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Polarization Rotation Correction in
Radiometry: An Error Analysis

Derek Hudson, Jeffrey R. Piepmeier, Member, IEEE, and David G. Long, Senior Member, IEEE

Abstract—Yueh proposed a method of using the third Stokes
parameter TU to correct brightness temperatures such as Tv and
Th for polarization rotation. This paper presents an extended
error analysis of the estimation of Tv , Th , and TQ ≡ Tv − Th

by Yueh’s method. In order to carry out the analysis, we first
develop a forward model of polarization rotation that accounts
for the random nature of thermal radiation, receiver noise, and
(to first order) calibration. Analytic formulas are then derived for
the bias, standard deviation (STD), and root-mean-square error
(RMSE) of estimated TQ , Tv , and Th , as functions of scene and
radiometer parameters. These formulas are validated through
independent calculation via Monte Carlo simulation. Examination
of the formulas reveals that: 1) natural TU from planetary sur-
face radiation, of the magnitude expected on Earth at L-band,
has a negligible effect on correction for polarization rotation;
2) RMSE is a function of rotation angle Ω, but the value of Ω that
minimizes RMSE is not known prior to instrument fabrication;
and 3) if residual calibration errors can be sufficiently reduced
via postlaunch calibration, then Yueh’s method reduces the error
incurred by polarization rotation to negligibility.

Index Terms—Faraday effect, microwave polarimetry,
polarization.

I. INTRODUCTION

THE EARTH’S ionosphere and magnetic field cause
Faraday rotation of the polarization of radiation emanating

from the Earth’s surface. This rotation mixes the vertical and
horizontal polarization components of brightness temperatures
Tv and Th, degrading the measurement of both. The oft-used
second Stokes parameter TQ (≡ Tv − Th) is doubly degraded.
For L-band satellite measurements, the error in TQ due to
uncorrected Faraday rotation can exceed 10 K, depending on
solar activity, incidence angle, and the angle between the look
direction and the Earth’s magnetic field [2] (Faraday rotation is
inversely proportional to the square of frequency; therefore, this
source of polarization rotation is less important above L-band).

Additional polarization rotation occurs if a sensor’s antenna
feed polarization basis is rotated with respect to the natural
polarization basis of the Earth’s surface. Such rotation may
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occur as an accidental misalignment [3] or may be deliberately
permitted in order to simplify hardware [4].

Near-future L-band spaceborne radiometers, namely, SMOS
[5] and Aquarius [6], are being designed to perform polar-
ization rotation correction (PRC) in postprocessing. A basic
method involves measuring the third Stokes parameter TU in
addition to the usual Tv and Th. The method is introduced by
Yueh in [1].

Previously developed forward models of polarization rota-
tion [1], [3], [4], [7] are deterministic and neglect the role of
receiver channel noise (although [8] includes noise in simula-
tions). In the Appendix, we develop an extended model which
takes into account the random nature of the radiation and also
accounts for receiver noise. Simple and accurate expressions
are derived for the means, variances, and covariances of the
measurements in a three-channel (Tv, Th, and TU ) radio-
meter. These are derived in the Appendix and summarized in
Section II.

In Section III, we review Yueh’s correction technique. In
Section IV, we derive the mean, variance, and root-mean-
square error (RMSE) of the resulting estimate of TQ. Similar
derivations for Tv and Th are presented in Section V. Insights
from the resulting formulas are presented in Section VI, and
conclusions are offered in Section VII.

Throughout this paper, we illustrate with case studies of
the Aquarius radiometer, whose deployment is expected in
2009. The Aquarius instrument will have three beams with
respective incidence angles of 28.7◦, 37.8◦, and 45.6◦ [6].
For measurements of ocean emissions, these angles dictate a
nominal TQ of about 20, 35, and 53 K, respectively [9]. The
Aquarius instrument also has nominal integration time τ of 6 s.
We also refer to the canceled NASA Hydros mission [10],
whose nominal τ was 0.016 s (we adjust the Hydros incidence
angle from 39.3◦ to 37.8◦ in our studies to match Aquarius).

II. SUMMARY OF FORWARD MODEL

As shown in the Appendix, the processes of receiving, de-
tecting, and calibrating the first three Stokes parameters in a
polarimetric radiometer can be summarized with the forward
model

T̂Ia =TI + ∆TRX,I + ∆Tsys,I (1)

T̂Qa = + TQ cos 2Ω + TU sin 2Ω + ∆TRX,Q + ∆Tsys,Q (2)

T̂Ua = − TQ sin 2Ω+TU cos 2Ω + ∆TRX,U + ∆Tsys,U . (3)
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The quantities on the left-hand sides are our measurements
of the first three Stokes parameters after rotation, detection, and
calibration. On the right sides, the natural Stokes parameters of
the scene TI , TQ, and TU are altered by polarization rotation
Ω [7] and perturbed by error sources, represented by quantities
with a ∆ prefix.

∆TRX,I , ∆TRX,Q, and ∆TRX,U are residual biases from the
calibration process that is performed throughout data collection.
For example, if the fourth calibration scheme described in [11]
is used, then ∆TRX,U corresponds to all but the first term on the
right side of [11, eq. (42)]. That same calibration scheme also
leads to

∆TRX,v = ∆TRX,h =
THT̂C − TCT̂H

TH − TC
(4)

where TH and TC are the true temperatures of the hot and cold
calibration sources, while T̂H and T̂C are the best available
estimates of them (the calibration sources could be noise diodes
or external targets, for example). Then, ∆TRX,I and ∆TRX,Q

are defined as the sum and difference of ∆TRX,v and ∆TRX,h,
respectively.

Using (4) gives ∆TRX,Q = 0. A more realistic description
distinguishes between the calibration sources in the v and h
channels, i.e.,

∆TRX,v =
THvT̂Cv − TCvT̂Hv

THv − TCv

∆TRX,h =
THhT̂Ch − TChT̂Hh

THh − TCh
(5)

so that ∆TRX,Q is nonzero. This distinction also complicates
the expression for ∆TRX,U .

The radiometer calibration process is such that ∆TRX,I ,
∆TRX,Q, and ∆TRX,U are slowly varying (e.g., over a period
of many minutes or more) compared with the radiometer inte-
gration time τ . Even if estimates of the calibration parameters
(e.g., T̂Cv) are obtained as often as several times per τ , we
assume that the predictable thermal environment of space al-
lows us to average those estimates extensively to yield better
estimates. Therefore, for estimating Tv , Th, and TQ measured in
a single radiometer measurement cycle or even many cycles, we
can consider ∆TRX,I , ∆TRX,Q, and ∆TRX,U to be constants. It
is also anticipated that this averaging (and other postlaunch cal-
ibration activities) will reduce ∆TRX,I , ∆TRX,Q, and ∆TRX,U

to such low magnitude that they are negligible compared to the
other error sources.

In the development of (1)–(3), we have neglected the
channel gains which are also estimated during data collection as
part of the calibration process (see [11]). Although these gains
and our uncertainties in them are relevant, we omit them in this
paper, leaving their analysis for future work.

The quantities ∆Tsys,I , ∆Tsys,Q, and ∆Tsys,U in (1)–(3)
are zero-mean Gaussian random variables which correspond to
the usual noise equivalent ∆T (NE∆T ) of radiometric mea-
surements [12, p. 365]. They fluctuate significantly from one
radiometer measurement cycle to the next. From their definition
in (67)–(69), we see that they have the same covariance matrix

as T̂sys,I , T̂sys,Q, and T̂sys,U (as well as T̂Ia, T̂Qa, and T̂Ua),
which is given in (66). In (66), N ≡ 2Bτ , where B is the sensor
bandwidth (about 20 MHz for Aquarius and Hydros).

For future reference, we find the means of our calibrated
measurements:

TIa ≡〈T̂Ia〉 = TI + ∆TRX,I

TQa ≡〈T̂Qa〉 = +TQ cos 2Ω + TU sin 2Ω + ∆TRX,Q

TUa ≡〈T̂Ua〉 = −TQ sin 2Ω + TU cos 2Ω + ∆TRX,U . (6)

III. ROTATION CORRECTION TECHNIQUE

In this section, we review PRC in the context of the forward
model summarized in Section II.

A. Estimation of TQ

Yueh’s model [1] does not include any of the ∆ terms in
(1)–(3). By noting that TU is much smaller than TQ in natural
Earth scenes, he proposes to solve (2) and (3) for TQ by also
neglecting the terms with TU . By assuming TU and all the ∆
quantities are zero, squaring both sides of (2) and (3), adding the
two results, and then solving for TQ, we obtain Yueh’s proposed
estimate

T̂Q =
√

T̂ 2
Qa + T̂ 2

Ua (7)

where we ignore the negative root since TQ is positive in
geophysical circumstances. In reality, of course, TU and all the
∆ quantities are nonzero and constitute the error sources of
the correction technique. Nevertheless, as demonstrated by the
error analysis in Section IV, this equation provides a good
estimate of TQ.

B. Estimation of Tv and Th

With T̂Q from (7) and T̂Ia from (1), we can also find T̂v and
T̂h as (T̂Ia ± T̂Q)/2. An error analysis of T̂v and T̂h is pursued
in Section V.

Yueh proposed an alternate method of estimating T̂v and
T̂h (although it is straightforward to show its equivalence to
estimating T̂v and T̂h via (T̂Ia ± T̂Q)/2). First, to estimate Ω,
we divide (3) by (2), then solve for Ω. With the error sources
(TU and all the ∆ quantities) assumed to be zero, this yields

Ω̂ =
1
2

tan−1 −T̂Ua

T̂Qa

(8)

as an estimate of the angle of polarization rotation. Then,
assuming the error sources are zero and solving (73) and (74)
for Tv and Th, respectively, yields

T̂v = T̂va + T̂Q sin2 Ω̂ (9)

T̂h = T̂ha − T̂Q sin2 Ω̂ (10)

which are the corrected forms of [1, eqs. (15) and (16)], where
T̂Q is given in (7).



3214 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 10, OCTOBER 2007

IV. ANALYSIS OF T̂Q

We now determine the probability density function (pdf),

mean, and variance of the estimate T̂Q =
√

T̂ 2
Qa + T̂ 2

Ua. We

use the mean and variance to calculate RMSE. T̂Qa and T̂Ua

are already well characterized. They are Gaussian (at least to
a very good approximation) with means given in (6) and with
variances and covariance given in (66).

A. Rotation of Variables

T̂Qa and T̂Ua are correlated, but we can rotate coordinates
such that we have uncorrelated quantities. Define

[
Ẑ

Ŵ

]
=

1√
T 2

sys,Q + T 2
sys,U

[
Tsys,Q Tsys,U

−Tsys,U Tsys,Q

] [
T̂Qa

T̂Ua

]
. (11)

This is useful because
√

Ẑ2 + Ŵ 2 =
√

T̂ 2
Qa + T̂ 2

Ua = T̂Q. If

we assume that T̂Qa and T̂Ua are jointly normal, then Ẑ and Ŵ
are also jointly normal, and it is straightforward to show that
Ẑ and Ŵ are uncorrelated and have the following means and
variances:

〈Ẑ〉 =
Tsys,QTQa + Tsys,UTUa√

T 2
sys,Q + T 2

sys,U

≡ Z (12)

〈Ŵ 〉 =
Tsys,QTUa − Tsys,UTQa√

T 2
sys,Q + T 2

sys,U

≡ W (13)

Var(Ẑ) =
T 2

sys,I + T 2
sys,Q + T 2

sys,U

N
≡ σ2

Z (14)

Var(Ŵ ) =
T 2

sys,I − T 2
sys,Q − T 2

sys,U

N
≡ σ2

W . (15)

The pdf of T̂Q is given by using Z, W , σZ , and σW in
[13, eq. (2)], which is restated here in terms of the current
problem:

fT̂Q
(T̂Q) =

T̂Q

σZσW
e
−

T̂2
Q

+2Z2

4σ2
Z e

−
T̂2

Q
+2W2

4σ2
W

·
∞∑

j=−∞
Ij

(
aT̂ 2

Q

)
I2j(dT̂Q) cos 2jψ (16)

for T̂Q > 0 and 0 otherwise, where

a ≡ σ2
Z − σ2

W

4σ2
Zσ2

W

d2 ≡ Z2

σ4
Z

+
W 2

σ4
W

tanψ ≡ Wσ2
Z

Zσ2
W

and Ij is the modified Bessel function of the first kind and
order j.

B. Simple Result by Assuming σ2
Z ≈ σ2

W

We attempted to find the first and second moments of√
Ẑ2 + Ŵ 2 analytically but failed, even though the pdf is

known. Fortunately, a small approximation leads to simple and
accurate formulas, as shown now.

T 2
sys,Q + T 2

sys,U has a worst case maximum value of about
4000 K2 for Aquarius; in more extreme cases, it might reach
10 000 K2 (this is for L-band radiometers with incidence angles
less than about 50◦). But, this is small compared to T 2

sys,I ,
which has a value of 660 000 K2 for typical Aquarius para-
meters (TRX,I = 620 K and TI = 190 K). Therefore, σ2

Z ≈
T 2

sys,I/N and σ2
W ≈ T 2

sys,I/N .
If we define σ2 ≡ T 2

sys,I/N and use σ2
Z ≈ σ2 and σ2

W ≈ σ2,

then T̂Q is the root of the sum of the squares of two independent
Gaussians with the same variance and with nonzero, unequal
means. Note that σ is the NE∆T for the total signal (first Stokes
parameter).

With this approximation, the pdf, mean, and variance of T̂Q

can be described as functions of just σ and m, where m2 ≡
Z2 + W 2 = T 2

Qa + T 2
Ua. In terms of the original parameters

m2 =T 2
Q + T 2

U + ∆T 2
RX,Q + ∆T 2

RX,U

+ 2 cos 2Ω(+TQ∆TRX,Q + TU∆TRX,U )

+ 2 sin 2Ω(−TQ∆TRX,U + TU∆TRX,Q). (17)

By either [14] or by [13, eq. (1)], the density of T̂Q is then

fT̂Q
(T̂Q)=

T̂Q

σ2
e−

T̂2
Q

+m2

2σ2 I0

(
T̂Qm

σ2

)
, T̂Q >0 (0 otherwise).

(18)
The mean and variance of T̂Q are [15, p. 72]

〈T̂Q〉 =σ

√
π

2
e−

m2

2σ2
1F1

(
3
2
, 1;

m2

2σ2

)
(19)

Var(T̂Q) = 2σ2 + m2 − 〈T̂Q〉2 (20)

where 1F1 is the confluent hypergeometric function.
Equation (19) corresponds with the first line of (3.10–12) in

[16]; the second line shows that we can rewrite 〈T̂Q〉 as

〈T̂Q〉 = σ

√
π

2 1F1

(
−1

2
, 1;− m2

2σ2

)
. (21)

A difficulty with using either (19) or (21) is that for large τ ,
σ is small, and the argument of 1F1 has very large magnitude
(e.g., 70 000 for the Aquarius θ = 28.7◦ case). Calculating the
value of 1F1 to high precision presents a huge computational
burden when its argument is so large.
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Fortunately, using (4B-9) in [16], (21) becomes

〈T̂Q〉=σ

√
π

2
e−

m2

4σ2

[(
1 +

m2

2σ2

)
I0

(
m2

4σ2

)
+

m2

2σ2
I1

(
m2

4σ2

)]
(22)

which can be evaluated quickly.
The final simplification comes by examining plots of

Monte Carlo results (see Section IV-C2). These plots suggest
that Var(T̂Q) ≈ σ2. Hypothesizing that Var(T̂Q) ≈ σ2 is cor-
rect and using this in (20) yields the simple formulas

〈T̂Q〉 ≈
√

σ2 + m2 (23)

⇒ Bias(T̂Q) ≈
√

σ2 + m2 − TQ (24)

Var(T̂Q) ≈σ2 (our hypothesis) (25)

⇒ RMSE of T̂Q =
√

Var(T̂Q) + Bias2(T̂Q)

≈
√

2σ2 + m2 + T 2
Q − 2TQ

√
σ2 + m2.

(26)

These equations are the key results of this paper.
We note that the pdf of T̂Q given in (18) can be well

approximated by a Gaussian pdf with the mean and variance
of (23) and (25). Therefore, we are justified in ignoring higher
moments hereafter and concerning ourselves with only the
mean and variance (and the RMSE derived from them).

C. Validation of (23)–(26)

In this section, we use numerical methods to validate the
derivation of (23)–(26).
1) Numerical Equivalence of (22) and (23): We can validate

the final leap used to obtain (23) by showing that (23) matches
(22). A mathematics software package finds the magnitude of
the difference between (22) and (23) to be less than 20 nK in
the Aquarius θ = 28.7◦ case and less than 60 nK in the other
Aquarius cases (these are calculated with TU = ∆TRX,Q =
0.5 K, ∆TRX,U = 0 K, and typical Aquarius values of TQ, TI ,
TRX,I , and N for −180◦ ≤ Ω ≤ 180◦).
2) Validation by Monte Carlo Simulation of Electric-Field

Model: The mean and variance of T̂Q can also be found by
Monte Carlo simulation. This can be done using (39) and (48)
directly, thus avoiding all the approximations used in deriving
(23)–(26) from (39) and (48).

The precise procedure is to generate N samples of a, b,
Ev , and Eh, which are all independent of one another except
〈EvEh〉 = TU/2. From these, N samples of x and y are formed
according to (39) and then squared and averaged to produce a
single sample each of T̂sys,Q and T̂sys,U as in (48). To simulate
the calibration process, TRX,Q is subtracted off, while ∆TRX,Q

and ∆TRX,U are added on, forming T̂Qa and T̂Ua as in (2) and
(3). These are used in (7) to form a single sample of T̂Q. This
entire procedure is repeated M times to form M independent
samples of T̂Q. The empirical mean and variance of T̂Q can

Fig. 1. (Top) Bias, (center) STD, and (bottom) RMSE of T̂Q, T̂v , and T̂h as
functions of Ω, with TI , TQ, τ , and TRX,I chosen to be typical of the Aquarius
θ = 28.7◦ beam over ocean. The values of the remaining parameters (TRX,Q,
∆TRX,I , ∆TRX,Q, and ∆TRX,U ) were chosen arbitrarily within expected
ranges.

then be calculated from these samples. This method gives no
formulas, but its results converge to the exact results as M
increases.

The Monte Carlo results match the analytic results from
(24)–(26) very well, for many values of each of the parameters.
Figs. 1–4 show some of these results. The discrepancy can
be attributed to the inherent imprecision in the Monte Carlo
method.

V. ANALYSIS OF T̂v AND T̂h

We now pursue an analysis of T̂v and T̂h, which are defined
as (T̂Ia ± T̂Q)/2. Using (1) and (23)

〈T̂v〉 ≈
1
2

[
TI + ∆TRX,I +

√
σ2 + m2

]
(27)

〈T̂h〉 ≈
1
2

[
TI + ∆TRX,I −

√
σ2 + m2

]
. (28)
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Fig. 2. Same as Fig. 1 except for the Aquarius θ = 45.6◦ beam (different
choices of TRX,Q, ∆TRX,I , ∆TRX,Q, and ∆TRX,U were also used in order
to demonstrate the variety of possible behavior in the error).

A. Variance and RMSE of T̂v and T̂h

Using (66) and (25)

Var(T̂v) =
1
4

[
Var(T̂Ia)+Var(T̂Q)+2Cov(T̂Ia, T̂Q)

]

≈ 1
4

[
2T 2

sys,I +T 2
sys,Q+T 2

sys,U

N
+2Cov(T̂Ia, T̂Q)

]
.

(29)

Similarly

Var(T̂h)≈ 1
4

[
2T 2

sys,I +T 2
sys,Q+T 2

sys,U

N
−2Cov(T̂Ia, T̂Q)

]
.

(30)

Finding Cov(T̂Ia, T̂Q) analytically appears to be intractable.
But, from (29) and (30), we see that Cov(T̂Ia, T̂Q) =
Var(T̂v) − Var(T̂h). We can therefore find Cov(T̂Ia, T̂Q) nu-
merically by subtracting the Monte Carlo estimates of Var(T̂h)
from the Monte Carlo estimates of Var(T̂v). We studied such

Fig. 3. Same as Fig. 1 except for the Hydros soil moisture sensing mission
(different choices of TRX,Q, ∆TRX,I , ∆TRX,Q, and ∆TRX,U were also
used in order to demonstrate the variety of possible behavior in the error).

numerical results and found patterns, then hypothesized the
following formula for Cov(T̂Ia, T̂Q) from those patterns:

Cov(T̂Ia, T̂Q) =
2Tsys,I

N

√
T 2

sys,Q + T 2
sys,U . (31)

Using (31) in (29) and (30)

Var(T̂v)≈
2T 2

sys,I +4Tsys,I

√
T 2

sys,Q+T 2
sys,U +T 2

sys,Q+T 2
sys,U

4N
(32)

Var(T̂h)≈
2T 2

sys,I−4Tsys,I

√
T 2

sys,Q+T 2
sys,U +T 2

sys,Q+T 2
sys,U

4N
.

(33)

These, together with (27) and (28), give

Mean-square error of T̂v

≈ 1
4

[√
σ2+m2−TQ+∆TRX,I

]2

+
2T 2

sys,I +4Tsys,I

√
T 2

sys,Q+T 2
sys,U +T 2

sys,Q+T 2
sys,U

4N
(34)
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Fig. 4. Same as Fig. 1 except with the Monte Carlo results generated using
the Gaussian approximation, thus allowing much larger M (different choices
of TRX,Q, ∆TRX,I , ∆TRX,Q, and ∆TRX,U were also used in order to
demonstrate the variety of possible behavior in the error).

Mean-square error of T̂h

≈ 1
4

[√
σ2+m2−TQ−∆TRX,I

]2

+
2T 2

sys,I−4Tsys,I

√
T 2

sys,Q+T 2
sys,U +T 2

sys,Q+T 2
sys,U

4N
.

(35)

The RMSEs of the estimated Tv and Th are the positive square
roots of these equations. They do not appear to simplify further,
although the variances can be approximated as σ2/2.

B. Plots

In Figs. 1–4, we illustrate the (top) bias, (middle) STD, and
(bottom) RMSE for the estimated TQ, Tv , and Th, as functions
of Ω. The analytic results [given using (24)–(28) and (32)–(35)]
are plotted as solid lines. The Monte Carlo results are plotted
as symbols.

Figs. 1 and 2 were computed using TI , TQ [9], TRX,I , and
τ values that are typical of the innermost and outermost of the
three Aquarius beams, respectively, while Fig. 3 uses values

Fig. 5. Same as Fig. 4 except that we have chosen ∆TRX,Q and ∆TRX,U to
be small compared to σ, which is the result anticipated from careful postlaunch
calibration. As a consequence, the dependence on Ω is weak in this figure.

that are typical of the Hydros radiometer. The particular values
of TU , TRX,Q, ∆TRX,I , and ∆TRX,Q were chosen arbitrarily
within their expected ranges. All values are given at the top
of each figure. The Monte Carlo results were generated as
previously described (Section IV-C2).

The discrepancies between the analytic and the Monte Carlo
results decrease as M increases. But, it is difficult to increase
M : generating a plot such as Fig. 1 currently requires days of
computer time. Another option is to generate the Monte Carlo
samples using the Gaussian approximation (see Section C in the
Appendix). That is, rather than generating samples of the elec-
tric field, we generate samples of T̂Ia, T̂Qa, and T̂Ua themselves
as Gaussian random variables, with the means, variances, and
covariances summarized in Section II. This method, although
not quite as exact, is many orders of magnitude faster, allowing
much larger M and more data points. Examples of the results
obtained thereby are shown in Figs. 4 and 5.

VI. INSIGHTS FROM THE EQUATIONS

With the forward model we have developed, there are five
sources of error to be considered in PRC: TU , ∆TRX,I ,
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Fig. 6. RMSE (from the analytically derived formulas) of T̂Q, T̂v , and T̂h as functions of TU , with ∆TRX,I , ∆TRX,Q, and ∆TRX,U set to zero. TI , TQ, τ ,
and TRX,I are typical of (left) the Aquarius θ = 28.7◦ beam, (center) the Aquarius θ = 45.6◦ beam, and (right) the Hydros soil moisture sensing mission.

∆TRX,Q, ∆TRX,U , and NE∆T (manifested as σ). In this
section, we study some effects of these error sources, using the
equations derived previously. We note that after PRC, Ω can be
viewed as merely a modulator of the error sources ∆TRX,Q and
∆TRX,U rather than as an error source in itself.

A. Insignificance of TU

Examining (17), we see that the first term is desired while the
rest are sources of bias. However, TQ is more than an order of
magnitude larger than the other components of (17); therefore,
we can neglect terms without TQ, resulting in

m2 ≈ T 2
Q + 2TQ(∆TRX,Q cos 2Ω − ∆TRX,U sin 2Ω). (36)

This eliminates TU from the equations, which suggests that
natural TU is not a significant error source in PRC, at least at
L-band.

We can numerically examine the significance of TU as fol-
lows. We set the unknown error sources (∆TRX,I , ∆TRX,Q,
and ∆TRX,U ) to zero but retain σ since it is known. Then, we
plot RMSE as a function of natural TU . The results are shown in
Fig. 6 for the typical parameters of Aquarius beams. The RMSE
at TU = 0 is due to NE∆T through σ. We can discern that the
error caused by natural TU is negligible compared to NE∆T
when |TU | < 1.5 K.

Natural TU is reported to have a maximum magnitude of
about 1.5 K over the oceans at intermediate and high wind
speeds, 10.7 GHz, and an incidence angle of 50◦ [17]. Extensive
measurements at L-band have not been made, but one group
reports amplitudes of less than 1 K over wind-driven ocean
[18]. These measurements, combined with Fig. 6, suggest that
natural TU is not a significant error source for the Aquarius
mission. This further suggests that the error allocation for
“other (wind)” in the Aquarius error budget [6, p. 8] can be
significantly reduced.

At the right of Fig. 6, we plot the results for typical para-
meters of a soil moisture sensing mission such as the canceled

Hydros mission. The short integration time of this conical
scanning radiometer results in NE∆T being so large that the
effects of natural TU are negligible for |TU | < 5 K.

B. Optimal Ω Value

Examining (17) shows that near Ω = 0◦, the effect of
∆TRX,Q is amplified compared to the effect of ∆TRX,U ,
because of TQ being so much larger than TU . Similarly, the
effect of ∆TRX,U is amplified near Ω = 45◦. Consequently, if
|∆TRX,Q| is significantly larger than |∆TRX,U |, then the RMSE
of T̂Q is minimum near Ω = 45◦. Likewise, if |∆TRX,Q| is
significantly smaller than |∆TRX,U |, then the RMSE of T̂Q is
minimum near Ω = 0◦ (see Figs. 1–4 for examples).

If ∆TRX,Q and ∆TRX,U have the same magnitude and sign,
then RMSE is minimum near Ω = 22.5◦. If they have the same
magnitude but opposite sign, then RMSE is minimum near Ω =
−22.5◦. But, in all these cases, if the magnitude of both is less
than σ/2, then RMSE is approximately constant with respect to
Ω (and is ≈σ for T̂Q), as shown in Fig. 5.

Because ∆TRX,Q and ∆TRX,U are unknown (at least until
instrument fabrication and initial calibration), there is no basis
for claiming a priori that RMSE is better at any one value of
Ω than at any other value. This should correct the notion that it
is best to sense the land or ocean at dawn because of low free
electron content in the atmosphere (and, hence, small Ω), which
is an assumption used in the design of the Hydros mission. We
note that there may be other good reasons for sensing at dawn,
such as the better known temperature profile of the atmosphere
and planetary surface.

C. Negligible Error Contribution of PRC

If ∆TRX,I , ∆TRX,Q, and ∆TRX,U are reduced to insignifi-
cance through postlaunch calibration, then the overall RMSE
reduces to the NE∆T that exists regardless of polarization
rotation. To see this analytically, let ∆TRX,I = ∆TRX,Q =
∆TRX,U = 0 and also let TU = 0 since we know that its effect
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is not large. Then, m2 reduces to T 2
Q, and using a binomial

expansion of (24)

Bias(T̂Q) ≈
√

σ2 + T 2
Q − TQ ≈ σ2

2TQ
(37)

⇒ RMSE of T̂Q ≈
√

σ2 +
σ4

4T 2
Q

≈ σ. (38)

The validity of these approximations is easily confirmed by
numerical examples using Aquarius and Hydros parameters.

Similar analysis shows that the RMSE of T̂v and T̂h reduces
to σ/2. Hence, error allocation for ionospheric effects can be
greatly reduced [6].

VII. CONCLUSION

We have extended the forward model of polarization rotation
to include the random nature of radiation, radiometer channel
noises, and (to first order) calibration. In particular, we have
derived the means, variances, and covariances of the first three
Stokes parameters TI , TQ, and TU (or their modified counter-
parts, Tv , Th, and TU ) as measured by radiometers in which TU

is measured as the correlation of Tv and Th.
There are several known limitations to this forward model.

First, it ignores the antenna sidelobe contributions to the appar-
ent brightness temperature, which undergo a different amount
of polarization rotation than the main beam contribution. Sec-
ond, it ignores the mixing of the scene Stokes parameters
by the antenna (i.e., the antenna cross-pol patterns). Third, it
ignores the uncertainties in channel gains which remain after
the calibration process. In this paper, we ignored these effects
for tractability and because their effects are projected to be
smaller than those effects which we have included.

Using the forward model just described, we have analyzed
the errors in using polarimetric measurements to correct for
polarization rotation as proposed in [1]. We have derived
closed-form equations for the bias, STD, and RMSE of the
estimated TQ [see (24)–(26)] and similar expressions for Tv

and Th. These equations match the numerical results obtained
by Monte Carlo simulation of our original electric-field model.
These equations are the key results of this paper since they
allow more accurate error analysis and error budgeting than has
been possible previously.

This analysis indicates several things about the five sources
of error. First, the natural third Stokes parameter (of the mag-
nitude expected at L-band for most natural Earth scenes) is an
insignificant source of error compared to NE∆T (for τ ≤ 6 s
over ocean).

Second, the dependence of RMSE on rotation angle is deter-
mined by residual errors from the calibration process ∆TRX,Q

and ∆TRX,U . Since these residuals are unknown (by defini-
tion), we cannot predict the dependence of RMSE on rotation
angle (such as whether or not Ω = 0◦ is the optimum angle).
But, if the postlaunch calibration reduces ∆TRX,Q and ∆TRX,U

to the level of NE∆T or less, then the dependence of RMSE on
Ω is weak.

Third, if ∆TRX,I , ∆TRX,Q, and ∆TRX,U are reduced to
insignificance through postlaunch calibration, then the overall
RMSE reduces to the NE∆T that exists regardless of polariza-
tion rotation. In other words, Yueh’s method reduces the error
incurred by the polarization rotation to negligibility.

APPENDIX I

In this Appendix, we derive (1)–(3). These equations com-
prise the forward model of polarization rotation which is used
in this paper.

A. Electric-Field Model

Our most basic foundation is a model of the electric fields[
x(t)
y(t)

]
=

[
cos Ω sinΩ
−sin Ω cos Ω

] [
Ev(t)
Eh(t)

]
+

[
a(t)
b(t)

]
. (39)

Ev(t) and Eh(t) are the components of the total electric field
emitted by the scene in the vertical and horizontal directions,
respectively (hereafter, our notation suppresses the time depen-
dence t of all quantities). Because the number of independent
emitters in the scene is large in spaceborne radiometry, Ev

and Eh are normally distributed, by the central limit theorem,
with zero means [19, pp. 477–478]. We assume that they are
real because we are concerned only with the first three Stokes
parameter in this paper.

Ev and Eh are rotated through an angle Ω, modeling polar-
ization rotation. We consider Ω to be constant over the period
of one radiometer measurement. Receiver noise is then added,
which is represented by the electric field amplitudes a and b.
Like Ev and Eh, we assume that a and b are normally distrib-
uted, zero mean, and normal random variables. We also assume
that they are independent of one another and of Ev and Eh.
They represent self-emission by the antenna and radiometer.
This model neglects the sidelobe contributions (as they may
undergo different amounts of rotation than the main beam
radiation) and cross coupling of the polarization components
that is caused by the antenna and radiometer nonidealities
(cross-pol patterns).

The quantities that are most commonly reported in radiome-
try are the first three modified Stokes parameters, as brightness
temperatures 

 Tv

Th

TU


 ≡


 〈E2

v〉
〈E2

h〉
2〈EvEh〉


 (40)

to which we add, for this document[
TRX,v

TRX,h

]
≡

[
〈a2〉
〈b2〉

]
. (41)

In these and subsequent definitions, we ignore a proportionality
constant which converts the product of two electric fields to
a brightness temperature. This conversion also assumes a nar-
rowband radiometer, so that the frequency spectrums of Ev(t),
Eh(t), a(t), and b(t) are flat (see [12, p. 193]).
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A quantity of high interest to users of radiometry data is
the second Stokes parameter TQ ≡ Tv − Th ≡ 〈E2

v〉 − 〈E2
h〉,

where 〈·〉 denotes the expected value (ensemble average). In
addition to the definition in (40), TU can be equivalently defined
in a manner analogous to the definition of TQ. This definition is
TU ≡ T+45 − T−45, where T+45 is the brightness temperature
of the component of the incident radiation that is linearly
polarized at 45◦ with respect to the Ev and Eh axes.

Our model assumes a radiometer architecture in which the
signals at +45◦ and −45◦ linear polarization (in the radiometer
polarization basis) are synthesized from x and y after enough
amplification of x and y (by amplifiers) that the receiver noise
added after this synthesis is negligible. Radiometers which
create the signals at +45◦ and −45◦ earlier (such as from
direct measurement of T+45 and T−45) require that additional
noise terms should be added to the additional channels. This
would add many terms to the final forward model and the error
formulas.

B. Description of Parameters

In this document, we could express our results in terms of
Tv , Th, TRX,v, and TRX,h. It is more concise, however, to use
the related quantities TI ≡ Tv + Th, TQ ≡ Tv − Th, TRX,I ≡
TRX,v + TRX,h, and TRX,Q ≡ TRX,v − TRX,h. Note that TI ,
TQ, and TU comprise the first three Stokes parameters [7] as
brightness temperatures. We also note that in the final expres-
sions for bias and variance (and, hence, RMSE), TI and TRX,I

always appear added together, never separately. Therefore, we
reduce our parameter set by using Tsys,I ≡ TI + TRX,I .

Besides TI , TQ, TU , TRX,I , and TRX,Q, other parameters are
Ω, N , ∆TRX,I , ∆TRX,Q, and ∆TRX,U (N is defined early in
Appendix I-C; ∆TRX,I , ∆TRX,Q, and ∆TRX,U are defined in
Appendix I-E). This collection of ten parameters can be used
to completely describe the forward problem, and we, therefore,
refer to them as the “original parameters.” Other quantities are
defined for convenience but can be expressed in terms of these
original ten.

The symbols x and y represent the electric fields to be
detected by the radiometer. By the construction of (39), they
are also zero-mean normal random variables. We denote their
expected squared values, as brightness temperatures, with

 Tsys,v

Tsys,h

Tsys,U


 ≡


 〈x2〉

〈y2〉
2〈xy〉


 . (42)

Using (40), (41), and the facts that a and b are independent of
all other quantities and are zero mean, we find

Tsys,v =
〈
(Ev cos Ω + Eh sinΩ + a)2

〉
=Tv cos2 Ω + Th sin2 Ω +

TU

2
sin 2Ω + TRX,v. (43)

By a similar process

Tsys,h =Th cos2 Ω + Tv sin2 Ω − TU

2
sin 2Ω + TRX,h (44)

Tsys,U = −TQ sin 2Ω + TU cos 2Ω. (45)

C. Measured Temperatures, T̂sys,v , T̂sys,h and T̂sys,U

A conventional two-channel radiometer measures Tsys,v and
Tsys,h by a time average

T̂sys,v ≡ 1
τ

τ∫
0

x2dt, T̂sys,h ≡ 1
τ

τ∫
0

y2dt. (46)

We use hats to denote measured or estimated quantities, which
are random variables, as opposed to the unhatted quantities
which represent the desired true quantities, such as the ensem-
ble average of a random variable.

A three-channel polarimetric radiometer also measures

T̂sys,U ≡ 2
τ

τ∫
0

xy dt. (47)

As shown in [19, pp. 487–488], T̂sys,v , T̂sys,h, and T̂sys,U can
be rewritten as sums of independent samples

T̂sys,v =
1
N

N∑
i=1

x2
i

T̂sys,h =
1
N

N∑
i=1

y2
i

T̂sys,U =
2
N

N∑
i=1

xiyi (48)

where N = 2Bτ , B is the sensor bandwidth, and τ is the
integration time.

We next proceed to find the distributions of T̂sys,v, T̂sys,h,
and T̂sys,U . For large N (for Aquarius, N ≈ 5e8), T̂sys,v is so
nearly Gaussian, by the central limit theorem, that we assume
that it is Gaussian. Similar results apply for T̂sys,h and T̂sys,U .
Therefore, they can be very well characterized by only their
means, variances, and covariances, which we derive next.
1) Means of T̂sys,v , T̂sys,h, and T̂sys,U : The ensemble aver-

age (expected value) of T̂sys,v is

〈T̂sys,v〉 =

〈
1
N

N∑
i=1

x2
i

〉
=

1
N

N∑
i=1

〈x2
i 〉 = Tsys,v. (49)

Similarly, 〈T̂sys,h〉 = Tsys,h and 〈T̂sys,U 〉 = Tsys,U .
2) Var(T̂sys,v) and Var(T̂sys,h):

Var(T̂sys,v) =

〈(
1
N

N∑
i=1

x2
i

)
 1

N

N∑
j=1

x2
j


〉

− T 2
sys,v

=

〈
1

N2

N∑
i=1

N∑
j=1

x2
i x

2
j

〉
− T 2

sys,v (50)
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which we separate into terms for which i 
= j and for
which i = j

=
1

N2

N∑
i=1

N∑
j=1( 
=i)

〈x2
i x

2
j 〉 +

1
N2

N∑
i=1

〈x4
i 〉 − T 2

sys,v. (51)

Using the independence of samples i and j and the known
fourth moment of zero-mean normal random variables

=
1

N2

N∑
i=1

〈x2
i 〉

N∑
j=1( 
=i)

〈x2
j 〉 +

1
N2

N∑
i=1

3〈x2
i 〉2 − T 2

sys,v. (52)

Then, using (42)

Var(T̂sys,v) =
2
N

T 2
sys,v. (53)

By a similar process

Var(T̂sys,h) =
2
N

T 2
sys,h. (54)

3) Var(T̂sys,U ): By a process similar to (50)–(53)

Var(T̂sys,U ) =
−T 2

sys,U

N
+

4
N

〈x2y2〉. (55)

Consider 〈x2y2〉 alone. Using the definitions of x and y in (39),
it can be expanded to several dozen terms. The independence
of a and b from Ev and Eh means that many terms can be
factored as 〈a〉, 〈b2〉, and so on. Then, using (40), (41), the fact
that a and b are zero mean, and the known fourth moment of
zero-mean normal random variables, many terms drop out or
simplify, leaving

〈x2y2〉 =
1
2
〈
EvE

3
h − E3

vEh

〉
sin 4Ω +

1
2
TITRX,I

+
(

3
4
〈
E2

vE2
h

〉
− 3

8
(
T 2

v + T 2
h

))
cos 4Ω

− 1
2
TRX,Q(TU sin 2Ω + TQ cos 2Ω) +

3
8
T 2

v

+
1
4
〈
E2

vE2
h

〉
+

3
8
T 2

h + TRX,vTRX,h. (56)

Ev and Eh are marginally zero-mean Gaussians, with variances
of Tv and Th and a covariance of TU/2. Assuming that they are
jointly Gaussian, their joint pdf is completely specified. We can
therefore determine 〈E3

vEh〉, 〈EvE
3
h〉, and 〈E2

vE2
h〉 by direct

integration

〈
E3

vEh

〉
=

1
π
√

4TvTh − T 2
U

·
∞∫

−∞

∞∫
−∞

E3
vEhe

−2ThE2
v+2TU EhEv−2TvE2

h
4TvTh−T2

U dEvdEh. (57)

Using a table of integrals [20], the known second and fourth
moments of zero-mean Gaussians, and much algebra, this
reduces to

〈
E3

vEh

〉
=

3
2
TUTv. (58)

By similar processes, we find

〈
EvE

3
h

〉
=

3
2
TUTh

〈
E2

vE2
h

〉
=TvTh +

1
2
T 2

U . (59)

By using these results in (56) and then using (56) in (55), we
obtain, after much algebraic manipulation

Var(T̂sys,U ) =
1
N

[
T 2

sys,I − T 2
sys,Q + T 2

sys,U

]
(60)

where Tsys,I ≡ Tsys,v + Tsys,h = TI + TRX,I and Tsys,Q ≡
Tsys,v − Tsys,h.
4) Covariances of T̂sys,v , T̂sys,h, and T̂sys,U : We wish to

determine the covariances that exist between T̂sys,v , T̂sys,h, and
T̂sys,U . Similar to the derivation of (60), it can be shown that

Cov(T̂sys,v, T̂sys,h) =
T 2

sys,U

2N
(61)

Cov(T̂sys,v, T̂sys,U ) =
2Tsys,vTsys,U

N
(62)

Cov(T̂sys,h, T̂sys,U ) =
2Tsys,hTsys,U

N
. (63)

D. Definition and Characterization of T̂sys,I and T̂sys,Q

It is more convenient to work with the sum and difference
of T̂sys,v and T̂sys,h than with these quantities themselves.
Therefore, we define T̂sys,I ≡ T̂sys,v + T̂sys,h, and T̂sys,Q ≡
T̂sys,v − T̂sys,h. Using the formulas given previously, it is
straightforward to show that

〈T̂sys,I〉 =TI + TRX,I = Tsys,I (64)

〈T̂sys,Q〉 =TQ cos 2Ω + TU sin 2Ω + TRX,Q = Tsys,Q (65)

and that the variances and covariances of T̂sys,I , T̂sys,Q, and
T̂sys,U can be summarized with the symmetric covariance ma-
trix given in (66), shown at the top of the next page.

E. Forward Model of Rotated and Calibrated
Brightness Temperatures

As discussed at the beginning of Appendix I-C, the measured
temperatures are normal random variables with the means and
variances that were just found. It is convenient to break them
up into the sum of their means and zero-mean normal random
variables 

 T̂sys,v

T̂sys,h

T̂sys,U


 ≡


 Tsys,v + ∆Tsys,v

Tsys,h + ∆Tsys,h

Tsys,U + ∆Tsys,U


 (67)



3222 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 10, OCTOBER 2007


Var(T̂sys,I) Cov(T̂sys,I , T̂sys,Q) Cov(T̂sys,I , T̂sys,U )

Var(T̂sys,Q) Cov(T̂sys,Q, T̂sys,U )
Var(T̂sys,U )




=
1
N

·


T 2

sys,I + T 2
sys,Q + T 2

sys,U 2Tsys,ITsys,Q 2Tsys,ITsys,U

T 2
sys,I + T 2

sys,Q − T 2
sys,U 2Tsys,QTsys,U

T 2
sys,I − T 2

sys,Q + T 2
sys,U


 (66)

and similarly for the quantities defined for convenience

T̂sys,I ≡Tsys,I + ∆Tsys,I (68)

T̂sys,Q ≡Tsys,Q + ∆Tsys,Q (69)

where ∆Tsys,I ≡ ∆Tsys,v + ∆Tsys,h and ∆Tsys,Q ≡
∆Tsys,v − ∆Tsys,h.

Expanding these out in terms of the original parameters,
we have

T̂sys,v =Tv − TQ sin2 Ω +
TU

2
sin 2Ω + TRX,v + ∆Tsys,v

T̂sys,h =Th + TQ sin2 Ω − TU

2
sin 2Ω + TRX,h + ∆Tsys,h

T̂sys,U = −TQ sin 2Ω + TU cos 2Ω + ∆Tsys,U (70)

T̂sys,I =TI + TRX,I + ∆Tsys,I (71)

T̂sys,Q =TQ cos 2Ω + TU sin 2Ω + TRX,Q + ∆Tsys,Q. (72)

Now, note that TRX,v and TRX,h (and, hence, also their sum
and difference TRX,I and TRX,Q) are operationally estimated
and subtracted off as part of the radiometer data calibration.
Imperfection in this correction leaves residuals which we call
∆TRX,v and ∆TRX,h. It is convenient to also define ∆TRX,I ≡
∆TRX,v + ∆TRX,h and ∆TRX,Q ≡ ∆TRX,v − ∆TRX,h. With
TRX,v , TRX,h, TRX,I and TRX,Q subtracted off and leaving
only these residuals, we finally have a forward model for the
outputs of the rotation, measurement, and calibration processes,
which become the inputs to the PRC process of [1]. Using a
notation similar to [1] for these inputs, where the subscript “a”
can be interpreted as referring to temperatures “after” rotation,
measurement, and calibration,

T̂va =Tv − TQ sin2 Ω +
TU

2
sin 2Ω + ∆TRX,v + ∆Tsys,v

(73)

T̂ha =Th + TQ sin2 Ω − TU

2
sin 2Ω + ∆TRX,h + ∆Tsys,h

(74)

T̂ ′
Ua = −TQ sin 2Ω + TU cos 2Ω + ∆Tsys,U . (75)

As explained in Section II, the measurement and calibration
process also add a residual bias ∆TRX,U to this last equation,
as included in (3).

Equations (73) and (74) are the generalizations of
[1, eqs. (12) and (13)]. For convenience, we use the sum and
difference of (73) and (74), as given in (1) and (2), respectively.
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