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Simultaneous Wind and Rain Retrieval
Using SeaWinds Data

David W. Draper and David G. Long, Senior Member, IEEE

Abstract—The SeaWinds scatterometers onboard the
QuikSCAT and the Advanced Earth Observing Satellite 2
measure ocean winds on a global scale via the relationship
between the normalized radar backscattering cross section of the
ocean and the vector wind. The current wind retrieval method
ignores scattering and attenuation of ocean rain, which alter
backscatter measurements and corrupt retrieved winds. Using a
simple rain backscatter and attenuation model, two methods of
improving wind estimation in the presence of rain are evaluated.
First, if no suitable prior knowledge of the rain rate is available,
a maximum-likelihood estimation technique is used to simulta-
neously retrieve the wind velocity and rain rate. Second, when a
suitable outside estimate of the rain rate is available, wind retrieval
is performed by correcting the wind geophysical model function
for the known rain via the rain backscatter model. The new
retrieval techniques are evaluated via simulation and validation
with data from the National Centers for Environmental Prediction
and the Tropical Rainfall Measuring Mission Precipitation Radar.
The simultaneous wind/rain estimation method yields most
accurate winds in the “sweet spot” of SeaWinds’ swath. On the
outer-beam edges of the swath, simultaneous wind/rain estimation
is not usable. Wind speeds from simultaneous wind/rain retrieval
are nearly unbiased for all rain rates and wind speeds, while
conventionally retrieved wind speeds become increasingly biased
with rain rate. A synoptic example demonstrates that the new
method is capable of reducing the rain-induced wind vector error
while producing a consistent (yet noisy) estimate of the rain rate.

Index Terms—Maximum-likelihood, scatterometer, SeaWinds,
simultaneous wind/rain retrieval, Tropical Rainfall Measuring
Mission (TRMM) Precipitation Radar (PR).

I. INTRODUCTION

THE SEAWINDS scatterometers aboard QuikSCAT,
launched in mid 1999, and the Advanced Earth Observing

Satellite 2 (ADEOS II), launched in November 2002 by the Na-
tional Aeronautics and Space Administration (NASA), provide
a unique and valuable source for widespread observation of
near-surface ocean winds. The SeaWinds rotating pencil beam
design enables wider coverage than previous fan-beam instru-
ments like the NASA Scatterometer (NSCAT) [1]. Validation
studies demonstrate that the SeaWinds scatterometer operates
at high accuracy in most wind and weather conditions, e.g., see
[2] and [3].

SeaWinds scatterometer wind estimation is possible due to
the relationship between the near-surface vector wind and the
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normalized radar backscattering cross section ( ) of the ocean
surface [4], [5]. This relationship has been empirically deter-
mined and is known as the geophysical model function (GMF)
[6]–[8]. The GMF is a function of wind speed, wind direction
relative to the antenna azimuth angle, incidence angle, polar-
ization, and frequency. Wind estimates are formed by inverting
the GMF given several measurements from different azimuth
angles [9].

During rain (which affects about 4% of SeaWinds data), the
scatterometer measurements are augmented by additional
backscatter from both atmospheric rain and surface rain pertur-
bations [10]–[13]. The returned signal from the wind-roughened
seas is also attenuated by falling hydrometeors. A simple em-
pirical rain backscatter and attenuation model for use with Sea-
Winds is developed and evaluated in [14]. Because the GMF
does not account for rain affects, the additional scattering from
rain causes estimated wind speeds to appear higher than ex-
pected. Also, the directions of rain-corrupted wind vectors gen-
erally point cross swath, regardless of the true wind [15].

The degradation of SeaWinds on QuikSCAT scatterometer
accuracy during rain prompted development of a probability-
based rain flag given several rain-sensitive parameters, known
as the multidimensional histogram (MUDH) rain flag [15]. Be-
sides the MUDH flag, a variety of other rain flags for Sea-
Winds on QuikSCAT have been suggested, e.g., [16]–[19], but
no formal attempt has been made to correct rain-corrupted wind
vectors.

This paper discusses a novel method for improving wind es-
timates in the presence of rain using the simple rain-backscatter
model developed in [14]. The paper focuses on two wind re-
trieval methods: simultaneous wind/rain estimation and rain-
corrected wind retrieval. First, when an estimate of the rain rate
is not available, the wind velocity and rain rate is simultane-
ously retrieved using maximum-likelihood estimation (MLE).
This method can be used for postcorrection of SeaWinds on
QuikSCAT data, and to provide an auxiliary earthwide database
of rain rates. Second, when knowledge of the rain rate is avail-
able, the GMF is directly corrected for the known rain rate. The
wind is then retrieved using the adjusted GMF. The rain-cor-
rected retrieval technique can be used to provide a more accurate
wind estimate than simultaneous wind/rain retrieval by elimi-
nating rain rate ambiguity.

After presenting background on the conventional wind re-
trieval method in Section II, this paper describes the combined
wind/rain MLE approaches in Section III. In conjunction with
SeaWinds rain retrieval, wind vector cell filling variability is
discussed in Section III-C, along with a calculation of the nor-
malized standard deviation of the rain backscatter model in Sec-
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tion V. The paper evaluates the wind retrieval skill for both si-
multaneous wind/rain and rain-corrected methods via simula-
tion, comparing each method to the conventional wind-only re-
trieval in Section VI.

In addition, validation studies are performed for the MLE
approach with colocated data from the Tropical Rainfall
Measuring Mission (TRMM) Precipitation Radar (PR), and
winds from the National Centers for Environmental Prediction
(NCEP). These data are used to train the model and are
described in detail [14]. The comparison dataset contains 100
disjoint sections of the TRMM PR swath over a three-month
period, from August to October 1999. The data are colocated
spatially and temporally with QuikSCAT to within 10 min and
only include regions in which overlapping TRMM PR swath has
more than 2.5% measurements flagged as “rain certain.” Thus,
only regions with significant amount of rain contamination are
used. Due to the orbit of TRMM, the colocated set restricted to
a latitude band within of the equator. For wind retrieval
validation of the simultaneous wind/rain technique, NCEP
1000-mbar winds from the QuikSCAT L2B dataset are used.
These wind data are trilinearly interpolated (in space and time)
from a 2.5 2.5 latitude-longitude grid with a temporal
resolution of 6 h. A bias correction, valid over the colocated
dataset, is applied to the NCEP winds to adjust for differences
in reference height. The colocated set contains approximately
250 000 QuikSCAT wind vector cells, approximately half of
which contain some rain within the footprint. The set is large
enough to contain a representative sample of wind speeds over
the tropics, and a large range of rain rates. Additional validation
against radiometer data is given in the companion paper [20].

A synoptic example is given in Section VII, demonstrating
the utility of simultaneous wind/rain retrieval. Simulation and
validation demonstrate that the simultaneous wind/rain retrieval
method works best in the swath sweet spot, and is not usable
on the swath edges. As expected, the nadir region tends to be
noisier than the sweet spot. The method works well for most
wind and rain conditions, although some wind/rain states cause
ambiguity between wind speed and rain rate, resulting in spu-
rious rain rate estimates or abnormally low wind speed esti-
mates. Such anomalies usually occur in extreme wind or rain
conditions, and in connection with cross-swath blowing winds.
In zero-rain conditions, simultaneous wind/rain retrieval pro-
duces somewhat noisier results than the conventional method,
especially at nadir. Further work is intended for quality control
in such areas of degraded performance.

II. DATA

This section provides a brief background of wind scatterom-
etry and a description of the SeaWinds instrument. The main
backscattering mechanism at scatterometer incidence angles is
Bragg resonance from waves on the order of the electromag-
netic wavelength [5] (a few centimeters for SeaWinds). The am-
plitude of the centimeter-scale capillary waves are in large part
driven by wind stress on the surface of the water [21]. Ocean
backscatter is a function of the magnitude and orientation of the
waves, and is thus a function of the vector wind stress. Given
neutral stability conditions (equal surface air and surface tem-
perature with an adiabatic lapse rate), the backscatter is also re-

lated to the wind at a given reference height (traditionally 10
or 19.5 m) [22]. The relationship between the neutral stability
wind velocity and is described by the GMF.

Because the GMF maps two parameters (speed and direc-
tion) to one ( ), retrieving both wind speed and direction over
the ocean requires multiple measurements from various az-
imuth angles [23]. The SeaWinds antenna is designed with two
offset-fed beams: an inner h-polarization beam at an incidence
angle of approximately 46 , and an outer v-polarization beam at
an incidence angle of 54 . The SeaWinds rotating antenna de-
sign achieves the needed azimuthal diversity by measuring each
point on the surface at least four times, twice by each beam (fore
and aft) as the antenna rotates [1]. In standard SeaWinds pro-
cessing, the satellite swath is segmented into approximately 25
km 25 km wind vector cells (WVCs). The measurements
with centers located within the 25 25 km WVC are used to
create a wind vector estimate at that WVC. The SeaWinds de-
sign affords a wide 1800-km swath (72 WVCs in the cross-track
direction), covering 90% of the earth on a daily basis.

Due to the scanning pencil beam design, measurement geom-
etry varies along the cross track. In the center of the swath (nadir
region), the fore and aft beams are nearly 180 apart, while the
difference in azimuth between fore and aft beams goes to zero
on the swath edges. Also, the outer nine WVCs on either side of
the swath only obtain measurements from the outer v-polariza-
tion beam. Thus, the outer-beam swath edges and the nadir re-
gion have a somewhat poor viewing geometry for wind estima-
tion. In the off-nadir inner-beam regions, known as the “sweet
spots,” the azimuthal diversity is very well suited for wind re-
trieval [24].

Estimating wind speed and direction involves inverting the
GMF given colocated measurements at each WVC. The
GMF inversion method adopted for SeaWinds is a MLE tech-
nique [9]. Assuming Gaussian noise and independent samples,
the probability of the measurements given the surface wind
velocity is

(1)

where is a vector containing the measured values, is the
measurement variance, is the GMF, is the wind
speed and direction, and the azimuth angle of the instrument.

The mean corresponding to the probability distribution given
in (1) is the GMF values given the true wind speed and direc-
tion. The variance is a combination of uncertainty in the GMF,
signal noise due to fading, and thermal noise. Traditionally, the
variance is defined in terms of , the normalized standard
deviation of the GMF, and , the normalized standard devia-
tion of the communication or signal noise. The total variance of

is given by [25]

(2)

where is generally written as

(3)
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The coefficients , , and depend on fading characteristics of
the surface scatterers and the SNR at the receiver [24], [26].
is the true without communication noise.

For SeaWinds processing, is assumed to be constant,
and is approximated by the model function estimate of

(4)

Using this approximation, and combining (2) and (3) yields

(5)

SeaWinds processing simplifies (5) by the assumption

(6)

yielding (after some algebra)

(7)

The coefficients kp , kp , and
kp are computed and stored in the standard Sea-
Winds L2A product.

The SeaWinds data processor estimates the wind via the sim-
plified likelihood function formed by treating the outside vari-
ance term of (1) as a constant, taking the negative logarithm, and
dropping constant terms [25], yielding

(8)

An iterative search routine is applied to find the maxima of (8),
in which the variance term is computed from each trial wind
vector. Because of symmetry in the GMF and uncertainty from
noise, the likelihood function generally has 1 to 4 local minima,
each representing a possible wind vector solution. The wind
vectors corresponding to the local minima are known as am-
biguities.

After generating the set of ambiguities at each WVC, an am-
biguity selection routine is required to produce a unique wind
vector field. The traditional ambiguity selection approach in-
volves two steps: nudging and median filtering. Nudging sets
each WVC to the ambiguity closest to an outside estimate of the
wind. The NASA Jet Propulsion Laboratory (JPL) uses numer-
ical weather prediction (NWP) winds from the National Cen-
ters for Environmental Prediction (NCEP) as the nudging wind
field. For SeaWinds on QuikSCAT, JPL implements a variant
of nudging known as thresholded nudging [27]. In thresholded
nudging, the set of ambiguities used in nudging depends on
the likelihood values of the ambiguities. Only the ambiguities
whose likelihood values are sufficiently close to the minimum
value are used. After nudging, the median filter step iteratively
selects the ambiguity at each WVC that most closely matches
the flow of the surrounding selected wind. The median filter is
repeated until convergence is reached [28].

III. METHODOLOGY

The wind estimation process described in Section II assumes
that the effects from unmodeled factors such as salinity, sea and
air temperature, sea foam, and rain are small. The GMF variance
term helps account for small perturbations due to these
unknowns in the estimation process. Rain effects, however, have
been shown to be appreciable and at times dominating [14], [29].

The effect of rain on can be parameterized by the addi-
tional scattering and attenuation of the signal

(9)

where is the measured backscatter, is the component
of the backscatter due to wind, is the two-way atmospheric
attenuation from falling rain, and is the effective rain
backscatter due to surface perturbations and atmospheric scat-
tering [14], [29], [30]. The parameters and are assumed
to be independent of azimuth angle and wind velocity, and
thus solely a function of the vertically integrated rain rate in
kilometers millimeters per hour. Here, we adopt the empirically
derived quadratic log-log model for and given in [14] for
use with simultaneous wind/rain retrieval.

The simple rain- model of (9) can be used in conjunction
with the GMF to create a combined rain/wind model function
of the form

(10)

where is the integrated rain rate and is the combined
wind/rain model function. When is unknown, (10) can be
used to simultaneously retrieve the wind and rain. If is
known for each measurement, (10) can be used to directly
correct the model values in the wind estimation process. The
measurement model for the combined wind/rain case is derived
in Section III-A, and the simultaneous wind/rain and rain-cor-
rected wind retrieval methods are described in Sections III-B
and III-C, respectively.

A. Wind/Rain Measurement Model

Applying an MLE technique to simultaneous wind/rain re-
trieval requires a measurement model for the signal and noise in
the combined wind and rain signal. In the measurement model,
the noise in the measurement is assumed to be white Gaussian
like the nonraining case. Also, the communication noise coeffi-
cients , , and used in the conventional wind-only case are
assumed to not change under raining conditions.

We assume that the wind model uncertainty and uncertainty
in the rain model are independent. Given the true wind and rain,
the true backscatter can be written as

(11)
where , , and are zero-mean Gaussian random variables,

is the normalized standard deviation of (the model at-
tenuation in decibels), and is the normalized standard
deviation of model effective rain backscatter. The nonlinear na-
ture of the attenuation term introduces difficulty in calculating
the overall variance of the model. Assuming that the attenua-
tion is not very large, the attenuation term can be simplified by
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truncating the Taylor’s series expansion of about ,
yielding

(12)

Further, by truncating the Taylor’s series expansion of
about , we arrive at

(13)

Using this approximation, the expected value of is easily cal-
culated, giving the model equation

(14)

The variance of is also calculated using the approximation of
(13), yielding

Var (15)

For low to moderate rain rates, is nearly unity, making the
term of (15) negligible. At high rain rates is small, and

the term dominates. Thus, the variability due to attenuation
can be ignored, reducing the variance to

Var (16)

Simulations of the model variance for different values of
support the argument that the variability of the attenuation is
negligible in wind retrieval [31].

Adding communication noise, the scatterometer measure-
ment is modeled as

(17)

Using this model, the expected value of is

(18)

and the variance is [31]

Var

(19)

As in the nonraining derivation of the variance, we replace
with its mean from (14). Using from (3), and making the
assumption [similar to (6)]

(20)

Equation (19) becomes

Var

(21)

For zero-rain conditions, , , and ,
reducing (21) to the nonraining variance of (7).

To further simplify the variance, the first term on the
right-hand side of (21) is manipulated by completing the square
to yield

Var

(22)

Given that the total model backscatter is a constant, the
negative cross term in (22) is parabolic in , of the form

(23)

which has a minimum of at . Al-
though this negative cross term is not negligible, the parabolic
nature has an adverse effect on the MLE by lowering the
variance of potential estimates where the raining backscatter is
on the order of half the total backscatter. The parabolic nature
also raises the likelihood function, artificially discouraging
estimation of rain rates in this regime. In order to eliminate this
problem, we present a reduced version of the variance which
eliminates the negative cross term

Var
(24)

To validate this simplification, wind retrieval skill using both
(21) and (24) is compared in Section V, demonstrating that (24)
yields better wind speed retrieval. It is interesting to note that
if , the form of (24) reduces to the form of the
nonraining variance as intuition suggests

Var (25)

B. Simultaneous Wind/Rain Retrieval

The approximate MLE likelihood function for simultaneous
wind/rain retrieval is written as

(26)

where Var is the variance derived in the pre-
vious section. Simultaneous wind and rain estimates are found
by minimizing the likelihood function for and given the
backscatter measurements.

As in the nonraining case, the likelihood function has sev-
eral local minima corresponding to possible ambiguities. Each
ambiguity has a corresponding wind speed, wind direction, and
rain rate. To yield a unique wind vector field, ambiguity selec-
tion is performed. In order to follow the conventional wind-only
retrieval method as much as possible, a nudging/median fil-
tering ambiguity selection scheme is implemented. For sim-
plicity, nudging for the simultaneous rain/wind retrieval is not
thresholded as with the JPL product [27]; all ambiguities are
used. Median filtering is performed using the modified vector-
median filter described in [28].

C. Rain-Corrected Wind Retrieval

In the case of known rain rate, such as from the Advanced
Microwave Scanning Radiometer (AMSR) on ADEOS II, si-
multaneous wind/rain retrieval is simplified by evaluating the
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MLE likelihood function of (26) at the known rain rate only.
This technique is known as rain-corrected wind retrieval and is
equivalent to a Bayesian estimation technique using a delta-dis-
tributed rain rate prior. In the case of synergistic use of AMSR
radiometer rain rates from ADEOS II, a realistic Bayesian prior
given the AMSR rain rates may also be developed. Simulta-
neous wind/rain retrieval and rain-corrected retrieval are eval-
uated in Section VI.

IV. WIND VECTOR CELL FILLING

Because of the relatively high spatial variability of rain,
beamfilling and WVC-filling effects are significant factors in
interpreting SeaWinds-retrieved rain rates. The retrieved rain
rate corresponding to the selected local minimum of the likeli-
hood function is an irregularly weighted average over an area
larger than the 25 25 km WVC. For each measurement, the
antenna beam response function weights the backscatter values
received from the atmospheric and surface rain scatterers. Thus,
depending on the spatial distribution of the rain within the
footprint, the backscatter response is altered from the true un-
weighted average. This is known as the beamfilling effect. The
variability due to beamfilling is evaluated in [14]. In general,
beamfilling for individual measurements introduces variability
with a normalized standard deviation of 0.21. Additionally, the
spatial layout of the measurements within a WVC, with
the associated overlap and possible lack of coverage, yields an
irregularly weighted rain rate estimate. This is the WVC-filling
effect.

To evaluate the WVC-filling effect, we use the TRMM
PR/QuikSCAT colocated data described in the introduction.
The TRMM PR obtains measurements at a much higher reso-
lution than the SeaWinds scatterometer (about 4 km), affording
an excellent dataset for analysis of subpixel spatial variability.

We examine the WVC-filling effect by evaluating the error
between the “effective” weighted average rain rate seen by
SeaWinds and the nonweighted rain rate averaged over each
25 25 km WVC. The weighted average rain rate is
calculated by first computing the PR-derived antenna-weighted
rain rate for each measurement in the colocated TRMM/Sea-
Winds dataset, given by

(27)

where is the gain of the SeaWinds antenna pattern at each
colocated TRMM PR measurement within the 6-dB SeaWinds
footprint, is the PR integrated rain rate at each 4-km
PR resolution cell, and is the number of PR measurements
within the SeaWinds footprint. Then, all antenna-weighted rain
rates corresponding to each WVC are averaged, yielding the
weighted average rain rate

(28)

where indexes the measurements in the WVC. An example
25 25 km WVC, the 6-dB contours of individual measure-

Fig. 1. Geometry of a sample WVC (bold square) and the 6-dB gain
contours of the individual � measurements (ellipses) comprising the WVC.
A PR-derived rain map is shown in the background.

Fig. 2. WVC-average (unweighted) rain rate versus the weighted average rain
rate seen by SeaWinds.

ments comprising the WVC, and colocated 4-km PR rain rates
are displayed in Fig. 1. To facilitate a comparison, WVC-av-
erage nonweighted rain rate estimates are obtained by av-
eraging all raw 4-km PR rain rates lying within each 25 km

25 km WVC. Fig. 1 illustrates the large area covered by the
measurements and the high variability of rain within the view
of the large SeaWinds footprints.

A scatter plot comparing the WVC-average rain rates to the
weighted average rain rates for the colocated TRMM/SeaWinds
dataset is displayed in Fig. 2. The statistics of the normalized
error are calculated for all measurements with WVC-average
rain rates greater than 2 km mm/hr. The mean of the normal-
ized error, defined as , for the colo-
cated dataset is about , suggesting a slight negative bias of
the weighted-average estimates. The standard deviation is 0.39,
suggesting that the variability due to the WVC-filling effect is
significant. Thus, it is important to interpret SeaWinds-derived
rain rates as an irregularly weighted average of the rain, rather
than an unweighted average of rain over the 25 25 km WVC.

V. ESTIMATION OF

In order to apply the MLE method to simultaneous wind/rain
estimation, the normalized standard deviation of the effective
rain backscatter must be determined. Several factors may
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contribute to including, but not exclusive to, uncertainty in
the model and intermeasurement variability due to nonuniform
rain). We present estimated values due to both of these
factors in Section V-A. Also, we present an empirical approach
to estimating by finding the value of that yields the
most accurate wind speeds in Section V-B. The empirical
is used in the remainder of the paper.

A. Due to Model Uncertainty and Non-Uniform Rain

We first examine the rain backscatter model uncertainty. Vali-
dation of the wind/rain backscatter model [see (9)] given in [14]
yields a normalized standard deviation due to uncertainty in the
model of 1.6 dB, corresponding to a value of 0.45. This,
however, may be an overestimate, augmented by the inherent
variability of the NCEP winds and TRMM PR rain rates used to
validate the model. Thus, we expect the actual variability to be
lower than this estimate.

Second, we examine the intermeasurement variability of
the rain backscatter within a WVC due to rain nonuniformity.
The contribution to from intermeasurement variability
due to rain nonuniformity is estimated using the colocated
QuikSCAT/TRMM data by comparing the model backscatter
computed from the weighted-average rain rate over the entire
WVC to the model backscatter of the rain corresponding to in-
dividual measurements. The model estimate of the backscatter
for the entire WVC, , is computed by projecting the
weighted WVC-average rain rate through the rain model.
Likewise, for all QuikSCAT measurements in the WVC, the
model backscatter corresponding to each measurement is
computed by forward projection of the antenna-weighted rain
rate through the rain model. An estimate of is obtained
by taking the standard deviation of the normalized error

std (29)

for all rain rate observations where the weighted average rain
rate is greater than 2 km mm/h. The resulting value is

, indicating that intermeasurement variability is important
and on the order of the model uncertainty.

B. Yielding Lowest RMS Wind Error

Since the value of affects the likelihood function,
which in turn influences simultaneous wind/rain retrieval, an
alternate approach to estimating is to find the value of

that yields the best wind speed retrieval in real SeaWinds
data. Here, we compare the retrieved wind speed from simul-
taneous wind/rain retrieval to NCEP wind speeds over the
QuikSCAT/TRMM/NCEP colocated dataset.

In comparing QuikSCAT to NCEP, we note that a bias ex-
ists between nonraining QuikSCAT data and NCEP winds [7],
[14]. This bias is partially due to differences in reference heights
between the 10-m SeaWinds wind, and the 1000-mbar NCEP
winds. We adjust for the bias with a multiplicative constant
determined using least squares linear estimation over the non-
raining QuikSCAT winds (as determined from the TRMM PR
rain rate). The bias constant is determined to be

. The remaining discussion uses NCEP wind speeds ad-
justed for the bias.

TABLE I
K VALUE YIELDING THE LOWEST RMS WIND SPEED ERROR WHEN

COMPARED WITH CALIBRATED NCEP NUMERICAL WEATHER PREDICTION

WINDS OVER THE TRMM/QUIKSCAT COLOCATED DATASET. ALSO, THE

CORRESPONDING RMS ERRORS FOR BOTH VARIANCE EQUATIONS

TABLE II
DELINEATIONS OF WIND SPEED, WIND DIRECTION, RAIN RATE, AND

CROSS-TRACK POSITION FOR WHICH THE SIMULATIONS ARE PERFORMED

To find the value of that gives the best speed wind re-
trieval, we perform simultaneous wind and rain retrieval over
the colocated TRMM/SeaWinds dataset for varying values of

and for both likelihood function variance equations [(21)
and (24)]. Then, we choose the value of and corresponding
variance equation that yields the lowest root mean-square (rms)
wind speed error overall. We note that we use the JPL default
value of for the model function variability in the
retrievals. The optimal values of for each variance equation
and the rms error are given in Table I.

The optimal value of is 0.16 corresponding to the re-
duced variance form of (24). Since this value of is the same
as the value used, the variance reduces to the nonraining
variance equation [see (25)]. Thus, for the remaining analysis,
we utilize the nonraining variance equation in the retrievals with

.

VI. SIMULATIONS AND VALIDATION

In order to evaluate the quality of the new wind/rain estima-
tion procedure, we present a simulation and validation study
for simultaneous wind/rain retrieval and rain-corrected wind re-
trieval. For SeaWinds baseline wind-only retrieval, it is known
that for some wind speeds and cross-track positions, the wind
retrieval performance of SeaWinds is somewhat degraded [24],
[32]. This degradation often occurs at low and extremely high
winds, at nadir, and on the swath edges. At low wind speeds,
low SNR often causes wind estimates to be noisy. At high wind
speeds, a saturation in occurs, decreasing the accuracy of the
winds [33], [34]. On the swath edges and at nadir, poor viewing
geometry causes the MLE to be ill-conditioned. However, at
moderate wind speeds, and especially in the “sweet spots” of
the swath, wind retrieval performance is very good.

In the absence of rain, the inclusion of a rain rate param-
eter into the estimation process inherently makes the MLE more
ill-conditioned than wind-only retrieval. However, when rain is
present, simultaneous wind/rain retrieval can significantly im-
prove the wind estimate. It is thus important to evaluate the
performance of the wind/rain MLE procedure with and without
rain. Also, because the wind retrieval accuracy varies with cross-
track position and wind velocity, we evaluate the performance
given a variety of cross-track and wind conditions. The MLE is
evaluated via simulation in Section VI-A for both simultaneous
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Fig. 3. Ratio of rms error between (a) the simultaneous wind/rain retrieval (RMS ) and the wind-only retrieval (RMS ) and (b) the rain-corrected wind retrieval
(RMS ) and the wind-only retrieval (RMS ) as a function of rain fraction.

Fig. 4. Directional error statistics as a function of true direction for four rain rate cases with wind speed of 7 m/s. In each plot, the rain-corrected wind retrieval
is shown on top, simultaneous wind/rain retrieval is in the middle, and wind-only retrieval is on the bottom.

wind/rain and rain corrected retrievals. Validation of simulta-
neous wind/rain retrieval with NCEP winds and PR rain rates is
given in Section VI-B.

A. Simulation Results

To analyze the performance of the MLE, we perform simula-
tions of the backscatter return for various conditions and eval-
uate the statistics of the retrieved wind and rain. Simulations are
conducted for varying wind speeds, rain rates, wind directions,
and cross-track positions, spanning a wide range of the param-
eter space (see Table II). Nominal values of the coefficients

, , and are used with typical measurement geometries at
each WVC.

For each combination of conditions, we project the speed,
direction, and rain rate through the backscatter model [(9)] for

all measurements corresponding to that WVC. Next, zero-mean
Gaussian random noise with the variance given in (25) is added.
Retrieval is then performed for 500 noise realizations for each
set of conditions. The wind vector ambiguity realization that is
closest to the true wind vector is selected.

For each simulation, three retrievals are performed: conven-
tional wind-only retrieval, simultaneous wind/rain retrieval,
and rain-corrected wind retrieval. In wind-only retrieval,
the baseline wind-only likelihood function of (8) is used. In
simultaneous wind/rain retrieval, ambiguities are determined
as the local minima of the wind/rain likelihood function of
(26). In rain-corrected retrieval, the simultaneous rain/wind
likelihood function [see (26)] is evaluated at the true rain rate
only, requiring knowledge of the true rain rate available from
simulation.
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Fig. 5. Wind speed error statistics as a function of true direction for four rain rate cases with wind speed of 7 m/s. In each plot, the rain-corrected wind retrieval
is shown on top, simultaneous wind/rain retrieval is in the middle, and wind-only retrieval is on the bottom. Notice the scale differences of the plots.

In presenting the simulation results, we first examine the rms
error of the ambiguity closest to the true wind as a function
of cross-track position and “rain fraction.” The rain fraction
is defined as the effective rain backscatter divided by the total
model backscatter given the ambiguity selected rain rate and
vector wind averaged over the measurements

(30)

The rain fraction indicates the level to which rain affects the
backscatter measurements, with zero meaning rain has no sig-
nificant effects and one meaning rain dominates the observed
backscatter.

To allow compact comparison of wind-only retrieval to simul-
taneous wind/rain and rain-corrected retrievals, the ratio of the
rms error between simultaneous and wind-only, and rain-cor-
rected and wind-only is shown in Fig. 3 for three cross-track po-
sitions. Fig. 3(a) demonstrates that simultaneous wind/rain re-
trieval on the swath edge performs poorly as indicated by a high
error ratio. Also from Fig. 3(a), simultaneous wind/rain retrieval
is less accurate than wind-only retrieval for zero to low rain frac-
tion data (corresponding to relatively low rain rates). However,
for most rain fractions above 0.2, simultaneous rain/wind re-
trieval has a lower rms error, especially for sweet-spot observa-
tions. These simulations suggest that simultaneous wind/rain re-
trieval works well for most rain corrupted cases, while it slightly

degrades wind retrieval performance in zero-rain conditions.
The degradation in rain-free conditions occurs because the si-
multaneous wind/rain retrieval introduces a third free parameter
(rain) into the estimation process. It is thus possible to spuri-
ously retrieve rain in such situations, especially where the wind
backscatter response is similar to a rain signature. In such con-
ditions, the retrieved wind is less accurate. This problem is ex-
amined further in the companion paper [20].

Comparing Fig. 3(b) to 3(a), the rain-corrected wind retrieval
performs better than the wind-only retrieval for almost all cases
except at high rain fractions, where the wind is almost totally
dominated by rain. The most noticeable improvement over si-
multaneous wind/rain retrieval is on the swath edges, where si-
multaneous wind/rain retrieval does poorly. Also, as expected,
the rain-corrected wind retrieval performs much the same as
wind-only retrieval in zero- and low rain cases.

Next, we examine the directional and speed error of the two
retrieval methods, comparing them to the wind-only result. The
high number of wind/rain/direction/cross-track combinations
prohibits displaying all the cases in this paper. Thus, we only
show several representative examples. Since 7 m/s is the mean
wind speed over the oceans, we show four typical cases with
wind speed of 7 m/s and varying rain rates. For clarity, we show
nadir and sweet spot simulations only. Figs. 4 and 5 show the
directional and speed error statistics for rain rates of 0, 1, 10,
and 30 km mm/h for rain-corrected retrieval, simultaneous
wind/rain retrieval, and wind-only retrieval. For the zero-rain
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Fig. 6. Wind speed error statistics, showing (line) the mean bias and (error
bars) standard deviation, as a function of wind speed for various rain rates. (Top)
The rain-corrected wind retrieval. (Middle) Simultaneous wind/rain retrieval.
(Bottom) Wind-only retrieval. Points are horizontally offset for clarity.

case, the simultaneous wind/rain retrieval of directions is
somewhat less accurate than the other two retrieval methods.
However, for light rain, simultaneous wind/rain retrieval is
more accurate, while wind-only retrieval becomes somewhat
biased. For significant rain, the rain-corrected and simultaneous
wind/rain retrieval are very close to zero-mean, while the
wind-only retrieval is extremely biased in certain directions.
The bias in the wind-only data exists because the wind-only
ambiguities tend to point in a direction parallel or perpendicular
to the swath, regardless of the true direction. For the dominant
rain case, all three retrievals perform poorly with respect to
wind direction, as expected; however, the rain-corrected and
simultaneous wind/rain retrievals are less biased. Figs. 4 and 5
also demonstrate that simultaneous wind/rain directional
retrieval has a lower variance in the sweet spot than in the nadir
region. Thus, directional retrieval in the sweet spot is somewhat
better than at nadir.

Examining the speed error statistics of Fig. 5, the simulta-
neous wind/rain retrieved wind speeds are nearly zero mean for
all rain rates with increasing variability at high rain rates, while
the wind speeds for the wind-only retrieval are extremely biased
at high rain rates. At high rain rates, the simultaneous wind/rain
retrieved speed is biased slightly low for directions nearing 90
and 270 , especially at nadir. The bias is likely due to cross-track
pointing winds appearing to the MLE as rain and, thus, de-
creasing the wind speed while increasing the rain rate. This bias
suggests identifiability problems between the wind and rain for
cross-track blowing winds (see [20]).

The speed error for the three retrieval methods is further
demonstrated in Fig. 6. Here, all simulation wind speed and
rain rate combinations are shown. As expected, the wind-only
retrieval shows considerable biases at low wind speeds for
moderate to high rain rates. These biases are almost completely
corrected in both rain-corrected and simultaneous wind/rain
retrieval, which both exhibit a near-zero mean for almost
all cases. The rain-corrected retrieval is slightly biased high
for very low rain rates and high wind speeds. Likewise, the
simultaneous wind/rain retrieved speeds are slightly biased
high for most rain rate/wind speed combinations.

Fig. 7. Rain rate error statistics, showing (line) the mean bias and (error bars)
standard deviation, as a function of rain rate for several different wind speeds.
Points are horizontally offset for clarity.

Next, we demonstrate the rain retrieval performance of the
simultaneous wind/rain MLE. Fig. 7 shows the rain rate error
statistics of the retrieved rain rates as a function of true rain rate
for varying wind speeds. As wind speed increases, the retrieved
rain rate becomes increasingly biased. The rain rate bias at high
wind speeds is quite high, even at zero rain rate. However, in
low to moderate wind speeds (3–11 m/s), the retrieval performs
quite well. These simulations demonstrate the limitation of ac-
curately retrieving rain in high wind speed regions where the
wind dominates the rain signal. Rain flagging algorithms can
be developed to detect erroneous rain rates in high wind speed
regions and discard them (see [20]).

In summary, simultaneous wind and rain retrieval works
well for many conditions, especially in the sweet spot and for
moderate wind/rain conditions. Nadir-retrieved winds from
the simultaneous method tend to be especially noisier than
winds retrieved in the sweet spots, and simultaneous wind/rain
retrieval is not usable on the swath edges. In the absence of rain,
simultaneous wind/rain retrieval is less accurate than wind-only
retrieval, and thus, it is beneficial to use wind-only retrieval in
nonraining regions. The wind speeds of simultaneous wind/rain
retrieval are mostly unbiased; however, cross-track blowing
winds may cause lower than expected retrieved wind speeds
due to increased ambiguity between the wind and rain effects
in such conditions. Also, in extreme wind, the retrieved rain
rate tends to be biased high, while in extreme rain, the retrieved
wind vectors tend to be highly variable.

B. Validation

In this section, we present a validation of QuikSCAT simulta-
neous wind/rain retrieval with NCEP wind speeds/directions in
Section VI-B1, and with TRMM PR rain rates in Section VI-B2.
The validation of rain-corrected wind retrieval is reserved for
a future paper. Also, as of yet, AMSR rain rate estimates are
not available to use in conjunction with rain-corrected wind re-
trieval. We note that the “wind-only” retrieval referenced here
is the JPL baseline ambiguity selected winds (with thresholded
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Fig. 8. Scatter plot with density curves of the bias-corrected NCEP wind
speeds versus simultaneous wind/rain-retrieved wind speeds for various rain
fraction bins.

Fig. 9. Scatter plot with density curves of the bias-corrected NCEP wind
speeds versus wind-only retrieved wind speeds for various rain fraction bins.

nudging, but without direction interval retrieval; see [27]). We
also note that we omit the swath edges from the comparison.

1) Wind Vector Validation: First, we perform validation
of simultaneous wind/rain retrieval with NCEP wind speeds
and directions. The validation is performed over the colocated
QuikSCAT/TRMM dataset. We correct for the NCEP bias with
a multiplicative constant of 0.83.

A scatter plot displaying the simultaneous wind/rain re-
trieved and wind-only retrieved wind speed as a function of
NCEP wind speed for several rain fraction bins is shown in
Figs. 8 and 9. Simultaneous wind/rain retrieval has a slightly
higher error than the wind-only retrieval for low rain fractions.
However, for increasing rain fractions, the simultaneous
wind/rain retrieval remains essentially unbiased, while the
wind-only retrieval becomes increasingly biased.

At higher rain fractions, many of the wind speed estimates
from simultaneous wind/rain retrieval are driven to zero. A
“zero” wind speed indicates that either the rain is sufficiently
strong so that it totally dominates the signal, or that the
backscatter from the wind appears to the MLE as rain. These
spurious zero wind speeds occur in about 0.02% of rain-free
data, 0.12% of data with rain fractions between 0 and 0.25,

Fig. 10. Scatter plot with density curves of NCEP wind directions versus
simultaneous wind/rain retrieved wind directions for various rain fraction bins.

Fig. 11. Scatter plot with density curves of NCEP wind directions versus
wind-only retrieved wind directions for various rain fraction bins.

Fig. 12. Scatter plot of TRMM PR-derived “effective” weighted average rain
rates versus QuikSCAT-derived rain rates. Density curves are shown, along with
(solid line) the equality line. (Dotted line) Best quadratic fit to TRMM rain rate
(in log space).

3% of data with rain fractions between 0.25 and 0.5, 8% of
data with rain fractions between 0.5 and 0.75, and 19% of
data with rain fractions above 75%. Thus, the zero wind speed
occurrences are mainly in areas of significant rain.
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Fig. 13. Synoptic example of a hurricane. (a) QuikSCAT simultaneous wind/rain derived wind vectors. (b) QuikSCAT wind-only retrieval. (c) QuikSCAT
simultaneous wind/rain derived rain rates. (d) Raw PR rain rates. The box shows the coverage of the PR data. Black pixels represent WVCs flagged as containing
land.

Validation of directional retrieval is demonstrated in Figs. 10
and 11. We note that we have excluded data that have zero wind
speed in the simultaneous wind/rain retrieval from the analysis
in both wind-only and simultaneous/wind rain datasets, be-
cause the simultaneous wind/rain direction is undefined in such
situations. At higher rain fractions, the simultaneous wind/rain
directions are much closer to the true directions, while at
rain fractions above 0.25, the wind-only retrieval begins to
have retrieved directions at only 90 and 270 (cross swath).
Thus, where rain is significant, simultaneous retrieval aids in
correcting wind directions corrupted by rain. The exception is
at very high rain fractions , where the rain dominates
and neither wind-only or simultaneous wind/rain retrieval are
valid.

The rms directional error of the selected ambiguities for
rain-free data is around 30% for both cases, which is higher
than expected. This is partially due to the fact that the dataset
covers mainly areas containing significant patches of rain,
where ambiguity selection is generally poor [32]. Another
contributor to the higher error is the fact that we have included
low wind speeds ( m s) in the analysis, which are generally
noisier than moderate wind speeds ( m s). Excluding data
below 4 m/s reduces the wind-only rms directional error to 24

in rain-free conditions, and the simultaneous wind/rain direc-
tional error to 25 in rain-free conditions. However, removing
the low wind speed data decreases the overall rms directional
error to 27 for wind-only retrieval, while it decreases the rms
directional error only to 29 for simultaneous retrieval. Thus,
while the wind directions for simultaneous wind/rain retrieval
are less biased, they have increased variability.

2) Rain Rate Validation: Next, we compare the QuikSCAT-
retrieved rain rates to the PR-derived weighted average rain rates
over the colocated dataset. A scatter plot of PR rain rates against
QuikSCAT rain rates is shown in Fig. 12. Since the plot is on a
log-log scale, rain rates less than 0.1 km mm/h (the zero-rain
cases) in either of the QuikSCAT or TRMM PR datasets are
not displayed. Of the rain rates that are zero in one of the two
datasets, the vast majority (about 93%) have relatively small rain
rate values ( km mm h) in the other dataset.

Although the QuikSCAT derived rain rates have consider-
able scatter in comparison to the PR rain rates, Fig. 12 demon-
strates a strong correlation between QuikSCAT and PR-derived
rain rates. The QuikSCAT rain rates are biased somewhat high,
which is expected from the simulation. However, the bias can
be corrected. For example, Fig. 12 shows a quadratic fit of the
QuikSCAT rain rates to the TRMM rain rates that can be used
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to correct for the bias. The bias correction reduces the rms error
by about a fourth. Using the bias correction, the rain backscatter
model could be tuned to yield an unbiased estimate.

VII. SYNOPTIC EXAMPLE

In this section, we examine a colocated PR/QuikSCAT ex-
ample over a hurricane. The location of the storm is over the
Ryukyu Islands off the southern tip of Japan on September 22,
1999. Fig. 13 shows the QuikSCAT-derived wind vectors for
both simultaneous wind/rain and wind-only retrieval, along with
the QuikSCAT-derived rain rates and the colocated TRMM PR
derived rain rates.

On the far left, the coverage of the storm is limited to the
outer-beam region of the QuikSCAT swath. Retrieval of rain in
this area is not usable. Thus, wind-only vectors are used in the
outer swath region of Fig. 13(a).

The wind-only retrieval exhibits many rain-induced features
that are corrected by the simultaneous wind/rain retrieval. The
most obvious of these features are the rain bands located up
to about 24 wind vector cells (600 km) from the center of the
storm. The rain band is also visible in the TRMM PR data. The
wind-only retrieval shows dramatic “apparent” wind speed in-
creases and corrupted directions in the rain band due to the elec-
tromagnetic scattering from rain. The simultaneous wind/rain
retrieval yields wind speeds in the rain bands that are more con-
sistent with the wind speeds of neighboring WVCs, along with
generally more self-consistent directions.

Another rain feature corrected by simultaneous wind/rain
retrieval is the wind corruption due to the large area of rain just
south of the storm center. In this case, the wind-only retrieval
shows wind vectors all pointing in the cross-track direction
(nearly east), an indicator of rain. The QuikSCAT-retrieved
rain rates are very high in this region, consistent with the
TRMM retrieved rains compared to the portion covered by
the PR. The simultaneous wind/rain retrieval shows a much
more consistent circular flow in this region, suggesting better
wind retrieval over the wind-only method. These corrected
features demonstrate that simultaneous wind/rain retrieval has
the capability of correcting rain-corrupted winds.

VIII. CONCLUSION

QuikSCAT is a spaceborne scatterometer, originally de-
signed to measure ocean winds. Rain has been shown to be one
of the most significant factors that corrupts wind scatterometer
data. The new technique of simultaneously retrieving ocean
winds and rain significantly improves the wind speed estimate
for many rain-corrupted areas. As a side benefit, simultaneous
wind/rain retrieval provides an estimate of the rain rate, which,
while somewhat noisy and biased, has broad coverage and
can complement instruments such as the TRMM PR. When
an outside estimate of the rain rate is available, rain-corrected
wind retrieval can be used to further improve the rain/wind
estimates.

SeaWinds on QuikSCAT rain retrieval has been shown by
simulation to give the best results in the swath sweet spot
and perform with reduced accuracy on the swath edges (the
outer nine WVCs on either side of the swath). Simulation also

demonstrates that wind speeds from simultaneous wind/rain
retrieval are nearly unbiased, while the wind-only retrieval
produces increasingly biased estimates as rain increases.
However, in zero-rain conditions, the inclusion of the rain rate
parameter into the retrieval process can give rise to spurious
rain rate estimates and correspondingly lower wind retrieval
accuracy at those WVCs. It is thus most beneficial to perform
simultaneous retrieval only in raining areas.

The rain-corrected wind retrieval method presented in this
paper enables synergistic use of the SeaWinds scatterometer
with radiometer data such as was planned with the AMSR
aboard ADEOS II before the spacecraft’s failure in late
October 2003. However, similar methods can be used with
future scatterometer missions. In addition, the simultaneous
wind/rain method can be applied for reanalysis of SeaWinds
on QuikSCAT data to improve the wind vector estimates and to
provide an auxiliary dataset of worldwide rain rates.
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