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Sea Ice Mapping Method for SeaWinds
Hyrum S. Anderson, Student Member, IEEE, and David G. Long, Senior Member, IEEE

Abstract—A sea ice mapping algorithm for SeaWinds is devel-
oped that incorporates statistical and spatial a priori information
in a modified maximum a posteriori (MAP) framework. Spatial
a priori data are incorporated in the loss terms of a Bayes risk
formulation. Conditional distributions and priors for sea ice and
ocean statistics are represented as empirical histograms that
are forced to conform to a set of expected histograms via prin-
cipal component filtering. Tuning parameters for the algorithm
allow adjustments in the algorithm’s performance. Results of
the algorithm exhibit high correlation with the Remund–Long
sea ice mapping algorithm for SeaWinds and the Special Sensor
Microwave/Imager National Aeronautics and Space Administra-
tion Team 30% ice edge, and are verified with RADARSAT-1
ScanSAR imagery. The resulting sea ice maps exhibit high edge
detail, preserve polynyas and ice bodies disjoint from the primary
ice sheet, and thus are suitable for use with wind retrieval and
sea ice studies. Principles employed in the algorithm may be of
interest in other classification studies.

Index Terms—Bayes method, maximum a posteriori (MAP),
principal components, QuikSCAT, scatterometer, sea ice extent,
SeaWinds.

I. INTRODUCTION

THE polar sea ice regime is an extremely dynamic environ-
ment that plays a crucial role in many geophysical pro-

cesses. Sea ice covers from 15 to 23 million km of the earth’s
surface, fluctuating in response to seasonal climate conditions.
Sea ice in the Northern Hemisphere doubles in area from fall to
spring, extending into the mid-latitudes. The total sea ice area in
the Southern Hemisphere is nearly four times greater in the aus-
tral spring than in the austral fall. Polar sea ice significantly in-
creases the surface albedo in these areas and is a key factor in the
earth’s global radiation budget. In addition, polar sea ice is an
excellent thermal insulator and physical barrier to the exchange
of gases between the ocean and atmosphere. Atmospheric heat
exchange over sea ice is up to two orders of magnitude less than
exchange over open ocean.

Microwave sensors provide an excellent solution for remotely
monitoring polar sea ice. They offer several advantages over vis-
ible or infrared alternatives. Microwaves are much less sensi-
tive to atmospheric attenuation and distortion. This feature is
particularly attractive in the polar regions where frequent and
extensive cloud cover forms an opaque optical barrier in the at-
mosphere. In addition, microwave sensors do not require sun-
light for illumination so that even during the sunless polar win-
ters, data may be collected. The application of active microwave
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sensors in particular to monitoring the cryosphere has provided
over 25 years of polar sea ice data, with each new instrument
providing increasingly higher temporal and spatial resolution.
Several studies have verified the utility of microwave scatterom-
eter data in polar sea ice detection and classification [1]–[4].

The Remund–Long (RL) sea ice extent algorithm for Sea-
Winds [3]—an adaptation of an earlier version for the National
Aeronautics and Space Administration (NASA) Scatterometer
(NSCAT) [4]—incorporates an iterative maximum likelihood
discrimination scheme to statistically segment sea ice and
ocean. Statistics for multivariate microwave signatures of sea
ice are estimated from a nearest neighbor classification. Max-
imum-likelihood (ML) discrimination is iteratively applied to
segment ice and ocean populations statistically. This results in
an initial sea ice estimate that generally contains residual noise
caused by wind-roughend ocean surfaces or other microwave
signature anomalies. The RL algorithm filters these artifacts
through a sequence of binary processing operations and sea
ice growth/retreat constraints using sea ice extent information
from a previous day.

The RL sea ice extent algorithm for SeaWinds has been suc-
cessfully applied to enhanced resolution scatterometer data for
both science data and near real-time (NRT) products. It is cur-
rently in operational use with NRT data by the National Oceanic
and Atmospheric Administration for polar sea ice mapping and
by the SeaWinds project for wind retrieval. The algorithm ap-
plied to the several years of enhanced-resolution SeaWinds data
now available shows that the binary processing stage of the RL
algorithm corrects the majority of the residual errors in the ini-
tial classification. However, the binary processing phase of the
algorithm reduces the detail of the ice map via filtering and dis-
allows sections of sea ice that are disjoint from the main ice
sheet.

This paper presents a modified Bayes detection approach to
segment polar sea ice and ocean using imagery derived from
the SeaWinds instrument. The proposed algorithm has its roots
in the RL sea ice extent algorithm for SeaWinds, using a mul-
tivariate statistical segmentation approach with the same dis-
crimination parameters as the RL algorithm. However, the al-
gorithm differs from the RL approach in several areas. First,
statistical a priori estimates of sea ice and ocean are incorpo-
rated. Second, spatial a priori information is applied in the ini-
tial classification phase, as opposed to a postprocessing phase
(growth/retreat constraints of the RL algorithm). Further, the RL
algorithm implicitly assumes that the discrimination parameters
are jointly Gaussian, whereas the proposed algorithm incorpo-
rates a data-driven empirical model that is constrained by a set
of previously observed distributions. While specifically applied
to SeaWinds data, the histogram modeling technique may be in-
teresting for other sensors or classification studies.

The SeaWinds instrument and data products are discussed in
Section II. The modified Bayes method for segmenting sea ice
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and ocean is developed in Section III with results in Section IV.
A brief conclusion follows.

II. BACKGROUND

This section provides an introduction to the SeaWinds instru-
ment. Data received from the SeaWinds instrument are gridded
using the scatterometer image reconstruction (SIR) algorithm,
which is also described here.

A. SeaWinds Instrument

The first SeaWinds instrument was launched aboard
QuikSCAT (QSCAT) in June 1999 to fill the Ku-band data gap
left by the failure of the NASA Scatterometer (NSCAT). In
December 2002, a second SeaWinds instrument aboard the Ad-
vanced Earth Observing Satellite II (ADEOS-II) was launched,
though ADEOS-II failed after only ten months of operation.

The SeaWinds instrument is a 13.4-GHz dual-polarization
scanning pencil beam scatterometer with two spot beams which
are conically scanned [5] so that the 25 37 km footprint of
each antenna’s field-of-view sweeps out wide, overlapping
swaths. The outer beam (54 incidence) measures the vertically
polarized (v-pol) normalized radar cross-section , while the
inner beam (46 incidence) measures horizonatally polarized
(h-pol) . As the platform traverses, the outer beam forms an
1800-km swath and the inner beam forms a 1400-km swath,
each with no nadir gap. Consequently, the SeaWinds instrument
covers nearly 90% of the earth’s surface each day and all of the
polar regions, excepting a gap directly over the poles due to the
orbit geometry. This extent of spatial coverage and temporal
resolution is ideal for observing polar sea ice, where floes can
move as many as 25 km in a single day.

The SeaWinds instrument operates in two spatial resolution
modes [6]. The intrinsic elliptical measurement cells, called
“eggs” have a nominal resolution of 25 km in azimuth by 37 km
in the range direction. The ice mapping method may be adapted
for the higher resolution mode. In this mode, the “egg” cells are
resolved into “slices” through range and Doppler processing.
Egg data are used in this work, while the higher resolution slice
data are left for future research.

B. SIR Image Generation

In this paper, images are generated with the aid of the
scatterometer image reconstruction (SIR) algorithm [7], [8],
though other algorithms could be employed. SIR is an iterative
technique that uses samples from multiple satellite swaths
to enhance the intrinsic resolution of the sensor, in effect,
trading temporal resolution for spatial resolution. For polar
regions, swaths over a 24-h imaging interval are used for image
reconstruction. SeaWinds egg imagery gridded using the SIR
algorithm is enhanced to 4.45 km pixel resolution, with an
effective resolution of 8–10 km.1

The SIR algorithm produces several image products derived
from the SeaWinds instrument. Of interest in this study are ,

, , and . and are the enhanced resolution im-
ages for v-pol and h-pol, respectively. Each pixel represents an

1SIR science data products for both egg and slice measurements are available
at the Scatterometer Climate Pathfinder website http://www.scp.byu.edu.

“average” measurement over the 24-h interval from mul-
tiple swaths and from multiple looks in the same swath (i.e.,
azimuthal modulation contributes to the average). and
are v-pol and h-pol standard deviation estimates of these same
measurements.

The imagery exhibits good statistical contrast between sea
ice and ocean. Rough surface scattering and volume scattering
in sea ice contribute to an overall higher backscatter over sea
ice than over the ocean, for which surface scattering dominates.
The imagery also exhibits contrast because measurements
of the ocean show high temporal variability between successive
satellite swaths and are affected by azimuth modulation from
ocean waves. These effects are relatively small over sea ice,
which exhibits lower diurnal variations and greater isotropy.

Derived from the image products is the quasi-copolariza-
tion ratio (PR), which is defined to be the ratio (difference
in log-space) of and , which are collected at different
incidence angles. The quasi PR couples two microwave depen-
dencies: incidence angle dependence (h-pol and v-pol differ by
8 ), and polarization dependence. Measurements of from
sea ice backscatter show smaller incidence angle dependence
than ocean due to rough surface and volume scattering. In
addition, measurements of ocean exhibit a v-pol bias, unlike

measurements of sea ice. These microwave dependencies
contribute to make PR a good discriminant between sea ice and
ocean. PR is high for ocean and low for sea ice and has been
used in other sea ice extent algorithms (e.g., [9]).

III. SEA ICE MAPPING ALGORITHM

Four image products—PR (derived), , , and —are
used in concert as discrimination parameters to detect sea ice.
Since it is helpful to incorporate a priori information in an esti-
mate of polar sea ice extent, the algorithm is developed within
the framework of Bayes detection, where a decision rule
selects sea ice or ocean based on an observation , and de-
pending on the Bayes risk associated with that decision

if
otherwise.

(1)

The algorithm is designed for pixel-based classification, in
which observations PR for each pixel at posi-
tion and time (in days) are used to determine the Bayes
risk. Bayes risk is related to the probability that a hypoth-
esis (the pixel belongs to class ) is correct given the ob-
servation . The decision rule selects the hypothesis ( for
sea ice and for ocean) that results in a minimum expected
value of Bayes risk

(2)

where is an arbitrarily assigned loss for selecting ,
given that (the pixel belongs to class ) is correct. For
MAP criterion, is zero for and unity for . We
will relax the latter constraint and require only
for . In practice, it is difficult and sometimes impos-
sible to calculate the probability in (2) for every pixel. In image
processing, a common practice is to treat the pixel statistics as
spatially uniform, i.e., a pixel’s statistical behavior can be ap-
proximated by the statistics of all pixels in the image. With this
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Fig. 1. Antarctic (left) ocean loss map L , (middle) ice loss L map, (right) default decision rule showing the region of ignorance around the ice edge. In each
case, dark shades represent low values, while light shades represent high values. Outlines are added for clarity. The algorithm may be applied to both the Arctic
and Antarctic regions.

simplification, but retaining the general form for the loss, (2) re-
duces to

(3)

In this form, inaccuracy introduced by neglecting spatial depen-
dence in the may be accounted for by careful selection
of .

Equation (3), written in terms of the posteriori probability,
may be expressed in terms of the a priori probability using
Bayes rule. To facilitate a binary decision (sea ice or ocean)
using a likelihood ratio test, Bayes risk is expressed in terms
of a conditional distribution [10]. This results in an effective de-
cision rule for an observation

if

otherwise.
(4)

In this formulation, selects 1 if sea ice is more likely, and 0
otherwise. The decision threshold is adjusted by the priors and
the costs associated with the decision. Rather than selecting a
functional form for , the conditional distributions are
approximated using histograms, , to allow for arbitrary
distributions for sea ice and ocean. Equation (4) becomes

if
otherwise.

(5)

Note that the prior probabilities are reflected in the relative his-
togram integrals.

The Bayes detection formulation in (5) allows for a simple
pixel-based test of ensemble sea ice and ocean histograms [four-
dimensional (4-D)], where the loss terms essentially shift the
threshold of the decision. The choice to assume spatial unifor-
mity for the probability, but not for the loss terms in (2), is some-
what cavalier but will be justified in Sections III-A to III-D.

A. Loss Maps

The value assigned to can be arbitrarily chosen. It is in-
tended to quantify the consequence of a detection, either a cor-
rect or a incorrect one. Here, it is used to reflect the a priori
belief that the hypothesis is correct. The relative values

of the loss terms in the decision rule of (5) shift the decision
threshold by scaling the histograms. Using as a measure
of prior belief, we may relate it to the probability that the ob-
served pixel on day belongs to class , given that it belonged
to class the previous day; in effect

(6)

where a low value of probability is associated to any change
in the map and a high value of probability to unchanged pixels.
Expressed this way, the loss term functions to constrain the prior
probabilities that are considered to be dependent on
the classification of a pixel the day before.

We implement as a lookup table that retrieves a loss
value for pixel location (for convenience, the values are
restricted to the range ). For sea ice mapping, we set
based on sea ice extent maps from the previous day. Since the
ice edge may move several kilometers in a single day and the
sea ice extent map from the previous day may over- or under-
represent the true sea ice edge, we allow for sea ice growth and
imperfect sea ice maps. Thus, the ocean loss factor is
generated using a dilated version of the previous day’s sea ice
extent map. Likewise, the sea ice loss factor is generated
using a dilated version of its complement (an ocean extent map).
The sea ice loss lookup table is filled with high values (near
unity) where yesterday’s dilated ocean mask predicts ocean. It
contains low values (near zero) where yesterday’s dilated ocean
mask predicts sea ice. Conversely, the ocean loss lookup table
is filled with high values where yesterday’s dilated ice mask
predicts sea ice, and low values where yesterday’s dilated ice
mask predicts ocean.

The ratio of the loss maps adjusts the threshold
for the MAP-like decision rule in (5). This ratio determines the
classification result if the bin heights of and
for an observed are equal. The dilation procedures used in
forming the loss maps create a region where equal loss is as-
signed to both sea ice and ocean. In this region, where

(i.e., spatial a priori information is inconclusive), the un-
weighted ratio of the sea ice and ocean histograms determines
the classification. Sample loss maps and the corresponding de-
fault decision rule are shown in Fig. 1.
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Fig. 2. First 20 PC scores of (left) Arctic ocean histograms and (right) Arctic sea ice histograms, illustrating the energy compaction in the top few PCs.

B. Histogram Parameterization

The discrimination parameters PR exhibit nearly
Gaussian distributions throughout much of the year. However,
anomalous weather conditions and fluctuating sea ice properties
during the melt season cause sea ice and ocean statistics to de-
viate from Gaussian. The dynamic nature of the distributions of
the discrimination parameters over sea ice—which are some-
times Gaussian, sometimes bimodal, and sometimes sugges-
tive of Chi-squared distributions—present a challenge in mul-
tivariate statistical modeling. General statistical models which
can account for higher order cumulants, such as the generalized
lambda family of distributions [11], can be computationally in-
tensive, and mathematically awkward to implement, especially
in the multivariate case for which only an approximation may
be constructed from contingency tables [12], [13].

The need for versatility elicits the use of an empirical model.
Empirical models are potentially adaptive, but have several dis-
advantages: they are sensitive to noise, have less analytical value
than a theoretical model, and have large memory requirements
for finely binned data (for an -dimensional histogram of
bins for each dimension, the storage requirement is memory
units).

Equation (5) requires two individual 4-D histograms of the
discrimination parameter imagery—one for sea ice and one for
ocean. For each histogram, it is desirable to reduce the storage
requirement and misclassification induced bin height error
(noise). This is achieved by parameterizing each histogram by
a basis set of expected histograms.

The basis sets for sea ice and ocean histograms are generated
by treating the histograms as images, and extracting the prin-
cipal components (PCs) from a time-series ensemble of sea ice
or ocean histograms via singular value decomposition (SVD).
The resulting set of PCs span the space of observed sea ice or
ocean histograms. The PCs allow the approximation of any sea
ice or ocean distribution from a similar time period using only
a few parameters. The parameters are the scaling coefficients
of each PC vector which define the optimal (in a least-squares
sense) reconstruction of the histogram using a linear combi-
nation of PC vectors. These are retrieved by mapping the his-
togram onto the truncated basis set via an inner product.

Fig. 3. First three PCs (ordered left to right) of Arctic ocean (top) and sea ice
(bottom) histograms for the year 2001. Two-dimensional representations (PR
versus A ) are shown.

Sea ice extent maps generated by the RL algorithm are used
to train the algorithm. Four-dimensional histograms for sea ice
and ocean are generated from this data for each day of the year
2001. The PCs of the time-series ensemble of histograms are
found using the SVD, as mentioned above. The PC scores (the
eigenvalues of the histogram ensemble’s correlation matrix nor-
malized by the largest eigenvalue) are shown for the Arctic sea
ice and ocean in Fig. 2.

The first PC for sea ice and ocean represents the “average”
component in the time-series ensembles of histograms. For this
reason, the first PC in both cases dominates. It is also evident that
the Arctic sea ice PC scores fall off more rapidly than the ocean
PC scores. This is due to high variations in ocean histograms
due to ocean storms.

Slices of the first three PCs for Arctic ocean and sea ice are
shown in Fig. 3. The first PC for ocean histograms (the “av-
erage” histogram) is Gaussian shaped, and the first PC for Arctic
sea ice histograms is bimodal.

In operation, histograms are generated for sea ice and ocean
via sea ice extent maps that may contain misclassification errors.
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Fig. 4. Histogram parameterization using (top row) Arctic ocean histogram
PCs and (bottom row) Arctic sea ice histograms. The original histogram is
shown in the left column, and the parameterized histogram in the right column.
The ocean histogram, which includes some sea ice contamination (contours
in the lower right of the subfigure), is filtered in the parameterizing process.
The sea ice histogram is not significantly modified as a result of parameterizing
the sea ice histogram. Contour labels are pixel counts.

The resulting sea ice histograms contain ocean contamination,
and the ocean histograms contain sea ice contamination. These
“noisy” histograms are parameterized using a truncated set of
the sea ice/ocean histogram PCs. The histogram reconstructed
from PCs conforms to the ensemble of sea ice and ocean his-
tograms used to generate the basis set, i.e., the truncated PC
basis set functions as a filter to eliminate random errors in the
“noisy” histogram’s shape (we note, however, that systematic
errors may not be filtered). An example of this noise-reduction
property is shown in Fig. 4. Histograms which already conform
to the set of expected shapes do not experience significant dis-
tortion through the reconstruction process (see Fig. 4). It is im-
portant to note that the parameterized histogram is only an es-
timate of the true histogram. The estimate may be improved by
noting that bin heights for each bin must be greater than zero.
Hence, negative bin heights are set equal to zero. Also, pop-
ulation size is generally not maintained in the parameterizing
process. If the relative population sizes are known, the parame-
terized histograms may be normalized to reflect this knowledge.
These modifications to the parameterized histograms have been
implemented in Fig. 4.

In summary, histograms are selected to model dynamic sea
ice and ocean statistics. Since histograms are sensitive to con-
tamination caused by misclassifications, the histograms are pa-
rameterized by the PCs of sea ice and ocean histograms of previ-
ously classified images that are computed offline in an algorithm
training step. The histogram parameterization filters out shape
distortions caused by random misclassification in the histogram.
Using this model for both the Arctic and the Antarctic, the dy-
namic nature of polar sea ice and ocean distributions are cap-

tured in a way that rejects contamination, but maintains shape
diversity.

C. Iterative Bayes Detection Algorithm

The Bayes detection approach is used iteratively to produce
polar sea ice extent maps from SeaWinds data. First, an ini-
tial estimate of sea ice extent is produced using histograms for
sea ice and ocean from the previous day. Loss maps and

are generated from ice extent maps from the previous day.
Here, it is assumed that the statistics and spatial distribution for
sea ice and ocean do not change significantly in a single day, ex-
cept for sea ice fluctuations around the ice edge (where we set

equal to ).
The initial estimate may contain classification errors. To re-

duce the number of misclassified pixels, the initial classification
is used to generate statistical and spatial information for another
iteration of the classifier. This process is repeated until conver-
gence is reached.

We note that the initial classification is on a individual pixel
basis with each pixel independently classified. To improve the
spatial homogeneity of the sea ice classification a simple method
is implemented in the iteration process. It is based on the idea
that if the observation has been flagged as sea ice, then the
neighbors of are likely to also be sea ice. Hence, pixels in
the neighborhood of are considered candidates for classifica-
tion as sea ice by including their values when computing the
prefiltered sea ice histogram. This step is implemented prior to
each iteration by dilating the classification map used to generate
statistical information.

This spatial inclusion step aids in the method’s ability to
recover from poor statistical a priori information. In the case
where initial sea ice distributions are too restrictive to include
all of the true ice pixels, spatial inclusion helps to “broaden” the
sea ice distribution in subsequent iterations. In the case where
initial sea ice distributions are too broad, spatial inclusion po-
tentially leads to even larger misclassified regions. Fortunately,
spatial inclusion can be checked by proper selection of the loss
maps and .

Since initial loss maps and are constructed to
allow for sea ice growth/retreat, the region of ignorance around
the sea ice edge may be large. As noted previously, the loss maps
do not influence the decision rule within this region. This can
result in misclassifications if the discrimination parameters ex-
hibit microwave signature anomalies within the region. To in-
crease the efficacy of the loss maps as the algorithm nears con-
vergence, the loss maps are updated at each iteration to reflect
the new sea ice location from the most recent classification. The
loss maps are also updated at each iteration so that the region
of ignorance contracts (using progressively fewer dilations), ac-
complished through simulated annealing,

(7)

where is a forgetting factor, is the adaptive loss map,
and is a loss map created from the classification results
of each iteration. To force the region of ignorance to contract,
each new loss map in the iteration sequence is created
using fewer dilations of the sea ice classification map than the
loss map of the previous iteration. The initial loss map is created
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Fig. 5. Flowchart of the sea ice mapping algorithm when used with a time
series of data. Discrimination parameter images are converted to histogram bin
numbers in a prebinning step.

Fig. 6. Sample output of the sea ice mapping algorithm. Prior data were
obtained via an ice extent map produced by the RL algorithm. Shown is the ice
extent map for DOY 206, 2001.

from a dilated estimate of sea ice extent from a previous day, as
described previously.

A diagram detailing the flow of the algorithm is shown in
Fig. 5. A sample sea ice extent map for the Arctic region is
shown in Fig. 6.

D. Tuning Parameters

The algorithm flowchart presented in Fig. 5 provides a high-
level view of the sea ice mapping process. Unlike the RL al-
gorithm, the new method provides several tuning parameters
which may be set to adjust the performance of the algorithm

TABLE I
CONFUSION MATRIX OF THE TOTAL SEA ICE AND OCEAN PIXEL COUNTS

FOR THE ARCTIC REGION VERSUS THE RL ALGORITHM FOR 2001

Fig. 7. Total Arctic sea ice area for 2001 reported by (black dashed) the
modified Bayes algorithm and (gray solid) the RL algorithm for SeaWinds.

for a particular dataset. These tuning parameters are briefly dis-
cussed here.

1) Training Data (Histogram Principal Components): The
algorithm may be trained to perform differently by proper com-
putation of the PCs of sea ice and ocean histograms. This pre-
disposes the algorithm to particular histogram shapes. In this
study, the histograms used to calculate the PCs are generated
using 50 RL sea ice maps from 2001 (spaced about seven days
apart) to obtain a sample of the seasonal variations. These sea ice
extent maps—which are subjectively validated—are used with
PR, , , and imagery to generate separate histograms for
sea ice and ocean. From the resulting histograms, an orthogonal
basis is extracted: the principal components. Since the ice masks
needed in this training phase are used only to capture the gen-
eral histogram shapes, performance is only weakly dependent
on the training set.

2) Reconstruction Coefficients: The principal components
used for the histogram basis set are ordered by the magnitude of
the eigenvalue associated with the PC. While the full basis may
be computed, the ordered basis set is truncated to a length that
spans most of the space of the histograms. The accuracy of re-
constructing histograms from principal component vectors may
be adjusted by restricting the number of vectors used in recon-
struction. This dictates to what extent histograms are smoothed
by the PCs. For the Arctic region, 40 PCs enable accurate re-
construction of sea ice and ocean histograms; however, algo-
rithm performance is relatively insensitive to the exact number
of PCs, so long as a sufficient number is used to prevent over-
smoothing.

3) Loss Map Dilation: The extent of dilation used when cre-
ating loss maps limits how far we believe sea ice edge can
move in a single day (for ), and to what extent we “trust”
the classification map of the th iteration (for ). Typi-
cally, loss maps are created initially using many dilations, and
the region of ignorance is forced to contract by using succes-
sively fewer dialations, until the final iteration. For this study,
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Fig. 8. (a) and (c) Ice edge comparison of (white line) modified Bayes and (black line) RL algorithms overlayed on A imagery. (b) and (c) Comparison of
resulting masks where pixels that are common between the two algorithms are shown in black, pixels unique to the new modified Bayes algorithm are light gray,
and pixels unique to the RL algorithm are dark gray. Data are for DOY 88, 2001. Center pixel for (a) and (b) is at 73.1 N, 8.75 W (east of Greenland), while the
center pixel for (c) and (d) is at 66.6 N, 59.1 W (west of Greenland). Dotted grid lines are spaced 250 km apart.

the extent of dilation is decreased linearly from 40 (178 km) on
the first iteration to 10 (44.5 km) at the last iteration.

4) Loss Map Erosion: If classification maps at the th iter-
ation contain misclassification errors (speckle noise), then the
loss maps may contain corrupted loss values over a potentially
large area, magnified by dilation operations. To ameliorate this,
the loss maps are eroded prior to dilation (an unbalanced binary
“opening” operation) by a factor based on the observed general
maximum size of misclassified regions.

5) Loss Values: As discussed previously, the relative values
of sea ice and ocean loss maps convey how much the classifica-
tion map of the previous day (or previous iteration) is trusted.
For convenience, loss values are restricted to . In this study,
high loss is given a value of unity and low loss a value of 0.05.

6) Loss Map Forgetting Factor, : The adaptive loss map
forgetting factor is also related to how much we trust classifi-
cation maps of past iterations. For small values of , the algo-
rithm is driven mostly by the current classification map. In this
study, is set to 0.2.

7) Spatial Inclusion Dilation and Erosion: Spatial inclusion
is implemented via an unbalanced binary opening operation (a
small erosion followed by a larger dilation) applied to the classi-
fied image prior to updating the histograms. This promotes spa-
tial homogeneity and helps the algorithm to recover from po-
tentially poor prior data. The extent of dilation is related to how
much we trust (or do not trust, rather) the loss map from the

previous iteration. Large values compel the algorithm to incor-
porate a broader set of pixels when generating histograms.

The tuning parameter values used here have been selected
somewhat arbitrarily to achieve reasonable performance over a
seasonal cycle. Parameters could be further optimized to im-
prove performance.

IV. RESULTS

The technique described above is used to generate polar sea
ice extent maps for the Arctic region for each day of 2001 from
SIR egg data. As mentioned previously, training data are based
on RL ice masks for 50 representative days spanning 2001.
Since prior data are needed to “start” the algorithm, the RL ice
map for the first day of 2001 is used for this purpose (i.e., the
first estimate for day of year (DOY) 1, 2001 is the RL ice mask).
Once started, in processing new data a three-sample temporal
(noncausal) median filter is used on the new data sequence to
reduce speckle noise while preserving spatial and temporal res-
olution. The length of this filter is short enough to insignificantly
smooth temporal variability of a particular pixel—only in the
rare cases does a pixel actually change states twice in a three-day
window. The resulting ice extent maps are suitable for a variety
of applications including wind retrieval, sea ice extent estima-
tion, and sea ice motion studies.
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Validation of the sea ice extent estimates is difficult due to
the lack of suitable comparison data. As an initial step toward a
comprehensive validation in this section, the ice extent maps are
compared to those produced by the RL algorithm, the Special
Sensor Microwave/Imager (SSM/I) NASA Team algorithm, and
RADARSAT-1 ScanSAR imagery.

A. Comparison With the RL Algorithm

Generally, the ice edge determined from the sea ice maps pro-
duced by the new method are visually highly correlated to the
sea ice edge inferred from the RL algorithm for SeaWinds, as
reported by the confusion matrix in Table I. Fig. 7 shows the
total Arctic sea ice area reported by both algorithms as a func-
tion of the day of year. The overall discrepancy may be primarily
ascribed to the fact that the new technique does not perform bi-
nary processing techniques to remove polynyas within the ice
sheet, as does the RL algorithm (which overestimates the ice
cover). The difference in the boreal summer (DOY 200–300) is
due to the effect of surface melt events which are classified as
ocean by the new algorithm, but as sea ice by the RL algorithm
due to the binary processing phase. The discrepancy in the early
spring (DOY 125–155) is due to a sensor outage and some mis-
classification by the RL algorithm caused by large-scale surface
melting in the Hudson Bay.

A qualitative comparison of the performance of the two al-
gorithms is difficult to assess. An empirical comparison shows
that the algorithms perform quite similarly for much of the year.
An illustrative example of the algorithms’ performance is shown
in Fig. 8. As shown, in cases where wind-agitated ocean waves
near the sea ice edge cause ambiguity in the discrimination pro-
cedure for the RL algorithm, the modified Bayes algorithm is
aided by spatial a priori information. In some instances, partic-
ularly during the summer, surface melting and sea ice motion
cause high variance estimates in and imagery and cause
both algorithms to perform poorly in areas of rapid change. As
previously discussed, some of these surface melt events are clas-
sified as sea ice as a result of the binary processing phase of the
RL algorithm.

The new algorithm presents several improvements over the
RL algorithm:

1) There is a reduced dependence on post processing steps
designed to eliminate spurious classification errors. The
new method provides an unfiltered version of the Sea-
Winds ice edge, allows for the detection of polynyas, and
allows the algorithm to track floes, icebergs, and large sec-
tions of sea ice which have been separated from the pri-
mary ice sheet.

2) The inclusion of spatial and statistical a priori information
results in more consistent estimates of sea ice extent from
day to day.

3) The adaptive statistical model allows for changes in sea
ice and ocean properties without severely degrading the
algorithm’s performance.

These improvements come at a cost. First, unlike the RL algo-
rithm, it is not possible to generate a sea ice extent map without
a priori information. Thus, a different method must be used to
“start” a sequence of sea ice extent estimates. Furthermore, the
PCs must be calculated offline in a training phase before the
algorithm can operate. Binary processing in the RL algorithm

Fig. 9. Comparison of (black line) SeaWinds ice edge and SSM/I sea ice
concentration for the Arctic (left) winter (DOY 88) and (right) summer (DOY
250). SSM/I concentration contours show consistency with the SeaWinds ice
edge. The 0% to 100% sea ice concentration boundary may be fairly sharp in
the winter case, but is blurred by ice/ocean spillover in the SSM/I footprint
pattern. The left image is centered at 67.9 N, 55.8 W; the right image at
82.2 N, 36.2 E. Dotted grid lines are spaced 250 km apart.

corrects misclassification errors caused by the effects of sur-
face melting on and . This is not corrected, in general, by
the new approach, unless the tuning parameters are set to min-
imize the effects of and , which may come at the cost of
losing information about polynyas. Third, the new method may
be adversely affected by poor a priori information. This may
be ameliorated, however, by adjusting the tuning parameters in
the new method. The ability of the algorithm to recover from
poor a priori information may be adjusted, but comes with the
tradeoff of degraded performance, namely, more spurious mis-
classification errors, and less consistency between consecutive
ice maps in a sequence. The ability to tune the algorithm may be
viewed as both a strength and a weakness. Unlike the RL algo-
rithm which is not tunable, but very robust, the new algorithm
may be adjusted for desired performance, but may not be as ro-
bust for a particular set of tuning parameters.

B. Validation: SSM/I NASA Team Sea Ice Concentration

Results from the algorithm are compared to sea ice concentra-
tion estimates generated by the SSM/I NASA Team algorithm
[14]. The latter are gridded on a polar stereographic projection
at 25-km pixel spacing. In order to compare datasets, the SSM/I
concentration maps are interpolated onto the 4.45-km spacing
of the SIR polar stereographic projection. Fig. 9 shows the Sea-
Winds ice edge overlayed on SSM/I concentration data for both
a winter and a summer case.

The average SSM/I sea ice concentration corresponding to
the “edge” of the SeaWinds-derived ice extent map is extracted
for each day of 2001 for the Arctic region. Ice edge concentra-
tion as a function of day is shown in Fig. 10. The comparison
reveals seasonal dependence of the correlation between SSM/I
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Fig. 10. Average Arctic SSM/I sea ice concentration corresponding to the ice
edge derived from the new SeaWinds ice mapping approach.

Fig. 11. Average Arctic SSM/I sea ice concentration corresponding to
SeaWinds-derived ice edge for (top) DOY 50–150 (winter) and (bottom) DOY
160–260 (summer) 2001. Dashed line shows pretuning value, while solid
line shows tuned value. Error bar heights are one standard deviation in ice
concentration data.

sea ice concentration and the new SeaWinds ice edge, ranging
from 30% in the summer to 50% in the winter. The peculiar si-
nusoidal behavior in the ice edge concentration during the first
150 days of 2001 is possibly due to sea ice growth, differences in
sensor imaging times and intervals, and/or resolution and grid-
ding differences in the imagery.

For clarity, separate segments of the resulting ice edge
concentrations are shown in Fig. 11 for the winter and the
melt season. Fig. 11 reveals that the winter SeaWinds sea
ice edge corresponds to 40% to 50% sea ice concentration
with large variability over the season. However, the variance
of the SSM/I concentration at the ice edge for a given day
is consistent throughout the season. This suggests that the
SeaWinds-reported sea ice edge is consistent, and that the

sinusoidal variations are either geophysical, or can be ascribed
to the inaccuracy of SSM/I ice concentration readings at crisp
ice/ocean edges [15]. In the winter, the ice edge is fairly abrupt,
i.e., there may be a sudden change from a high concentration
to zero concentration. The SSM/I instrument is sensitive to sea
ice which may only partially fill the antenna footprint. This
causes the transition between sea ice and ocean to appear more
gradual than the true ice edge and the ice edge reported by the
higher resolution SeaWinds imagery. During the summer, the
sea ice edge is more diffuse and the SeaWinds-reported ice edge
corresponds to the 30% SSM/I sea ice concentration contour.

To demonstrate the flexibility of the algorithm, the tuning pa-
rameters are adjusted in an effort to produce an ice map that cor-
responds to a lower SSM/I concentration contour. The number
of PCs used in histogram smoothing is increased from 40 to 50,
the loss map forgetting factor is increased from 0.2 to 0.6, and
the extent of dilation in the spatial inclusion step is increased
from 3 to 4. To extend the ice edge slightly, the ocean loss map
is initially dilated ten pixels, while the ice loss map is eroded
by five pixels. This creates a region of ignorance five pixels
(22.25 km) wide that is offset by five pixels from the original
ice edge. This influences the algorithm to create ice maps which
extend further out. The choice of five pixels is somewhat arbi-
trary—it is based on expected ice growth, and is chosen to offset
effects of sea ice motion on and . This produces a region of
influence five pixels wide around the original ice edge in which
sea ice is more likely to be chosen by the classifier than ocean.

Fig. 11 shows the newly computed average SSM/I sea ice
concentration for the winter period. The new ice edge concentra-
tion is less sporadic than the previously computed ice edge, and
exhibits values which correspond more closely to 30% to 40%
concentration rather than 40% to 50% concentration. The con-
centration for the summer shown in Fig. 11, however, is slightly
more sporadic, but still correlates well with the 30% sea ice
edge. This is a result of surface melting events, to which the
radiometer is less sensitive relative to the scatterometer. The
tuning parameters may be modified to some extent to match
lower ice edge concentration values, but ultimately, the char-
acteristics of the discrimination parameters govern how the al-
gorithm performs.

C. Validation: RADARSAT-1 ScanSAR

Results from the algorithm are compared to RADARSAT-1
ScanSAR imagery for qualitative visual comparison. Compar-
ison with the high-resolution data is difficult for two reasons.
First, because of the low-coverage nature of SAR, usable
RADARSAT-1 data at the ice edge is difficult to obtain. Thus,
we have used only a handful of RADARSAT-1 mosaics from
various seasons to provide a representative comparison. Fur-
thermore, the data are difficult to compare. RADARSAT-1
imagery is a “snapshot” of the ice edge at a particular time of
day, while SeaWinds imagery is obtained over a 24-h period.
As a result, especially during rapid ice growth or retreat, the
ice edge inferred from the temporally averaged data may
appear to be inconsistent with snapshot images. Instruments
such as SeaWinds, which enjoys greater coverage, also suffer
from blurring caused by sea ice motion during several satellite
passes—hence, the reported sea ice edge should be thought
of as the “average” sea ice edge during the imaging interval.
Nonetheless, RADARSAT-1 data are an excellent source of
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Fig. 12. (Left) RADARSAT-1 ScanSAR (uncalibrated) mosaic for DOY 12,
2001 east of Svalbard. The SSM/I 30% contour (thick black/white dotted) is
fairly consistent with the true edge, albeit at a coarse resolution. The SSM/I 10%
contour (thick white) is shown for comparison. The modified Bayes (thin white)
and RL (thin gray) ice edges appear to be underestimates of the true ice extent.
This may be partially due to sea ice growth and the difference in imaging times
between SeaWinds and RADARSAT-1. The center pixel is at 76.9 N, 29.2 E.
(Right) A similar comparison for DOY 168, 2001 northeast of Greenland. The
center pixel is at 79.2 N, 4.8 W (RADARSAT-1 data © 2001, Canadian Space
Agency).

high-detail in situ image data useful for ice edge validation.
This comparison provides a qualitative check that the reported
sea ice edge is consistent with the shape and features of the true
ice edge [9].

Fig. 12 shows a RADARSAT-1 ScanSAR mosaic for DOY
12, 2001. During the winter, ice growth is expected and is espe-
cially evident at the bottom of the image where small fingers of
sea ice are forming along the peninsula. Motion stress on the ice
pack is apparent by the small cracks and fissures within the ice
sheet. The ice edge derived from the new ice mapping approach
is shown, as well as the RL-derived ice edge, the SSM/I NASA
Team 30% contour, and the SSM/I NASA Team 10% contour.
Here, the spill-over effects of the ice edge into the SSM/I an-
tenna footprint over ocean is evidenced by the displaced 10%
contour. The new SeaWinds ice edge and the RL-derived ice
edge appear to underestimate the true ice edge—perhaps an ef-
fect of sea ice growth. The SSM/I 30% provides a fairly consis-
tent estimate of the RADARSAT-1 ice edge, albeit at a coarse
resolution.

Fig. 13 shows a similar RADARSAT-1 mosaic with over-
layed sea ice edge estimates. The mosaic was imaged during
the melt season, as evidenced by the separated floes within the
ice pack and the diffuse edge at the bottom of the image. How-
ever, the ice edge appears fairly abrupt at the top of the image.
The new SeaWinds edge and the RL-derived edge show ex-
cellent correlation with the RADARSAT-1 ice edge. The 30%
SSM/I contour also shows good correlation within the resolu-
tion limitations.

Fig. 13 shows a RADARSAT-1 mosaic of a large polynya
located off the northwest coast of Greenland. At the bottom-
right of the image, the sea ice edge is somewhat diffuse. The
SSM/I contours appear to be valid representations of the diffuse

Fig. 13. RADARSAT-1 ScanSAR (uncalibrated) mosaic for DOY 169, 2001
showing the North Water Polynya just off the northwest coast of Greenland.
The SSM/I 30% contour (thick black) provides coarse detail of the polynya; the
RL algorithm (thin gray) higher detail; the new method (thin white) identifies
smaller polynyas (not geolocated) to the northwest and southeast. Each provides
different variations of the diffuse ice edge at the bottom right of the image. The
SSM/I 10% contour (thick white) is shown for comparison. The center pixel is
at 77.1 N, 73.2 W (RADARSAT-1 data © 2001, Canadian Space Agency).

edge. The RL-derived ice edge shows excellent tracking of the
diffuse edge, while the new SeaWinds edge follows the SSM/I
30% contour in the diffuse area. Both SeaWinds edges are good
representations of the crisp RADARSAT-1 ice edge at the top
of the image. The new method detects small polynyas that are
disjoint from the large polynya.

Generally, sea ice maps derived from the new method corre-
late well with RL sea ice maps, the SSM/I NASA Team 30%
contour, and subjectively to RADARSAT-1 data (for SSM/I sea
ice concentration data, the 30% contour shows the best correla-
tion with the observed RADARSAT-1 ice edges in the previous
examples). The new SeaWinds edge shows detail on the scale
of the resolution of the SeaWinds egg imagery, including small
polynyas within the ice sheet.

V. CONCLUSION

The RL algorithm for SeaWinds is another manifestation of
the utility of Ku-band scatterometer data in polar sea ice detec-
tion. In an effort to reduce the dependence on binary processing
routines, improve statistical modeling, and incorporate spatial
and statistical a priori information, this new sea ice mapping al-
gorithm for SeaWinds has been developed.

The new method requires a training phase in which typical
sea ice and ocean histogram shapes are learned from previ-
ously computed sea ice masks. In addition, the method requires
a priori estimates of the sea ice extent and ice/ocean histograms,
e.g., computed by the RL algoroithm. However, once the algo-
rithm has been trained, and a priori data are provided for the first
day in a time-series, the algorithm can then run independently.
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The new technique shows good correlation with the RL al-
gorithm ice edge, but exhibits several improvements. First, the
algorithm produces ice maps at the effective resolution of the
SIR imagery, but has few misclassification errors. This reduces
the need for a binary processing phase that is a required part
of the RL algorithm. The independence from binary processing
routines allows the algorithm to track sea ice bodies that are dis-
joint from the primary ice sheet. Second, the inclusion of spatial
and statistical a priori information provides for more consistent
sea ice extent maps from day to day. Also, the more sophisti-
cated statistical modeling approach facilitates the dynamic na-
ture of polar sea ice and ocean microwave signatures.

While only limited data are available for validation, the re-
sulting sea ice maps show high correlation with estimates from
other sensors. In particular, the new SeaWinds ice edge corre-
sponds to the 30% SSM/I NASA Team sea ice concentration
contour. RADARSAT-1 ScanSAR imagery verifies the accuracy
of the algorithm.

Although the algorithm presented in this work is designed
for the SeaWinds scatterometer, it may be adapted for other
instruments. This can be accomplished by changing the dis-
crimination parameters and/or a priori information. Or, the
discrimination parameters can be changed to enable for multi-
sensor classification such as joint radiometer and scatterometer
sea ice maps, benefiting from the advantages of both types of
microwave sensors. The binary classification approach may
also be extended to M-ary classification, such as ice type
classification. These topics are left for future research.
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