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Assessing the Quality of SeaWinds
Rain Measurements

David W. Draper and David G. Long, Senior Member, IEEE

Abstract—While SeaWinds was designed to measure ocean
winds, it can also measure rain over the ocean. SeaWinds on
QuikSCAT active measurements of integrated columnar rain
rate obtained via simultaneous wind/rain retrieval are evaluated
via Monte Carlo simulation and the Cramér–Rao lower bound
on estimate accuracy. Although sufficiently accurate in many
conditions, the simultaneous wind/rain retrieval method used
with SeaWinds on QuikSCAT data is ill-conditioned for certain
wind directions and measurement geometries, sometimes yielding
spurious rain rates in zero-rain conditions. To assess the validity
of SeaWinds-derived rain rates, a simple empirically based rain
thresholding scheme is presented, derived from simulated data.
Thresholded QuikSCAT rain rates are compared to Tropical
Rainfall Measuring Mission Microwave Imager monthly-averaged
data, demonstrating good correlation for monthly-averaged data.

Index Terms—Maximum likelihood, SeaWinds, scatterometer,
simultaneous wind/rain retrieval, Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI).

I. INTRODUCTION

RADAR backscatter at midrange incidence angles is driven
mainly by Bragg scattering from small gravity-capillary

waves induced by wind stress [1]. For Ku-band instruments such
as SeaWinds, the backscatter is also sensitive to scattering and
attenuation from falling rain droplets, as well as the small ripples
created by rain striking the surface [2]–[6]. Although the accu-
racy of retrieved winds is degraded during rain events, the rain
sensitivity of the Ku-band signal affords scatterometer-based re-
trieval of the vertically integrated rain rate [7]. This serendipi-
tous application of SeaWinds data can be used to help fill gaps
in coverage from other passive and active rain sensors.

In order to measure rain from SeaWinds and mitigate the
effects of rain on the scatterometer wind data, Draper and Long
[7] developed a simultaneous wind/rain retrieval method for use
with SeaWinds on QuikSCAT data. The simultaneous wind/rain
retrieval method uses a maximum-likelihood estimator to re-
trieve the wind speed, wind direction, and integrated rain rate
from the SeaWinds backscatter measurements. Considering
that SeaWinds was not intended to measure rain, simulations
and validation given here and in [7] indicate that simultaneous
wind/rain retrieval is surprisingly accurate, especially in the
sweet spots of SeaWinds swath and when the true wind
direction is not oriented in the cross-swath direction.
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Although the method works well in many conditions, re-
trieving rain from the SeaWinds scatterometer has limitations.
The main insufficiency in the method is related to the fact
that wind and rain do not have orthogonal effects on ocean
backscatter. Depending on the wind direction and measurement
geometry, backscatter due to wind can be confused with the
response from rain. This issue is a main source of frustration
in creating accurate standalone rain flags from SeaWinds data.
The effects of this identifiability problem is most noticeable
when the wind is oriented cross swath, often yielding spurious
rain rate solutions in zero-rain conditions. With wind in a
cross-swath orientation, the backscatter response is similar
between the fore and aft beams, appearing isotropic, a signature
similar to rain. However, when the wind is not oriented cross
swath, the wind and rain backscatter signatures are often quite
different, affording better separation of wind and rain effects.

This paper addresses two main questions involved with Sea-
Winds rain estimation: “How accurate are the rain data?” and
“For what conditions are the data valid?” To address the first
question, rain rate measurement accuracy is assessed via Monte
Carlo simulations and the Cramér–Rao (C–R) theoretical lower
bound on retrieval accuracy. The C–R bound affords a computa-
tionally efficient method of theoretically estimating the covari-
ance of the scatterometer-derived wind and rain rates. We ad-
dress the second question by introducing a rain rate thresholding
scheme that identifies the minimum believable rain rate estimate
given the wind conditions. The threshold is set higher where
spurious rain rates are more likely to occur, producing constant
false-alarm performance at the risk of missed rain detections.
The thresholds are validated against Precipitation Radar (PR)
data from the Tropical Rainfall Measuring Mission (TRMM)
and the SeaWinds multidimensional histogram (MUDH) rain
flag. The comparison suggests that using the thresholds with
simultaneous wind/rain retrieval can improve the existing Sea-
Winds rain detection accuracy for low rain rates (less than 5 km

mm/h).
We expand the validation given in [7], by comparing

monthly-average rainfall statistics between QuikSCAT data
and the TRMM Microwave Imager (TMI) [8]. Monthly-aver-
aged QuikSCAT rain rates (although noisy) are well matched
to TMI-derived monthly-average rain rates, with a correlation
coefficient of about 0.7 and a small negative bias.

After presenting background to the SeaWinds instrument
and simultaneous wind/rain retrieval in Section II, we analyze
the quality of SeaWinds active rain measurements via the
Cramér–Rao bound and simulation statistics in Section III. In
Section IV, the simultaneous wind/rain retrieval-based rain rate
thresholding scheme is presented, and validation of QuikSCAT
monthly rainfall estimates with TMI data are given in Section V.
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II. BACKGROUND

The SeaWinds instrument employs a rotating pencil beam an-
tenna with two offset feeds to measure the normalized backscat-
tering cross section of the ocean surface at surface incidences
of 46 (H-polarization) and 54 (V-polarization). The antennas
trace helical patterns on the surface with the inner H-polar-
ization beam coverage extending approximately 700 km from
nadir, and the outer V-polarization beam extending approxi-
mately 900 km from nadir. In order to retrieve winds, the inner
beam region is observed from four different azimuth angles: two
for each beam, fore and aft. The outer-beam-only region (swath
edge) is only observed from the V-polarization beam [9].

Standard SeaWinds processing segments the measure-
ments on a 25-km wind vector cell (WVC) grid. The multiple
measurements at each WVC are used to form a wind vector
estimate. Wind is estimated by inverting the empirical relation-
ship between the vector wind and known as the geophysical
model function (GMF), typically via maximum-likelihood
estimation (MLE). Because of the symmetric nature of the
GMF and measurement noise, the MLE generally produces
several possible wind vector solutions known as ambiguities.
The ambiguities are ranked according to likelihood, and the
first ambiguity is not always the closest to the true wind. Thus,
a second ambiguity selection step is typically employed in
which a unique ambiguity field is chosen based on outside data
(nudging), and modified median filtering [10], [11].

The outer nine WVCs on each side of the swath correspond
to the outer-beam-only region. In this region, instrument skill
(probability of a correct first ambiguity) is rather low. Also, in
the center WVCs (nadir region), the viewing geometry for
multiple measurements is somewhat poor, as the difference in
azimuth angles for the two beams approaches 180 . The nadir
region generally produces much noisier winds than the rest of
the swath. However, the viewing geometry for the two off-nadir
inner-beam regions, known as the “sweet spots,” is very good
for accurate wind retrieval [9], [12].

During rain, the backscatter response of the ocean is at-
tenuated by falling hydrometeors. In addition, the nominal
backscatter response is augmented by both scattering from
falling rain, and surface ripples formed by rain striking the
water. These effects can be modeled as a net attenuation from
the nominal surface backscatter, and a net effective backscatter
response

(1)

where is the observed backscatter, is the contribution to
backscatter from the wind-roughened seas, is the two-way
path-integrated attenuation factor from rain, and is the ef-
fective backscatter augmentation due to both surface and atmo-
spheric rain effects. A parametric model for the attenuation
and effective rain backscatter as a function of integrated rain
rate is computed in [6]. The parametric model has the form

(2)

(3)

where , and and are de-
fined as second-order polynomials in

(4)

(5)

The coefficients and are computed
in [6] via comparison with three months of colocated TRMM
PR/QuikSCAT data.

Using this simple model for the backscatter due to rain, simul-
taneous wind/rain retrieval is possible from SeaWinds data [7].
The simultaneous wind/rain retrieval uses an MLE technique,
much like the standard wind-only method. The measurement
model assumes Gaussian statistics for the noise, yielding a mea-
surement probability density of the form

(6)

where indexes the backscatter measurements in the WVC,
is the wind speed, and is the wind direction. In (6), the mean
and variance are equal to

(7)

(8)

where and are the communication noise coefficients
of the th measurement [13], and the following simplified nota-
tion is used where the dependence on wind and rain is implied:

pol (9)

pol (10)

pol (11)

where is the GMF, is the antenna azimuth angle, is the
incidence angle, pol is the polarization of the th measurement,
and is defined as

(12)

where and represent the normalized standard devia-
tion of the GMF and effective rain backscatter, respectively [7],
[12].

The general MLE method involves finding the wind/rain
combination that maximizes the probability distribution given
in (6) given the measured values [14]. The probability
distribution can be rewritten as a log-likelihood function of the
form

(13)

For use with SeaWinds, the log-likelihood function is further
simplified by dropping the first two terms inside the brackets,
and multiplying by , yielding

(14)
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The wind and rain are simultaneously estimated by minimizing
the simplified likelihood function.

As with the standard wind-only procedure, the likelihood
function has several local minima corresponding to ambiguities.
Thus, with SeaWinds data, ambiguity selection is performed
using a nudging/median filtering ambiguity selection step [7].

Although standard SeaWinds wind-only processing does
not take into account rain effects, a probability-based rain
flag known as the multidimensional histogram flag is used
to indicate the presence of rain in SeaWinds data [15]. The
MUDH flag is tuned to indicate rain if the probability of rain
greater than 2 km mm/h exceeds a threshold given a set of
rain-sensitive parameters. The MUDH flag is compared to
simultaneous wind/rain retrieval in Section IV.

III. RAIN ESTIMATE ACCURACY

To evaluate the accuracy of SeaWinds-derived rain rates, we
present mean and variance statistics obtained from the unbiased
C–R bound and Monte Carlo simulations (see [7]). We demon-
strate that the unbiased C–R bound matches simulation closely
over much of the parameter space, but produces unreliable esti-
mates in some situations due to biases in the estimation process.
The standard deviation is shown to be generally less than half
of the true rain rate value for most wind conditions.

A. Cramér–Rao Bound

The C–R bound gives a lower bound on the variance of an un-
biased estimator [16] and has also been generalized to include
biased estimators [17]. Let be the estimation
parameters for simultaneous wind/rain retrieval with the wind
speed in meters per second, the wind direction in degrees, and

the rain rate in kilometers millimeters per hour. Also, let
be the MLE estimate of the parameters. Using the notation of
[12], the covariance of a biased estimate given the mea-
surements is approximated by [18]

(15)

where is the expectation operator and is the Fisher-
information matrix given by

(16)

where is the log-likelihood function of the maximum-
likelihood probability equation.

If the estimator is unbiased (or biased by a constant value), the
derivative of the estimate given in (15) reduces to the identity,
and we have

(17)

The solution of the Fisher-information matrix for the unbiased
estimate corresponding to the scatterometer likelihood function
of (13) is given in [12] and is equal to

(18)

for the th element of the matrix. Model function deriva-
tives are numerically computed. Derivations of the rain model
and variance gradients are given in [19].

Since the simultaneous wind/rain retrieval likelihood func-
tion has several maxima, each corresponding to a possible wind
vector estimate, ambiguity selection must be taken into account
in order to discuss statistics. In simulation, ambiguity selection
is performed by selecting the ambiguity closest to the true wind
in a vector sense. With the C–R bound, we cannot explicitly per-
form ambiguity selection. However, because the C–R bound is
computed from derivatives evaluated at the true wind and rain,
the computed variance is directly associated with the shape of
the likelihood function surrounding the true wind and rain and
not around the other ambiguities. Thus, the C–R bound inher-
ently computes the variability of the ambiguity closest to the
true wind. We can, thus, ignore ambiguity selection in the C–R
bound analysis.

B. Cramér–Rao/Monte Carlo Simulation Analysis

As [7] suggests, the wind/rain MLE is somewhat biased.
Thus, the most accurate representation of the MLE variance is
the biased C–R bound [17]. However, the biased C–R bound
requires knowledge of the derivative of the biased estimate,
which is difficult to accurately compute. An approach to
computing the bias derivative is given in [12].

Rather than compute the biased C–R bound, we compute the
unbiased bound, which we compare to simulation results. Com-
pass Monte Carlo simulations are performed in which wind and
rain are simultaneously retrieved for a variety of wind/rain con-
ditions and cross-track positions [7]. The simulation statistics
are computed over 500 noise realizations for each set of condi-
tions. Likewise, the unbiased C–R bound is computed. Standard
deviation as a function of wind direction (relative to the direc-
tion of the satellite) and cross-track position are plotted in Figs. 1
and 2 for a wind speed of 7 m/s. For most sets of conditions in
these examples, the C–R bound matches well with simulation
results. We note that in some cases the simulation results are
somewhat lower than the C–R bound because of biases in simul-
taneous wind/rain retrieval, and the fact that the model function
derivatives are numerically obtained. In addition, there are ex-
treme artifacts in the C–R bound at 60 , 120 , 240 , and 300 ,
and at nadir (evidenced by large error bounds, especially in the
directional standard deviation). These artifacts are due signifi-
cant biases in such regions. We recognize that these C–R bounds
are not useful in such areas.

We note that the SeaWinds geometry was originally designed
for wind observation and, thus, may be suboptimal for rain mea-
surement. Nevertheless, the C–R bound and simulations suggest
that rain can be retrieved to reasonable accuracy in most condi-
tions. In Fig. 1, the standard deviation of the rain rate is gener-
ally less than half the true rain rate (excluding the swath edges).
The rain rate standard deviation like that of the wind is depen-
dent on cross-track position and peaks around nadir for all rain
rates. This phenomenon is expected, as SeaWinds has degraded
performance in the nadir region. The highest errors occur on the
swath edges where insufficient azimuth looks render simulta-
neous wind and rain estimation unusable.
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Fig. 1. Standard deviation as a function of cross-track position of retrieved
wind speed, wind direction, and rain rate from QuikSCAT predicted via (a)
simulation and (b) the unbiased C–R bound for three rain rates. Notice the
anomalously large error in the nadir region for C–R directional standard
deviation due to a bias in the estimate. The true wind velocity is 7 m/s and 0 .

Fig. 2. Standard deviation as a function of wind direction of retrieved wind
speed, wind direction, and rain rate from QuikSCAT predicted via (a) simulation
and (b) the unbiased C–R bound for three rain rates. Notice the anomalous spikes
at 60 , 120 , 240 , and 300 for the C–R bound, resulting from a bias in the
estimate. The true wind speed is 7 m/s at cross-track position 14.

The rain rate standard deviations shown in Fig. 2 are reason-
able for most wind directions, though noticeable peaks in the
standard deviation occur at 90 and 270 relative to the mo-
tion of the satellite. These wind directions represent cross-swath
blowing winds, where the wind backscatter response from the
fore and aft beams equalize, similar to rain. Since these data

Fig. 3. GMF for a true wind speed of 7 m/s plotted for the inner H-polarization
SeaWinds beam and outer V-polarization SeaWinds beam at WVC 14. Also
plotted are the expected fore and aft backscatter measurements for each beam
given an upwind direction (wind blowing toward the instrument or d = 90

relative to the direction of the spacecraft motion), or a downwind direction (wind
blowing away from the instrument or d = 270 relative to the direction of the
spacecraft motion).

are located in the left swath, a wind direction of 90 indicates
wind blowing toward the satellite (upwind), while 270 is wind
blowing away (downwind). For upwind measurements, the fore
and aft azimuth angles are centered around a relative (to the
wind) azimuth angle of , while the downwind measure-
ments are centered around a relative azimuth angle of
(see Fig. 3). In Fig. 2, the standard deviation for the upwind
measurements is somewhat higher than the standard deviation
for downwind measurements. This phenomenon is related to the
anisotropic nature of the GMF, illustrated in Fig. 3. For down-
wind measurements (measurements centered around a relative
azimuth of ), the GMF reaches the global maximum for a
given wind speed, while for downwind measurements (centered
around ), a lower local maximum in the GMF occurs.
Thus, for upwind measurements, the estimation procedure has a
higher wind backscatter that it can mistakenly attribute to rain,
creating larger errors in the rain measurement.

Besides a higher variance, another result of the wind/rain
identifiability problem can be a bias in rain rate for certain con-
ditions. The wind speed and rain rate bias is illustrated in Fig. 4
as a function of wind direction for various rain rates. The bias is
dependent on rain rate, wind speed, wind direction, and cross-
track position. The bias at zero-rain rate is partly due to the
fact that the retrieved rain rate must be strictly nonnegative. The
MLE estimates are biased positive near 90 and 270 where the
backscatter signatures of wind and rain are most similar. As the
rain rate increases, the variability of the estimate increases.

IV. RAIN RATE THRESHOLDING

The analysis from the C–R Bound and simulated data in
Section III predict a bias and higher variability in the retrieved
wind and rain for cross-swath winds. In addition, spurious
rain rates may be generated by the estimation procedure. The
spurious rain rates can be explained in the following way:
As shown in Fig. 3, the V-polarization backscatter response
for wind-roughened seas is higher than the H-polarization
response. However, for rain backscatter, the opposite is true [5],
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Fig. 4. (Line) Wind speed and rain bias and (error bars) standard deviations as
a function of direction for several rain rates and a wind speed of 7 m/s for WVC
14, computed from simulation.

Fig. 5. Monte Carlo simulations of SeaWinds data at WVC 14 for several wind
directions, a true wind speed of 7 m/s, and a true rain rate of 0 km � mm/h. Also
shown are concentration ellipses representing the unbiased C–R bound.

[6], i.e., the H-polarization response is higher than V-polariza-
tion. Since noise perturbs the backscatter from the ideal GMF
value, the observed V-polarization/H-polarization copolariza-
tion ratio is often smaller than expected (approximately half of
the time). When the copolarization ratio is lower than average
due to noise, and winds are pointing cross swath (resulting in an
apparent “isotropic” backscatter between fore and aft beams),
simultaneous wind/rain retrieval compensates by “adding rain”
to the estimate in order to adjust for the lower copolarization
ratio, and thus yielding a better fit to the data. The end result can
be a spurious rain rate estimate. This phenomenon is illustrated
in Fig. 5 for WVC 14, at a true rain rate of 0 km mm/h.
Because the true rain rate is 0 km mm/h, the data points with
nonzero rain represent spurious rain estimates. We note that
spurious rain rates are most common for cross-swath-oriented
winds.

Because spurious rain rates occur due to noise in the measure-
ment, we assess the question of how well the retrieved rain rep-
resents a true rain event. From Fig. 5, most of the spurious rain
rates are low. We can thus define a wind-dependent threshold
below which QuikSCAT rain estimates should be ignored. Here,
we calculate the threshold above which the estimation proce-
dure produces few spurious rain rates. We examine two types
of thresholds to ameliorate spurious rain rates: a constant rain
rate threshold and a constant false-alarm threshold. Employing
a constant rain rate threshold eliminates the low-end spurious
rain rates (we note that most spurious rain rates have low mag-
nitudes), and is simple to implement, but has varying perfor-
mance depending on the vector wind and cross-track position.
A constant false-alarm threshold applies a different threshold for
each wind direction, speed, and cross-track position, but yields
a constant false-alarm performance for all conditions, at the risk
of missed detections. A combined approach is also addressed,
which further reduces false alarms.

To generate the constant false-alarm thresholds, we choose
the rain rate for which the simultaneous wind/rain retrieval es-
timates rain 1.5% of the time given zero-rain conditions. This
is equivalent to setting a constant false-alarm rate of 1.5% for
all wind/cross-track conditions. The threshold is computed for
a wide range of cross-track positions, wind speeds, and wind
directions. In doing so, we use the simulated data previously
discussed. Thresholding the simultaneously retrieved rain rates
gives a quality check of the rain data, and may be used as a rain
flag; however, higher thresholds in some regimes cause a large
number of missed rain detections.

The rain rate thresholds for various wind speeds, wind di-
rections and cross-track positions are given in Fig. 6. The low
threshold values for m/s and m/s illustrate that the
simultaneous wind and rain retrieval does not significantly con-
fuse rain and wind for low to moderate wind speeds. For higher
winds, the rain flag thresholds are set high in the cross-swath di-
rections because high spurious rain rates may occur there. These
results suggest that in areas with low a average wind speed,
such as the tropics, the simultaneous wind/rain procedure pro-
duces lower spurious rain rates. Therefore, the QuikSCAT-de-
rived rain rates are of higher quality in the tropics than in higher
wind speed regions, such as the mid- to high latitudes.

To validate the rain rate thresholds, we use three months of
colocated TRMM PR data (see [6] for information on the colo-
cation procedure). Ideally, rain rate thresholding uses the “true”
wind velocity. Since using the retrieved wind speeds and direc-
tions is problematic during rain events, winds from the National
Centers for Environmental Prediction (NCEP), available in the
QuikSCAT Level 2B data, are used to index the thresholds. Be-
fore use, these wind estimates are adjusted for the bias due to
differing reference heights [6]. The use of NCEP winds to index
the thresholds introduces some variability into the rain flagging
process, since NCEP winds at times may not accurately rep-
resent the true wind. However, in most conditions, especially
when there are no fine-scale wind features, NCEP winds are
adequate.

Table I shows the percentages of rain detections using no
rain thresholding (any positive retrieved rain rate represent a
rain detection), two constant rain thresholds (0.5 and 2.0 km
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Fig. 6. Rain rate thresholds that yield a constant false-alarm rate of 1.5% given wind speed, wind direction, and cross-track position. The thresholds show the
estimated rain rate below which SeaWinds rain estimates may not be valid given the wind conditions.

TABLE I
PERCENTAGE OF RAIN DETECTION FOR QUIKSCAT WITH NO-RAIN

THRESHOLDING (N), WITH A CONSTANT 0.5-km � mm/h THRESHOLD (C0.5),
WITH A CONSTANT 2.0-km � mm/h THRESHOLD (C2.0), WITH THE 1.5%
FALSE-ALARM THRESHOLDS (F), WITH THE FALSE-ALARM THRESHOLDS

COMBINED WITH A 0.5-km � mm/h LOWER LIMIT (CT). THE DATA ARE GIVEN

FOR VARIOUS PR RAIN RATE (R , KILOMETEERS PER MILLIMETER PER

HOUR) BINS OVER THE COLOCATED TRMM/QUIKSCAT DATASET. ALSO

SHOWN FOR COMPARISON ARE THE PERCENTAGES FLAGGED BY THE

MULTIDIMENSIONAL HISTOGRAM FLAG [15]

mm/h), and the 1.5% false-alarm thresholds for different
ranges of PR-derived effective average rain rates (see [7]).
Table I also shows a combined constant rain-rate/constant
false-alarm threshold obtained by choosing the greater of the
1.5% false-alarm threshold and the 0.5-km mm/h rain rate
threshold. For comparison, the percentage of WVCs flagged
by MUDH is displayed.

The first column of Table I displays the false-alarm rate (the
percentage of cells with little or no rain that are flagged by
the thresholding scheme). The following columns display the
detection rates given various ranges of PR rain rates. Exam-
ining the “no-threshold” case (N), a large number of spurious
rain rates are intrinsically generated by the estimation process.
The 0.5-km mm/h threshold reduces the false-alarm rate by
a factor of 4. The threshold of 2.0 km mm/h again reduces
the false-alarm rate to a very reasonable amount, at the cost of
missed detections.

The false-alarm rate for the constant false-alarm threshold is
higher than expected (2.4%), suggesting the actual SeaWinds
data may produce more spurious rain rates than simulated data.
The combined threshold (CT) yields a very reasonable false-
alarm rate of 2.1%, with very similar performance as MUDH.
MUDH is slightly more effective at flagging the high-end rain,
while CT is more sensitive at the lower rain rates. These results
suggest that the simple thresholding scheme presented here pro-
duces better results than current rain flagging techniques at rain
rates less than 5 km mm/h. Future work is intended for more
accurately flagging rain in SeaWinds data using both wind and
rain rate estimates.

V. MONTHLY RAIN RATE VALIDATION WITH TMI

Validation studies with the TRMM Precipitation Radar [7]
demonstrate that SeaWinds-derived rain estimates correlate
quite well to active rain sensors, albeit SeaWinds operates on a
much lower resolution. Here, we compare the SeaWinds rain
data to a passive rain sensor by comparison of monthly rainfall
averages between the TMI and QuikSCAT. In performing the
comparison, simultaneous wind/rain retrieval is performed
for four months of QuikSCAT data from August–November
1999. To help eliminate spurious rain rates, retrieved rain
rates falling beneath the combined thresholds (CTs) are set to
zero. The QuikSCAT retrieved rain rates and TMI surface rain
rates are then gridded and averaged separately on a
latitude–longitude grid.

The TMI surface rain rates give an estimate of the rain rate
in millimeters per hour, customarily used for monthly observa-
tions. To convert to similar units as QuikSCAT, the TMI surface
rain rate is multiplied by a monthly-average storm height (ob-
tained from the PR 3A25 monthly-average data product,
and interpolated to the grid) to yield an effective in-
tegrated average rain rate with units of kilometers millimeters
per hour. We note that although we are examining integrated
rain rate averages, SeaWinds rain data can be converted to the
more customary units of millimeters per hour by dividing by the
monthly storm height estimate. This may be more desirable for
data fusion with PR or TMI.

An example comparison of the QuikSCAT/TMI monthly-av-
erage rain rates for August 1999 is given in Figs. 7 and 8. In
this example, several global rain features are evident in both
the TMI and QuikSCAT rain data. The major noticeable fea-
ture is the increased rain activity in the Inter-Tropical Conver-
gence Zone (ITCZ) that stretches across the equator. Also, there
is a noticeable correlation in the Southern Pacific Convergence
Zone (SPCZ) located between and latitude and 150
and 270 longitude.

Table II gives the mean bias, error standard deviation, and rms
error statistics (QuikSCAT-TMI) along with correlation coeffi-
cients for four months of data. Data points falling greater than
five standard deviations from the mean are discarded. Overall,
the QuikSCAT data is biased slightly low for all months. The
bias is about 20% of the mean TMI rain rate. This bias is compa-
rable to the bias first reported in monthly comparisons between
the Special Sensor Microwave/Imager and TMI [20]. The bias
is expected due to the fact that some true rain events are ignored
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Fig. 7. Monthly rain rate average for (a) QuikSCAT-derived rain rates using
the combined rain threshold and (b) TMI-derived rain rates.

Fig. 8. (a) Monthly rain height average from TRMM PR, interpolated to 1 �

1 grid. (b) Error between QuikSCAT and TMI monthly-average rain rate for
August 1999.

by the rain thresholding. Overall, the correlation coefficients for
the QuikSCAT and TMI data are around 0.7 for the monthly av-
erages. A histogram of QuikSCAT versus TMI monthly data for
August 1999 is given in Fig. 9, illustrating the variability of the
QuikSCAT versus the TMI measurements. The overall standard
deviation of the difference is about 0.7 km mm/h.

TABLE II
MEAN BIAS (KILOMETERS PER MILLIMETER PER HOUR), ERROR STANDARD

DEVIATION, rms ERROR, AND CORRELATION COEFFICIENTS FOR MONTHLY

AVERAGES OF QUIKSCAT-DERIVED RAIN RATES AND TMI RAIN RATES. A
POSITIVE MEAN BIAS INDICATES LARGER AVERAGE QUIKSCAT RAIN

RATES. A NEGATIVE BIAS INDICATES LARGER TMI RAIN RATES

Fig. 9. Comparison histogram of monthly averages between QuikSCAT and
TMI.

A noticeable difference between the TMI and QuikSCAT
monthly rain maps is the noisy nature of the QuikSCAT rain
rates in the SPCZ, whereas the TMI data is much smoother.
Part of the difference is due to the fact that the TMI data has
much higher coverage of this area. For the one month dataset,
the TMI data has over 2000 data points per pixel in the southern
tropics, while the QuikSCAT data has less than 1000 data
points per pixel. Thus, the higher coverage allows for a more
consistent time average of the region.

The difference map shows occasional high discrepancies be-
tween QuikSCAT and TMI rain rates. Part of the variability
is due to the fact that measurements were taken at different
times for the QuikSCAT and TMI datasets. In addition, poor
temporal sampling for the two instruments introduces errors in
both datasets. Histograms of the rain rate provide a useful com-
parison tool for the datasets. Fig. 10 shows a histogram of the
monthly-averaged rain rates for both TMI and QuikSCAT. The
histograms match very well at low rain rates, but show a small
negative bias for QuikSCAT data at higher rain rates. Because
the shape of the curves are very similar, it is likely that the rain
rate bias can be eliminated by adjusting the QuikSCAT values,
effectively moving the QuikSCAT curve to the right and better
matching the TMI curve.

We extend the QuikSCAT-TMI comparison by computing the
monthly-averaged statistics for August 1999 for four different
areas in the Pacific Ocean: to (SPCZ), to
(Dry Southern Pacific Zone, S. Dry), 0 to 20 (ITCZ), 20
to 40 (Dry Northern Pacific Zone, N. Dry) in Table III. The
dry zones have lower errors and higher correlation coefficients,
owing to the fact that the rain rates are lower in these regions.
The largest bias is noticed in the ITCZ, where the QuikSCAT
data is on average about 0.3 km mm/h lower than the TMI
data. In the SPCZ, the noisy rain estimates result in a lower
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Fig. 10. Histogram of monthly-averaged rain rate values obtained from
QuikSCAT and TMI for August 1999.

TABLE III
ERROR STATISTICS OF THE AVERAGE QUIKSCAT-DERIVED RAIN RATES

AND TMI RAIN RATES PER LATITUDE BAND IN THE PACIFIC OCEAN

FOR THE MONTH OF AUGUST, 1999

correlation coefficient for the region than in other areas. The
bias, however, is much smaller in the SPCZ than the bias in other
areas of heavy rainfall.

Although somewhat biased, QuikSCAT rain measurements
can be adjusted in the mean to give an unbiased comparison with
TMI. Rain measurement with QuikSCAT can complement other
active sensors such as the PR, since it has a much wider swath,
and obtains coverage over the poles, albeit at lower resolution.

VI. CONCLUSION

Although designed to measure near-surface winds, the Sea-
Winds instrument is also sensitive to rain and thus can be used
for global rain measurement. Using the simultaneous wind/rain
retrieval method described in [7], rain rate estimates consistent
with passive and active instruments such as the PR and TMI can
be obtained.

This paper addresses the quality and validity of SeaWinds
rain measurements. For wind not pointing cross swath, the
rain retrieval standard deviation is generally within 3 dB of
the true rain, with increased performance in the sweet spots.
In cross-swath wind orientations, spurious rain rates often
occur and the retrieved rain rate is biased somewhat high. The
problem is evidenced in the Cramér–Rao lower bound and in
Monte Carlo simulations. Because the wind and rain signals
may not be completely separable in such orientations, a rain
thresholding scheme is developed which is set higher in regions
of poor wind/rain identifiability to reduce the false alarms.

These thresholds are validated with TRMM PR and shown to
yield similar rain flagging results as the MUDH flag. Further
improvement of the rain flag is forthcoming.

The rain rate thresholds illustrate that for moderate wind
speeds (3–10 m/s), the retrieved rain rates are valid as low as
0.5 km mm/h for most wind directions. For wind speeds less
than 11 m/s, the rain rates are valid as low as 2 km mm/h,
except for cross-swath-oriented winds. For higher wind speeds,
however, there exists a nonnegligible rain rate regime for which
the validity of the retrieved rain rate is questionable.

Validation of QuikSCAT rain rates with TMI illustrates the
utility of using Ku-band scatterometer data from instruments
such as SeaWinds to measure rain. In addition, SeaWinds af-
fords further active rain measurement to supplement the data
obtained by other active instruments such as the PR. Using the
simultaneous wind/rain retrieval technique and rain rate thresh-
olding, the QuikSCAT-derived rain rates are shown to be con-
sistent with monthly averages derived from TMI. We note that
the method analyzed in this paper estimates the vertically inte-
grated rain rate in kilometers millimeters per hour and thus re-
quires storm height estimates or a storm model to yield the more
common rain measurement in millimeters per hour (customarily
used for monthly rain observation). Once a storm height esti-
mate is applied, the QuikSCAT-derived rain rates can be used
for supplemental monthly observation of accumulated rainfall.
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