∗h〉
〈ehe∗v〉〈
|eh|2

〉

 (5)

where the operator ⊗ indicates an outer product, and the angle
brackets 〈·〉 denote an ensemble average of the argument. Be-
cause the electric field amplitude random processes are station-
ary and ergodic, there is no need to carry the time argument t.
The direction argument has been dropped inside the coherency
vector for convenience.

At this point, a few comments about the notation are appro-
priate. Three-space vectors such as k̂ are written using lower-
case letters with either an arrow or a caret, the latter indicating
unity length. We use lowercase letters with a single overbar,
e.g., e, to denote two-by-one vectors such as the electric field.
Two-by-two matrices are likewise indicated using lowercase
letters with a double overbar. Four-by-one vectors, such as the
coherency vector E, are written using uppercase letters and a
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single overbar, whereas four-by-four matrices are written using
uppercase letters and a double overbar. Other variables, either
upper- or lowercase with no decoration, are scalars.

Although the coherency vector provides a convenient form
and an associated algebra, as found hereafter, the modified
Stokes vector is commonly used in microwave remote sensing.
For this quasi-monochromatic wave of bandwidth df traveling
through differential solid angle dΩ, it is [25]

I dΩ df =




Iv

Ih

U
V


 dΩ df =

1
η0




〈
|ev|2

〉〈
|eh|2

〉
2 Re 〈eve∗h〉
2 Im 〈eve∗h〉


 (6)

where the modified Stokes parameters are quantities of the
specific intensity. The modified Stokes vector can also be found

from the coherency vector by a transformation matrix TMC as

I dΩ df =
1
η0

TMCE (7)

where

TMC =




1 0 0 0
0 0 0 1
0 1 1 0
0 −j j 0


 . (8)

The subscript MC indicates that the transformation is from
coherency vector coordinates to modified Stokes vector coor-
dinates. Sometimes, it is useful to use the true Stokes vector
[I,Q,U, V ]T , where I = Iv + Ih, and Q = Iv − Ih. Transfor-
mation matrices that deal with the true Stokes vector are given
in the Appendix.

The modified Stokes vector of brightness temperatures (in
kelvins) is defined by applying the Rayleigh–Jeans law (2) to
the modified Stokes vector of the specific intensity as

TB =
λ2

kB
I. (9)

The symbols used for individual modified Stokes brightness
temperatures with the vector TB vary within the literature, with
a summary given in the Appendix. In this paper, the following
notation is used:

TB =




TB,v

TB,h

TB,U

TB,V


 . (10)

III. RECEIVED POWER

The receiving antenna is defined to be dually polarized to
receive power in an arbitrary orthogonal polarization basis â−b̂,
which forms a right-handed system with k̂, such that k̂ = â × b̂
(see Fig. 1). The use of Ludwig’s third definition of polarization
basis [35] for the antenna is standard. The choice of antenna
polarization basis is important because it defines the reference
frame of the Stokes parameters. In practice, it is logical to

coalign â−b̂ with v̂e−ĥe along the antenna boresight, but this
is not required. Whereas the antenna basis might be aligned
to the Earth basis, which is a mere mathematical construct,
the antenna feed polarization vectors are not required to be
so. Two such important cases used on WindSat [5], namely,
±45◦ linear polarization and dual circular polarization, are
illustrated in Section V. The development in this section makes
no assumption as to the particular feed polarization in use.

The open-circuit voltage voc at a single antenna port due to
an incident wave is

voc = le · e (11)

where le is the complex vector effective length of the antenna
[36]. The effective length is an important concept for describing
the reception and transmission of partially polarized radiation
by an antenna [26]. Indeed, it is the basis of the past works upon
which this paper builds [6], [29], [30]. The open-circuit voltages
at the ports of a dual-polarization (and lossless) antenna due
to an incident wave from the k̂-direction are found using the
following Jones matrix notation [27]:

voc(k̂) = l(k̂)p(ψ)e(k̂) (12)

where l is a Jones matrix [27] of effective lengths defined as

l(k̂) =
[

laa lab

lba lbb

]
. (13)

A single row of this Jones matrix contains the length vector
of a single-port antenna utilized by Ko [26]. If the antenna
ports (as determined by feed design) are coaligned with the
â−b̂ polarizations, then the aforementioned Jones matrix can
be interpreted so that the copolarization length patterns for the
â and b̂ ports are laa and lbb, respectively. The two other patterns
lab and lba are the cross polarization patterns. For such a case,
the ideal Jones matrix is the identity matrix. As previously
pointed out, the antenna and Earth bases are not required to
be aligned within the main beam, and furthermore, as noted by
Claassen and Fung [29], polarization misalignment is generally
always present outside the main beam. To align the Earth basis
v̂e−ĥe with the antenna basis â−b̂, the matrix p rotates the
polarization through the angle ψ (as illustrated in Fig. 1). Thus,
we have

p(ψ) =
[

v̂e · â ĥe · â
v̂e · b̂ ĥe · b̂

]
=

[
cos ψ sin ψ
− sin ψ cos ψ

]
. (14)

The differential power that is available from the open-circuit
voltage at a single port (11) is

dW =
1

4Z0
〈vocv

∗
oc〉 (15)

where Z0 is the characteristic impedance of the antenna port.
Likewise, the differential available power coherency vector is
defined as

dW (k̂) =
1

4Z0
〈voc ⊗ v∗oc〉 . (16)
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Substituting (12) into (16) yields

dW =
1

4Z0
LP E (17)

where

L = (l ⊗ l
∗
)

P = (p ⊗ p
∗).

Thus, the coherency vector of the antenna output is a simple
transformation of that of the incident wave. Because the thermal
radiation from the Earth is spatially incoherent in the far zone
of the antenna, the total available power can be found by
integrating over all directions, i.e.,

W =
∫
4π

dW (18)

or, in terms of the incident brightness distribution, by substitut-
ing (7) into (17)

W =
∫
4π

η0

4Z0
LP T

−1

MCI dΩ df. (19)

Before continuing further to examine the transformations L and

P , the modified Stokes vector of antenna noise temperatures is
introduced.

IV. ANTENNA TEMPERATURES

For a lossless dual-polarization antenna, the Stokes vector of
antenna temperatures TA is related to the available power by
the following Nyquist relationship:

kBTAdf = TMCW. (20)

(For the lossy case, the apparent aperture temperature is used
rather than strictly an antenna temperature.) By substituting
(19) into (20) and applying (9), we can write the modified
Stokes vector of the antenna temperatures in terms of an integral
over a weighted distribution of brightness temperatures as

TA =
η0

4Z0λ2

∫
4π

TMCLPT
−1

MCTBdΩ (21)

where λ = c/f . The matrix portion of the integrand in (21) can
be decomposed into two operators as follows:

TMCLPT
−1

MC =
[
TMCLT

−1

MC

] [
TMCPT

−1

MC

]
. (22)

The premultiplications and postmultiplications by TMC and

T
−1

MC convert a 4 × 4 coherency vector operator to a modified
Stokes vector operator, or a Mueller matrix. A Mueller matrix
transforms an input Stokes vector to an output Stokes vector
and is used, i.e., in the VRT theory [25], to describe electro-
magnetic scattering. They have also been used to model the

radio telescope at the Aercibo Observatory [37] and are used
in Section V to apply the results of this paper to the different
feed polarizations.

The first operator in (22) contains the directional receiving
properties of the antenna, and the second has a polarization

basis rotation. It can be shown that the latter TMCP (ψ)T
−1

MC

is exactly the polarization basis rotation operator R(ψ) for the
modified Stokes vector defined in [25] as

R(ψ) =




cos2 ψ sin2 ψ 1
2 sin 2ψ 0

sin2 ψ cos2 ψ − 1
2 sin 2ψ 0

− sin 2ψ sin 2ψ cos 2ψ 0
0 0 0 1


 . (23)

The second operator TMCLT
−1

MC contains the matrix L,
which is the outer product composition of the lengths of matrix

l. The effective lengths can be defined in terms of the normal-

ized voltage antenna patterns fn as

l(k̂) = 2
(

Z0

η0

) 1
2

aefn(k̂) (24)

where

fn(k̂) =
[

fn,aa fn,ab

fn,ba fn,bb

]
(25)

and ae is a diagonal matrix

ae =
[

A
1/2
e,a 0
0 A

1/2
e,b

]
(26)

of effective aperture areas Ae,x for antenna polarization x =
a or b. The matrix f describes the receiving properties of an
equivalent antenna with a unit effective length. The elements
fn,ab (xy = aa, ab, ba, or bb) are unitless and normalized such
that max(|fn,aa|2 + |fn,ab|2) = max(|fn,bb|2 + |fn,ba|2) ≡ 1.

Expanding the outer product with this definition yields

L = 4
Z0

η0
(ae ⊗ ae)

(
fn ⊗ f

∗
n

)
(27)

where

ae ⊗ ae

=




Ae,a 0 0 0
0

√
Ae,aAe,b 0 0

0 0
√

Ae,aAe,b 0
0 0 0 Ae,b


 (28)

fn ⊗ f
∗
n

=




|fn,aa|2 fn,aaf ∗
n,ab fn,abf

∗
n,aa |fn,ab|2

fn,aaf ∗
n,ba fn,aaf ∗

n,bb fn,abf
∗
n,ba fn,abf

∗
n,bb

fn,baf ∗
n,aa fn,baf ∗

n,ba fn,bbf
∗
n,aa fn,bbf

∗
n,ab

|fn,ba|2 fn,baf ∗
n,bb fn,bbf

∗
n,ba |fn,bb|2


 .

(29)
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Note that the top and bottom rows of L, excluding the im-
pedance scaling factor, are the vector expressions of Ko’s
definition of effective aperture using the coherency matrix [28].
The middle two rows deal with the cross correlations between
the two antenna polarizations, which are necessarily measured
to find the third and fourth Stokes parameters. The equivalent

Mueller matrix of L is

TMCLT
−1

MC = 4
Z0

η0
AeFn (30)

where the antenna effective area matrix is

Ae =




Ae,a 0 0 0
0 Ae,b 0 0
0 0

√
Ae,aAe,b 0

0 0 0
√

Ae,aAe,b


 (31)

and the normalized antenna radiation pattern matrix is ex-
pressed in (32), shown at the bottom of the page.

Note that the upper left-hand 2 × 2 submatrix contains the
normalized radiation patterns that are conventionally associated
with dual-polarized antennas. The first and second rows of the

matrix product AeFn are equivalent to what Ko defines as
the Stokes vector for the antenna [28]. In addition, consider the
third and fourth elements of the first or second rows of Fn. The
ratio of these two elements gives the cross polarization phase
singled out by Claassen and Fung [29] as

tan β =
Im fn,aaf ∗

n,ab

Re fn,aaf ∗
n,ab

. (33)

Furthermore, the matrix Fn is identical in form to a phase
matrix found in the VRT theory [38]. Composed of bistatic
scattering amplitude functions, the phase matrix describes how
incident modified Stokes vectors are scattered by a distribution
of particles. In this sense, the antenna can be thought of as scat-
tering incident brightness temperature vectors TB(k̂) into the
antenna temperature vector TA, as governed by the normalized
phase matrix in (32).

Finally, substituting (23) and (30) into (21) yields

TA =
1
λ2

Ae

∫
4π

Fn(k̂)R(ψ)TB(k̂)dΩ. (34)

First, compare this equation for antenna temperature with (1),
which is the scalar version found in [24]. Equation (34) contains
the essential elements of effective aperture, normalized antenna
pattern, and incident brightness temperature distribution, albeit
in the modified Stokes vector and Mueller matrix form. Second,
compare this with the single-port antenna version of Claassen

and Fung [29]. It contains the key elements of cross polarization
amplitude and phase, as well as the polarization mismatch
between the antenna pattern and the Earth’s surface. In fact,
the first and second rows comprise their antenna temperature
model. The expression here, however, goes a step further to
include the reception of the full modified Stokes vector. The
extension of previous scalar and vector developments by using
the outer product to include the cross correlation terms is
essential to understanding the reception of the full Stokes vector
by a dual-polarization antenna.

Finally, the development, thus far, has not explicitly ad-
dressed the frequency response of the antenna. In principle,
the antenna temperature model (34) is a function of frequency.
If the antenna is significantly wideband with a fluctuating
response, or the upwelling brightness temperature varies with
the frequency over the operating band, then an integration over
the frequency is needed to compute the aggregate response. In
general, the integration should be over TA(f). If, however, TB

is constant over the band of interest, the integration can be done

over the antenna pattern matrix λ−2AeFn, where λ = c/f , and

both Ae and Fn can vary with frequency.

V. APPLICATION

A. Polarimetric Radiometers

Microwave thermal emission from the Earth’s surface lends
itself to a natural polarization basis v̂e−ĥe, as described in
Section II. The measurements of surface-sensing radiometers
are typically reported in this basis. Thus, when modeling the
antenna temperatures, it is meaningful to define the antenna
polarization basis â−b̂ such that it coaligns with the natural
Earth basis along the center of the main beam (this basis is
denoted hereafter by the symbols v̂−ĥ.) A dual-polarization
feed aligned with v̂−ĥ produces an antenna temperature vector
aligned to the polarization basis of the Earth’s surface along the
antenna boresight. Conventional dual-polarization radiometers
with conical scanning use this configuration. This arrangement
is also typical for direct-correlation polarimetric radiometers
that employ cross correlation receivers for measuring the third
and fourth Stokes parameters (e.g., [3] and [4]). For example,
the third Stokes antenna temperature can be measured by cross
correlating the v- and h-polarization antenna voltages received
over bandwidth B as

TA,U =
Re

〈
voc,vv∗

oc,h

〉
2Z0kBB

. (35)

The aforementioned equation comes directly from (20). The
feed polarization coalignment is also typical for those receivers

Fn =




|fn,aa|2 |fn,ab|2 Re fn,aaf ∗
n,ab −Imfn,aaf ∗

n,ab

|fn,ba|2 |fn,bb|2 Re fn,bbf
∗
n,ba Im fn,bbf

∗
n,ba

2 Re fn,aaf ∗
n,ba 2 Re fn,bbf

∗
n,ab Re fn,aaf ∗

n,bb + Re fn,abf
∗
n,ba −Im fn,aaf ∗

n,bb + Im fn,abf
∗
n,ba

2 Im fn,aaf ∗
n,ba −2 Im fn,bbf

∗
n,ab Im fn,aaf ∗

n,bb + Im fn,abf
∗
n,ba Re fn,aaf ∗

n,bb − Re fn,abf
∗
n,ba


 (32)
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based on hybrid couplers that are used for synthesizing ±45◦

linear or left- and right-hand circular polarizations (LHCP and
RHCP) (e.g., [2]). The third Stokes parameter can be measured,
using a 180◦ hybrid coupler to synthesize ±45◦ linear polariza-
tions from v and h, by

TA,U = TA,+45◦ − TA,−45◦ (36)

where

TA,±45◦ =
|voc,v ± voc,h|2

8Z0kBB
. (37)

A different receiver (and feed) configuration, however, is
to use a rotated dual-linear-polarization (or dual-circular-
polarization) feed to directly detect the ±45◦ linear (or LHCP
and RHCP) polarizations. This polarization-adding architecture
is implemented on WindSat [5]. To obtain the full Stokes vector,
the WindSat instrument uses three feed horns with six total-
power receivers to measure six polarizations: vertical, horizon-
tal, ±45◦ linear, LHCP, and RHCP. The third (or fourth) Stokes
antenna temperature is determined by differencing the ±45◦

linear polarization (or LCHP and RHCP) antenna temperatures.
In this case, the antenna feeds transform the antenna polariza-
tion basis from v̂−ĥ to either ±45◦ linear polarizations (de-
noted p̂−m̂) or LHCP and RHCP (denoted l̂−r̂). In the Stokes
antenna temperature model presented here, the transforms take

the form of a feed Mueller matrix MF , which transforms the
antenna temperature reference from the antenna polarization
basis to the feed polarization basis [37]

TF = MF TA. (38)

Both a set of ideal matrices and a general Mueller matrix for an
imperfect feed of arbitrary polarization are presented in [37].
The first WindSat case is a dual linearly polarized feed rotated
45◦, which transforms v̂−ĥ to p̂−m̂ and has the ideal Mueller
matrix

MF =




1
2

1
2

1
2 0

1
2

1
2 − 1

2 0
−1 1 0 0
0 0 0 1


 (39)

and a feed-reference antenna temperature vector

TF =




TF,+45◦

TF,−45◦

−TA,Q

TA,V


 (40)

where TA,Q = TA,v − TA,h. It can be shown that the third
Stokes antenna temperature is

TA,U = TF,+45 − TF,−45. (41)

The second case is a dual circularly polarized feed, which
transforms v̂−ĥ to l̂−r̂ and has the ideal Mueller matrix

MF =




1
2

1
2 0 1

2
1
2

1
2 0 − 1

2
0 0 1 0
−1 1 0 0


 (42)

and a feed-reference antenna temperature vector

TF =




TF,LHCP

TF,RHCP

TA,U

−TA,Q


 . (43)

It can also be shown that the fourth Stokes antenna
temperature is

TA,V = TF,LHCP − TF,RHCP. (44)

An interesting outcome from these results is that the measure-
ments of the third and fourth Stokes antenna temperatures, us-
ing either direct-correlating or polarization-adding radiometers,
are equal—assuming perfect feeds. That is, antenna pattern
effects such as beam efficiency and cross polarization leakage
have the same impact on either radiometer architecture. If
feed imperfections are considered, this may no longer be the
case. Thus, (34) and (38) can be used to model the feed-
referenced Stokes antenna temperatures for any antenna and
feed polarization basis combination.

B. Antenna Pattern Properties

In radiometer instrument design, several antenna pattern
properties are the key drivers of performance. Beam efficiency
is perhaps the most important, followed by antenna cross po-
larization. In this section, these parameters are derived for a
polarimetric radiometer antenna by integrations over the main
lobe of the antenna patterns. The Mueller matrix for the antenna
patterns can be defined as

M =
1
λ2

AeFn (45)

and the effective aperture areas can be related to pattern solid
angles by

λ2

Ae,x
= Ωp,x (46)

for x = v or h, where the pattern solid angles are integrations
of the normalized antenna patterns over all 4π sr [24], i.e.,

Ωp,v =
∫
4π

|fn,vv|2 + |fn,vh|2dΩ (47a)

Ωp,h =
∫
4π

|fn,hh|2 + |fn,hv|2dΩ. (47b)

The beam efficiency and cross polarization are found by in-
tegrating the appropriate patterns over the main lobe. The
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integrated main-beam matrix is defined as

ηM =
∫

main lobe

∫
M dΩ (48)

with the following notation of individual elements:

ηM =




ηM,v ηM,vh ηM,vU ηM,vV

ηM,hv ηM,h ηM,hU ηM,hV

ηM,Uv ηM,Uh ηM,U ηM,UV

ηM,V v ηM,V h ηM,V U ηM,V


 . (49)

The first two diagonal elements of this matrix are exactly the
definition of beam efficiency [24] defined as

ηM,v =

∫
main lobe

∫
|fn,vv|2dΩ∫

4π |fn,vv|2 + |fn,vh|2dΩ
(50a)

ηM,h =

∫
main lobe

∫
|fn,hh|2dΩ∫

4π |fn,hh|2 + |fn,hv|2dΩ
. (50b)

The third and fourth diagonal elements lead us to a new
definition of beam efficiency of an antenna for the third and
fourth Stokes parameters defined as

ηM,U =
∫

main lobe

∫
Re fn,vvf ∗

n,hh + Re fn,vhf ∗
n,hvdΩ

×


∫

4π

|fn,vv|2 + |fn,vh|2dΩ




−1/2

×


∫

4π

|fn,hh|2 + |fn,hv|2dΩ




−1/2

(51a)

ηM,V =
∫

main lobe

∫
Re fn,vvf ∗

n,hh − Re fn,vhf ∗
n,hvdΩ

×


∫

4π

|fn,vv|2 + |fn,vh|2dΩ




−1/2

×


∫

4π

|fn,hh|2 + |fn,hv|2dΩ




−1/2

. (51b)

The denominator in each of the aforementioned equations
is the geometric mean of the pattern solid angles (47). Note that
the numerator in the third Stokes parameter beam efficiency
is maximized when the v- and h-port patterns are in phase
with one another. Cross polarization in the antenna patterns
does not degrade the beam efficiency as long as it is in phase
between the two polarizations. If it is out of phase, cross po-
larization degrades the third Stokes parameter beam efficiency.
Conversely, in-phase (out-of-phase) cross polarization re-
duces (increases) the fourth Stokes parameter beam efficiency.

A special case is to consider equal antenna patterns for the two
polarizations, i.e.,

fn,vv = fn,hh (52a)

fn,vh = fn,hv. (52b)

The polarimetric beam efficiencies reduce to

ηM,U =

∫
main lobe

∫
|fn,vv|2 + |fn,vh|2dΩ∫

4π |fn,vv|2 + |fn,vh|2dΩ
(53a)

ηM,V =

∫
main lobe

∫
|fn,vv|2 − |fn,vh|2dΩ∫

4π |fn,vv|2 + |fn,vh|2dΩ
. (53b)

Interestingly, the third Stokes parameter beam efficiency is
actually greater than ηM,v or ηM,h (unless there is no cross-
polarized pattern, in which case the beam efficiencies are
all equal). The vertical and horizontal beam efficiencies, by
definition, do not include the cross polarization pattern solid
angle. Because the third Stokes parameter, however, is detected
by an in-phase cross correlation of the signals of the two
antenna ports, the cross-polarized portions coherently interfere
to increase the detectable cross-power. Thus, the third Stokes
parameter beam efficiency includes this cross-polarized pattern
solid angle. On the other hand, the fourth Stokes parameter,
which is the difference between left- and right-hand circularly
polarized intensities, is detected with a quadrature-phase cross
correlation. In this case, the cross polarization leakage causes
a reduction in detectable cross-power and reduces the beam
efficiency. The opposite is true if fn,vh = −fn,hv .

Another important antenna property is the integrated main-
beam cross polarization. For the two polarizations, these are

χvh =
ηM,vh

ηM,v
(54a)

χhv =
ηM,hv

ηM,h
(54b)

or, when expanded out in integral form, the definitions for the
main-beam cross polarization are

χvh =

∫
main lobe

∫
|fn,vh|2dΩ∫

main lobe

∫
|fn,vv|2dΩ

(55a)

χhv =

∫
main lobe

∫
|fn,hv|2dΩ∫

main lobe

∫
|fn,hh|2dΩ

. (55b)

The analogous cross polarization terms for the third and fourth
parameters are

χUV =
ηM,UV

ηM,U
(56a)

χV U =
ηM,V U

ηM,V
(56b)
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and (likewise expanded in integral form)

χUV =

∫
main lobe

∫
−Im fn,vvf ∗

n,hh + Im fn,vhf ∗
n,hvdΩ∫

main lobe

∫
Re fn,vvf ∗

n,hh + Re fn,vhf ∗
n,hvdΩ

(57a)

χV U =

∫
main lobe

∫
Im fn,vvf ∗

n,hh + Im fn,vhf ∗
n,hvdΩ∫

main lobe

∫
Re fn,vvf ∗

n,hh − Re fn,vhf ∗
n,hvdΩ

. (57b)

Because U and V are not actual polarizations, the phrase
“cross polarization” is perhaps a misnomer. The existence of
a quadrature-phase relationship between the v- and h-polarized
patterns causes undesirable mixing of TB,U and TB,V into TA,V

and TA,U , respectively. If the patterns are equal, as in (52), then
there is no imaginary component to their products, and χUV

and χV U are identically zero. However, even if there were no
pattern cross polarizations, a phase imbalance, which is caused,
for example, by unequal feed-line lengths, causes mixing of the
third and fourth Stokes parameters. In this sense, these cross
polarization ratios of the third to the fourth Stokes parameter
are also a measure of pattern phase imbalance.

There are eight other off-diagonal elements in (49) that quan-
tify the mixing of the third and fourth parameters into the first
two, and conversely, the first and second parameters into the
third and fourth. Rather than forming cross polarization ratios,
they can be called Stokes parameter mixing ratios. Because
geophysical TB,U and TB,V are typically much smaller than
either TB,v and TB,h, the mixing of the latter two into the former
is examined. The following ratios are defined:

χUv =
ηM,Uv

ηM,U
(58a)

χUh =
ηM,Uh

ηM,U
(58b)

χV v =
ηM,V v

ηM,V
(58c)

χV h =
ηM,V h

ηM,V
. (58d)

For the case of equal antenna patterns (52), these ratios are
equal in sign and magnitude for U and opposite in sign for V

χUv = χUh =

∫
main lobe

∫
2 Re fn,vvf ∗

n,vhdΩ∫
main lobe

∫
|fn,vv|2 + |fn,vh|2dΩ

(59a)

χV v = −χV h =

∫
main lobe

∫
2 Im fn,vvf ∗

n,vhdΩ∫
main lobe

∫
|fn,vv|2 − |fn,vh|2dΩ

. (59b)

If there is in-phase cross polarization within an antenna pattern,
then there is mixing of TB,v and TB,h into TA,U . Likewise,
quadrature-phase cross polarization causes mixing into TA,V .
A key difference between the two, however, is the sign change
in χV h. Because the sign is the same for the mixing into TA,U ,
it is the sum of TB,v and TB,h that is mixed into TA,U . The

sign change causes the difference between TB,v and TB,h to be
mixed into TA,V .

These sums and differences of the first and second modified
Stokes brightness temperatures are actually the first and second
(true) Stokes brightness temperatures

TB,I =TB,v + TB,h (60a)

TB,Q =TB,v − TB,h (60b)

where the subscripts I and Q are the symbols for the first and
second Stokes parameters (in units of specific intensity) [22].
Thus, it is the total intensity TB,I that mixes into TA,U and the
polarization contrast TB,Q that mixes into TA,V , as described
by the following mixing ratios:

χUI =
1
2
(χUv + χUh) (61a)

χV Q =
1
2
(χV v − χV h) (61b)

χUQ = χV I = 0. (61c)

See the Appendix for formal details of the transformation of
Mueller matrices between modified and true Stokes vector
domains.

C. Example

During the formulation period of the Hydros mission,
patterns of a notional 6-m conical-scanning mesh reflector were
modeled to aid in the investigation of radiometer performance
and the derivation of antenna requirements. The antenna is an
offset-fed paraboloid with a single feed at the focal point and a
support boom, extending from near the feed to the center of
the reflector. The support boom obstructs the feed’s field of
view, creating an interesting sidelobe structure and a plane
of symmetry about φ = 0. The antenna Mueller matrix was
computed using simulated antenna patterns and is shown in
Fig. 2. The patterns within the matrix are displayed as k-space
images over ±12.5◦ of elevation angle and arranged in the same
fashion as the elements of a Muller matrix. Thus, copolarization
patterns lay on the diagonal and cross polarization, or Stokes
mixing patterns, on the off diagonal. The main-beam region
(2.5 times the 3-dB beamwidth of 2.5◦) is indicated by a circle
with a 6.25◦ diameter seen on the lower left-hand plot. The
2 × 2 submatrix in the upper left-hand corner contains the
copolarization and cross polarization patterns for the v- and
h-polarizations that are nonnegative. The remaining patterns,
however, can take on both positive and negative values, indi-
cated by the blue and green color scales, respectively. The latter
property arises from the cross-correlation operation required to
produce the third and fourth Stokes parameters, which often
produces negative sidelobes. This phenomenon is also common
in imaging interferometer arrays. A fortunate outcome is the
summing to zero of positive and negative lobes within the main-
beam region of several Stokes parameter mixing patterns, which
is made possible because of the feed’s location. Not all mixing
parameters sum to zero, i.e., the bottom row of the figure, most
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Fig. 2. Graphical Mueller matrix. Intensity indicates relative gain in the log scale. From white (maximum) to black, there is 60 dB of dynamic range. Blue hue:
Positive values. Green hue: Negative values. Numbers: Results of integration over the main-beam region, as indicated by the light-gray circles.

likely because the obstruction of the supporting boom perturbs
the reception of circularly polarized signals.

VI. DISCUSSION

The recently increased usage of polarimetric radiometers in
Earth remote sensing revealed the absence of a detailed deriva-
tion of Stokes antenna temperatures. In this paper, the expres-
sion for the modified Stokes vector of the antenna temperatures
has been derived by building on the previous developments. The
Stokes antenna temperature integral is remarkably similar to the
scalar version found in [24]. Indeed, it contains the essential
elements of effective aperture, normalized antenna pattern,
and incident brightness temperature distribution, albeit in the
modified Stokes vector and Mueller matrix form. To arrive
at this Stokes vector form, the coherency algebra approach
found in radio astronomy has been utilized [33] to extend the
single-port antenna formulation of Claassen and Fung [29]. Our
equation contains their key contributions of the effects of cross
polarization amplitude and phase, as well as the polarization
mismatch between the antenna pattern and the Earth’s surface.
In fact, the first and second rows of the Stokes antenna temper-

ature equation comprise their antenna temperature model for
the vertical and horizontal polarizations. The third and fourth
rows of our expression contain the key innovation of antenna
temperatures for the third and fourth Stokes parameters.

A fortunate by-product of the development was the antenna
pattern Mueller matrix, which contained the important polariza-
tion properties utilized in [29] in a form that is identical to the
Mueller matrix, describing the scattering of Stokes vectors by
the distribution of particles in VRT. Further study of this matrix
led to the new interpretations of beam efficiency and cross po-
larization for polarimetric radiometers. Specifically, we define
the third and fourth Stokes parameter beam efficiencies for a
polarimetric radiometer antenna. We found that the third Stokes
parameter beam efficiency can exceed that of either polarization
(first and second modified Stokes parameters), and when dual-
polarized antenna patterns are equal, the fourth Stokes param-
eter beam efficiency is doubly degraded by antenna pattern
cross polarization. These beam efficiencies, together with cross
polarization and other Stokes parameter mixing ratios, are com-
posed of elements from the integrated main-beam matrix. We
also show that these results are applicable to both correlation-
type and polarization-adding polarimeters and can be extended
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mII mIQ mIU mIV

mQI mQQ mQU mQV

mUI mUQ mUU mUV

mV I mV Q mV U mV V


=




1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1







mvv mvh mvU mvV

mhv mhh mhU mhV

mUv mUh mUU mUV

mV v mV h mV U mV V







1
2

1
2 0 0

1
2 − 1

2 0 0
0 0 1 0
0 0 0 1




=




1
2 (mvv+mvh+mhv+mhh) 1

2 (mvv−mvh+mhv−mhh) mvU +mhU mvV +mhV
1
2 (mvv+mvh−mhv−mhh) 1

2 (mvv−mvh−mhv+mhh) mvU−mhU mvV −mhV
1
2 (mUv+mUh) 1

2 (mUv−mUh) m33 mUV
1
2 (mV v + mV h) 1

2 (mV v−mV h) m43 mV V




(66)

TABLE I
SAMPLING OF NOTATIONS FOR STOKES PARAMETERS

IN BRIGHTNESS TEMPERATURES

to any feed polarization through the use of a basis-transforming
Mueller matrix.

The decomposition of the antenna pattern Mueller ma-
trix into an integrated main-beam matrix and an additional
sidelobe region leads to a potential polarimetric APC tech-
nique. Following the scalar technique presented in [24], the
Stokes antenna temperatures can be corrected for sidelobe and
cross polarization contamination to find a vector of effective
main-beam Stokes brightness temperatures TMB, which is
defined as

TMB = η
−1
M


TA −

∫
4π−main lobe

∫
M(k̂)R(ψ)TB(k̂)dΩ


 . (62)

This correction takes care of all the cross polarizations and
Stokes mixing in the main beam, as well as any Stokes mixing
and polarization rotation present in the sidelobe region. We
expect this correction approach, which is built upon the for-
mulation for the Stokes antenna temperatures presented here,
will be the fundamental basis of future polarimetric radiometer
antenna calibration.

APPENDIX

A number of authors have introduced different notations for
Stokes parameters of brightness temperatures. A sampling is
summarized in Table I. The first column contains the con-
ventional notation for the Stokes parameters in the specific
intensity standard in the literature. The remaining columns
give notations for the brightness temperatures that appear in
chronological order from left to right and are denoted by first
author and reference number. Note that we also included some
early works that deal only with the vertical and horizontal po-

larizations for completeness. The major differences between the
notations occurred from the authors’ concerted effort to avoid
confusion between the vertical polarized or second modified
Stokes brightness temperature and the fourth Stokes brightness
temperature. In addition, there seems to be a mixed attempt to
follow the convention in [24] to use uppercase subscripts for
radiometric temperatures.

Sometimes, it is more convenient to operate in a (true) Stokes
vector form, as opposed to a modified Stokes vector form.
The Stokes vector is related to the modified Stokes vector in
brightness temperature by [22]




TB,I

TB,Q

TB,U

TB,V


 =




TB,v + TB,h

TB,v − TB,h

TB,U

TB,V


 . (63)

This relationship can be expressed as a transformation from
modified to true Stokes vectors


TB,I

TB,Q

TB,U

TB,V


 =




1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1







TB,v

TB,h

TB,U

TB,V


 . (64)

In the reverse direction, this is




TB,v

TB,h

TB,U

TB,V


 =




1
2

1
2 0 0

1
2 − 1

2 0 0
0 0 1 0
0 0 0 1







TB,I

TB,Q

TB,U

TB,V


 . (65)

The aforementioned equation can be applied to Mueller matri-
ces as well. A Mueller matrix (for a modified Stokes vector)
is transformed to its “nonmodified” format expressed in (66),
shown at the top of the page.
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