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An Improved Simulation Model for Spaceborne
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Abstract—Development of scatterometer designs and ap-
plications requires extensive data simulation. The advancing
capabilities of instruments motivates our proposal for an im-
proved simulation model for noisy scatterometer measurements.
Previous simulation models do not separately account for the
two forms of random variation—signal fading and additive
noise—which affect scatterometer measurements. The proposed
model is able to generate data that are statistically equivalent (in
a mean and variance sense) to actual instrument measurements
by accounting for both variations, while maintaining ease of
implementation. The model is particularly adept at handling
design tradeoffs related to signal-to-noise ratios by appropriately
separating fading and additive noise. Unlike previous models, the
new model also can account for correlation between measure-
ments, an issue that has recently become important.

Index Terms—Data simulation, scatterometry.

I. INTRODUCTION

DEVELOPMENT of scatterometer instruments and data
processing algorithms relies heavily on simulation. In

particular, modeling and simulation of random fluctuations
in the measurements is a critical portion of assessing the
performance of a design. For scatterometry, variations occur in
two forms. The first is fading due to the coherent summation
of responses from multiple surface scatterers. Fading is multi-
plicative in nature and is related to the magnitude of the surface
response. The second random variation is additive noise caused
by a variety of thermal and environmental factors [1].

Previous simulation models couple the two variation sources,
fading and noise, into one equivalent term, e.g., [2]. While this
assumption may be appropriate in some circumstances, devel-
oping scatterometer applications benefit from improved simu-
lation models. In particular, the two sources of variation, while
independent in origin, are correlated by the nonlinear square law
processing used by most instruments. Further, proper definition
and determination of signal-to-noise ratios (SNRs) is difficult
when using a single variation term. Complex models that prop-
erly account for these variations have been created for some in-
struments. However, they are instrument specific and extremely
time consuming to develop. This limits their utility in simula-
tions designed to use data from multiple instruments.

To facilitate development of new instrument designs and
additional scatterometer data applications, we propose an im-
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proved statistical model for simulating scatterometer data. The
proposed model is specific enough, by accounting for fading
and noise separately, to accurately simulate data variations,
yet general enough to be quickly and easily adapted to any
microwave scatterometer configuration. Example applications
for the model include development of sample backscatter fields
for wind estimation, image enhancement, and polar climate
studies [3]–[5].

The presentation of the model is organized as follows. Sec-
tion II develops a general framework of scatterometer measure-
ments. It discusses causes and effects of variation in a general
measurement formulation. Section III then presents the statis-
tical simulation model, applying it to the measurement scheme
of Section II as well as externally derived results. Finally, Sec-
tion IV summarizes findings and concludes.

II. DATA COLLECTION

Scatterometers operate by transmitting pulses of microwave
energy and measuring the amount of energy that returns to
the instrument. The measurement of returning backscatter is
directly related to the normalized radar cross section () of the
surface [1]. By assuming a large number of individual scatterers
in the measurement and that no one scatterer dominates, the
voltage response of each measurementcan be modeled
as a complex random variable having a Rayleigh distributed
magnitude and a uniformly distributed phase [1]. The random
nature of each pulse is caused by the coherent integration of
all scatterers illuminated. is related to the voltage response
through the expected value squared

(1)

where is the expected value operator, and is the area of
instrument illumination. From values, physical parameters
such as surface roughness and near surface wind can then be
inferred [1], [6].

Unfortunately, the received signal is corrupted by additive
noise. Noise comes from multiple sources, most notably from
internal thermal excitement of the instrument electronics and
radiometric radiation incident on the instrument antenna. Since
the magnitude of the internal thermal noise is the most signifi-
cant, we model all additive variation as coming from this source.
Thermal noise in the receiver bandwidth is zero mean and nor-
mally distributed with a white spectrum.

A variety of instrument measurement configurations have
been used for past instruments [6]–[10]. For this letter, we
develop our simulation model using the general measurement
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Fig. 1. Simplified signal flow model for scatterometer measurements. See text for definition of terms.

scheme used in [7] and described by Fig. 1. We then demon-
strate application of the model to other measurement forms.

A transmitted microwave signal scatters off the surface
having response . In the course of flight, the signal spreads
as a function of instrument-to-surface rangeand wavelength,

. The received response is integrated over its areawith
weighting equivalent to the gain of the antenna. Thermal
noise is modeled internal to the instrument by placing it
after the antenna gain filtering. In the final step of processing,
the received signal is squared to create a power signal and
integrated to obtain the total measurement energy.

Mathematically, we can define the transmitted signal as

(2)

where is the total transmitted energy, and is the pulse
modulation function. The received signal can then be
written as

(3)

(4)

where denotes the signal portion of the measurement (en-
closed in brackets in (3) and shown in Fig. 1). By using the bulk
range in the denominator, assuming that all filters are ideal,
and is constant over the area of integration, and defining the
variance of the noise as , it can be shown that [9]

(5)

where

(6)

with as the peak antenna gain, the effective area of the
measurement

(7)

and

(8)
The receiver bandwidth and the time of integration are
assumed wide enough to fully capture the signal.

Scatterometers remove the bias caused by the noise by
making a separate noise-only measurement, so that [1]

(9)

where is the unbiased measurement. Given that
, where and are the noise-only bandwidth

and integration time, and are defined ( ,
) so that .

III. M ODELING SCATTEROMETERMEASUREMENTVARIATION

A commonly used metric to express measurement variability
is , the normalized standard deviation of the measurements,
defined as

Var
(10)

A generally used form of is

(11)

where is related to signal variations,is related to noise vari-
ations, and is a cross-correlation term [2], [3], [10]. The,

, and coefficients depend on the instrument design and mea-
surement SNR.

Past simulation models have simulated noisymeasure-
ments using

(12)

where is a zero-mean Gaussian random variable [2]. An esti-
mate of is then

(13)

This model, while simple and widely used, lumps the variations
of both the multiplicative signal fading and the additive noise
into one variable: . For some applications, this model is ad-
equate; however, it is difficult to separate the two independent
variations and, thus, handle SNR design tradeoffs and measure-
ment correlation effects.

Our proposed model accounts for these issues by modeling a
scatterometer measurement as the sum of the mean backscatter

and two random variables

(14)

where and are instrument specific coefficients, andand
are zero mean, unit variance, Gaussian-distributed random vari-
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ables. The two random variablesand have a correlation co-
efficient

(15)

where . While the origins of and are inde-
pendent, the power-law squaring procedure used in processing
correlates the signals. Theterm accounts for this.

We note that modeling of the signal fluctuationas Gaussian
may not always be a valid assumption. Scatterometers integrate
the squared signal over a particular time and bandwidth. Appli-
cation of the central limit theorem suggests that the Gaussian
approximation is valid when the time bandwidth product ap-
proaches 10 or greater [1]. For most previous instruments,
this product has been in the hundreds, easily justifying the
assumption, though there have been some exceptions due to the
processing used [11]. Newer instruments use high pulse rates
that can lower the time bandwidth product to levels where this
assumption becomes questionable. In this case, the distribution
of can be modified appropriately.

To adapt the model to a particular instrument, values for, ,
and must be determined. While expressions forhave been
reported for several instruments, we present only two examples
here. In general, the term accounts for the variance of the
measurements due to fading, and theterm accounts for the
noise in the signal, both in and . Since and are zero
mean, the expected value of the model measurement is

.
For the measurement scheme developed in [7], the variance

of an unbiased measurement has the form of (11) and can be
expressed as

Var

(16)
where is the normalized signal variance, is the SNR,
is the signal-noise cross-correlation function, andis a special
function that starts at 1 ( ) and converges to the inverse
of its arguments as it increases (see [7]).

Our simulation model can be adapted to this scenario by
choosing

(17)

and

(18)

with

(19)

It should be noted, that while the term in (18) appears to be
dependent upon the return signal magnitude, the noise-to-signal
term

(20)

cancels out the signal values, resulting inbeing dependent
only on the noise (18), i.e.,

(21)

Spenceret al.[8] derived the basic statistics for the SeaWinds
instrument, showing the variance (in simplified form) to be

Var (22)

where is the bandwidth of both the signal and noise measure-
ments. This variance form is similar to that of the Active Mi-
crowave Instrument (AMI) on the European Remote Sensing 1
(ERS-1) satellite [12]. The model is adapted to [8] using

(23)

(24)

(25)

In both adaptations, it can be seen thatis nonnega-
tive, since all of the terms are positive. Additionally, in [7]

, allowing to satisfy its definition. The
second adaptation [8] also satisfies , since for
SeaWinds.

The separation of signal and noise components in the model
allows for significant simplification in the control of simulated
SNRs. In both cases illustrated, theparameter depends only
upon the signal, and the parameter depends only upon the
noise. The SNR is, thus, the ratio ofto scaled appropriately
to account for the other terms. Similarly, .

A final consideration in the development of the statistical
model is its simulation of correlation between measurements.
This topic has previously been irrelevant due to small measure-
ment overlap and low sampling rates of instruments. Recent de-
signs that oversample the surface now require its consideration.
Using the results of Yoho and Long [9], the correlation between
measurements (9) can be shown to be

(26)

where is the fading covariance between the two measure-
ments. When , . Comparing this to our model, we
obtain

(27)

which requires additional consideration for the two random
terms, and . First, we choose to be independent, identically
distributed so that . This models the behavior
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of thermal noise that is independent from one pulse to another.
Conversely, the fading between pulses is correlated with

(28)

The correlation expression is then

(29)

where

(30)

is the cross-correlation coefficient. Assuming that both mea-
surements, and , have an identical time-bandwidth product,

for the scheme in [7] is

(31)

which is a consistent extension of the single measurement defi-
nition of .

IV. SUMMARY AND APPLICATION

Simulation of variations in scatterometer measurements is an
essential part of performance assessment of data applications.
The proposed model simply and accurately produces simulated
measurements for these purposes. The model can be easily
adapted to most existing instruments and is capable of han-
dling measurement correlation in developing instruments. By
separately handling the two components in the measurement
variance the model accurately describes their effects and
better describes the signal-to-noise performance of a particular

algorithm or application. While the model does not simulate
every nuance of a particular instrument, it generates values
which have statistically equivalent means, variances, and
covariances and, therefore, is useful in application development
and simulation.
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