
42 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 1, JANUARY 2002

Evaluation of a Compound Probability Model With
Tower-Mounted Scatterometer Data

Benjamin E. Barrowes and David G. Long, Senior Member, IEEE

Abstract—Six months of data from the YSCAT94 experiment
conducted at the CCIW WAVES research platform on Lake On-
tario, Canada, are analyzed to evaluate a compound probability
model. YSCAT was an ultrawideband small footprint ( 1 m) mi-
crowave scatterometer that operated at frequencies of 2–18 GHz,
incidence angles from 0 to 60 , both h-pol and v-pol, and which
tracked the wind using simultaneous weather measurements. The
probability distribution function of the measured instantaneous
backscattered amplitude( ( )) is compared to theoretical distri-
butions developed from the composite model and a simple wave
spectrum. Model parameters of the resulting Rayleigh/generalized
lognormal distribution probability density function (pdf) ( , 1,
and 2) are derived directly from the data and are found to demon-
strate relationships with wind speed, incidence angle, and radar
frequency.

Index Terms—Generalized lognormal distribution, microwave
scatterometer, sea surface scattering, small-footprint scatterom-
eter.

I. INTRODUCTION

T HE PRINCIPAL application for scatterometers is ocean
microwave anemometry, i.e., wind speed estimation over

bodies of water through radar cross section measurements.
The relationship between the environmental parameters of the
air–sea interface and the observed radar cross section () is
referred to as the geophysical model function (GMF). Under-
standing the GMF is central in interpreting scatterometer data.
However, it remains poorly understood due to the complexity
of the air–sea interface. The normalized radar cross section
of the sea surface is dependent on many parameters including
incidence angle, microwave frequency, transmit and receive
polarizations, wind direction, long wave field, salinity of the
water, water temperature, air temperature, and other factors [1].
Tower-mounted scatterometers such as YSCAT are deployed in
an effort to better describe the geophysical model function and
aid in the understanding of the relationship between environ-
mental parameters and radar backscatter. This paper focuses
on the probability distribution of the instantaneous amplitude
of electromagnetic backscatter ( ) from a wind-roughened
water surface.
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A brief summary of the YSCAT instrument and the YSCAT94
experiment is provided in Section II. In Section III, is mod-
eled by a conditional probability [see (2)] following the devel-
opment in [2]. The distribution for is discussed in Sec-
tion III-A-1, while is derived for both the h-pol and v-pol
cases in Section III-A-2. In Section IV the resulting distribution
for , referred to as a Rayleigh/generalized lognormal dis-
tribution (R/gln), is calculated numerically using these distribu-
tions for and and then compared to YSCAT94
data sorted according to frequency, polarization, wind direction
(upwind or downwind), incidence angle, and wind speed. This
is followed by a summary and conclusion.

II. YSCAT INSTRUMENT

YSCAT is a tower mounted microwave scatterometer
designed to collect normalized radar cross section ()
measurements of the sea surface under varying radar and
environmental parameters [3]. For this study, YSCAT gathered
data at frequencies of 2 GHz (S-band), 3 GHz (S-band), 5 GHz
(C-band), 10 GHz (X-band), and 14 GHz (K-band) and at
incidence angles of 0(nadir), 10 , 20 , 25 , 30 , 40 , 50 ,
and 60 is analyzed. YSCAT’s antenna was specially designed
to provide a fixed beamwidth of approximately five degrees
over most of its 2–18 GHz operating bandwidth. Mounted 10
m above the water surface of Lake Ontario, Canada, during
the YSCAT94 experiment, the antenna footprint diameter was
approximately 1 m for midrange incidence angles. YSCAT
could transmit and receive at both horizontal and vertical
polarizations and tracked the wind direction with the aid of
simultaneous weather data acquired at the site. In this paper,
“upwind” and “downwind” include 20 of the wind direction.
In situ measurements of wind speed, wind direction, rainfall,
and water temperature measurements were also recorded. For
a more detailed description of YSCAT, the reader is referred to
[3] and [4]. A summary of YSCAT’s RF parameters is provided
in Table I.

The YSCAT94 experiment consists of data collected by the
YSCAT instrument when it was deployed for a period of six
months, from June to November, 1994 on the WAVES research
platform operated by the Canada Centre for Inland Waters
(CCIW) about 1.1 km from the western shore of Lake Ontario.
Water depth at this site is about 12 m, and the annual variation
in water depth is less that 0.5 m. There are no significant tides,
seiches, or associated currents, and other random currents are
typically less than 10 cm/s. The CCIW tower was designed to
minimize both wind and wave disruption [1] and therefore no
effort is made to account for turbulence on the wind and the
waves caused by the tower. Prevailing winds in this area were
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TABLE I
YSCAT RF SYSTEM PARAMETERS

TABLE II
COUNT OF VALID YSCAT94� MEASUREMENTS

westerly, which provided fetches from 1.1–2 km. Due to this
short fetch, waves with periods of four seconds were common,
while waves with periods of 8 s or more were rare [4].

The data from the YSCAT94 experiment analyzed in this
paper consist of one minute backscatter amplitude () records
measured at a 2 kHz sampling rate. The 2 kHz power measure-
ments are averaged to yield a data rate of 10 Hz. This integration
time of 100 ms is long compared to the coherence time of the
waves on the scale of interest and therefore may effect our es-
timated backscatter distributions, especially at low amplitudes
where spikes may dominate the otherwise small average. Radar
cross sections ( ) were calculated from these records, and were
binned according to frequency, polarization, wind direction (up-
wind or downwind), incidence angle, and wind speed. The vast
majority of one minute backscatter amplitude records were mea-
sured during steady wind conditions leading to stablevalues.
However, one minute data records with means far removed from
the aggregate mean of that data bin were generally found to have
fluctuating wind speed measurements and unstablevalues
and were therefore discarded. Data collected during or after
rainy periods and data corrupted by equipment failures or other
sources of error (e.g., ships, birds) were also removed. Table II
summarizes the resulting number of measurements in each
data bin after these data records were discarded. To reduce er-
rors introduced by receiver gain fluctuation due to temperature

changes, distance variations from the water surface, or other fac-
tors, each one minute data record was first normalized by di-
viding by the mean of that individual record. Subsequently, all
one minute data records in that bin were multiplied by the ag-
gregate mean of all one minute data records in that bin.

III. YSCAT94 BACKSCATTER DISTRIBUTIONS

The most common model for sea scattered radar return at
moderate incidence angles is the composite model. The com-
posite model assumes that the sea surface is composed of small
independent patches each of which has a normalized radar cross
section ( ) given by small perturbation theory (SPT) as [1], [5]

(1)

where is the normalized radar cross section,is the inci-
dence angle, ) is a polarization dependent reflection co-
efficient with being either or , is the microwave
wavenumber, and is the wave height spectral density evalu-
ated at the Bragg wavelength .

These patches of relatively small waves (on the order of cen-
timeters), are modulated, or tilted, by larger waves with wave-
lengths typically on the order of meters. Consequently, the radar
cross section distribution depends on the distribution of the long
wave field. Following Gotwols and Thompson [2], the com-
pound probability model is reviewed and extended in the re-
mainder of this section.

A. Compound Probability Model

The compound probability model, originally proposed by
Valenzuela and Laing [6], considers the aforementioned two
scales of waves separately. According to the model, the radar
cross section of the sea surface depends on both the waves
which are on the order of or smaller than the radar footprint (the
Bragg waves) and on the underlying tilt imposed from waves
with wavelengths much larger than the radar footprint (gravity
waves). For the former case of shorter wavelength waves,
is considered constant but the instantaneous amplitude of the
return varies, yielding the conditional probability . For
the latter case of longer wavelength waves due to incidence
angle and hydrodynamic modulation by long wavelength
waves, is allowed to vary with probability . The
amplitude distribution may then be expressed as the conditional
probability

(2)

The probability of measuring a given backscatter amplitude
can be calculated by considering distributions on the orders of
both scales.

1) Distribution of : When the scatterometer foot-
print is large, the scattered fields should be normally distributed
via the central limit theorem. In this case, the amplitudeof
the radar return should be Rayleigh distributed [7]. On the
other hand, when the scatterometer footprint is on the order of
the intermediate to large sized waves, this assumption is less
valid, but should still hold if the footprint encompasses several
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Fig. 1. “Best” fit Rayleigh/generalized lognormal distribution (R/gln) for data
at 5 GHz, h-pol, downwind, 30incidence angle, and wind speed 5 m/s plotted
on (a) linear and (b) log scales. Estimated R/gln distribution parameter values
area = 20:81, a = �26:32, andC = 4:4712e5. The solid smooth line is
the best fit R/gln distribution, while the solid jagged line is the data histogram.
The dashed line is the best fit Weibull distribution.

correlation lengths [2]. This conclusion has been previously
debated [8], [9], with Gotwols and Thompson [2] concluding
that for their small footprint data, is indeed Rayleigh
distributed. Due to the similarity of the footprint size, the
present analysis assumes that is Rayleigh distributed
for YSCAT94 data based on the previous theoretical justifica-
tion and the experimental results in [2]. Because Gotwols and

Thompson’s analysis is for midrange incidence angles, this
assumption may be less valid for YSCAT observation angles
of 0 , 10 , and 60.

2) Distribution of : In order to completely determine
in (1), expressions must be found for the reflection coef-

ficients and the wave number spectrum .
Using the reflection coefficients derived from SPT (see [5]) and
a simple Phillip’s spectrum, Gotwols and Thompson
noted the linear nature of the h-pol and the quadratic nature
of the v-pol return in log space as a function of wave slope
for their pathological case of 45incidence. Accordingly, for the
general case, they proposed the following model forversus
wave slope

(3)

where is either or for v-pol and h-pol respectively. From
(3) we can find an expression for by applying the trans-
formation law for probability density

(4)

Assuming that the wave slope distribution is a normal
distribution with variance and zero mean and noting that

(5)

and from (3)

(6)

it can be shown that for , [2]

(7)

(9)
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Fig. 2. Aggregate amplitude mean (�) and variance (� ) of YSCAT94
amplitude measurements according to Bragg wavelength (�) for a fixed wind
speed of 4 m/s [(a) and (b)] and for a fixed wave slope [(c) and (d)]. Circles
indicate v-pol, upwind values. Pluses indicate h-pol, upwind values.

and for the more general case of [10]

(8)

with as defined by (6) and for . The pdf in
(7) is referred to as the lognormal distribution. The pdf described
by (8), was first identified in [11] as the generalized lognormal
distribution and is the focus of the next section. From (2),
may be modeled by (7) for and (8) for .

For the more general case of , (2) becomes (9),
shown at the bottom of the previous page, where polarization
dependence has been dropped for notational convenience. Using
(3) and (4), (9) may also be written in terms ofas

(10)

Fig. 3. ja j values versus significant wave slope. (a) 20, (b) 25 , (c) 30 ,
and (d) 40 incidence angle. Data is for v-pol, downwind case. The thin solid
line corresponds to 2 GHz, dashed line corresponds to 3 GHz, dotted line
corresponds to 5 GHz, dash/dot line corresponds to 10 GHz, and the bold solid
line corresponds to 14 GHz. Circles indicate bins with only one or two minutes
of data.

Equation (10) provides a model which describes the pdf of the
radar backscatter amplitude from the sea surface at midrange
incidence angles. More is said about this distribution in Sec-
tion III-C.

B. Generalized Lognormal Distribution

The generalized lognormal distribution is defined in terms of
by (8) or in terms of [using (3)] as in (11), shown at the

bottom of the next page. Four parameters,, , , and ,
dictate the distribution function produced by (11). However, the
distribution can be degenerate (i.e., it has nonunique solutions)
when all four parameters are left free. In order to contrast, ,
and values for different data bins, this problem of degeneracy
is alleviated by fixing to be the representative slope standard
deviation ( ) of 0.0914. This value of the slope standard devi-
ation was chosen from the population calculated from wire
wave gauge data [10] recorded at the CCIW site. The absolute
values of , , and are dependent on this fixed . How-
ever, the relative values of these three parameters is comparable
to other studies because theshapeof the generalized lognormal
distribution is dependent only upon the relativeand [11].

To aid in the comparison of YSCAT94 data with (10), the
mean and variance of the generalized lognormal distribution
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Fig. 4. a values versus wind speed and significant wave slope. (a), (b) 20,
(c), (d) 30 , and (e) and (f) 40 incidence angle. Data is for v-pol, downwind
case. The thin solid line corresponds to 2 GHz, the dashed line corresponds to
3 GHz, the dotted line corresponds to 5 GHz, dash/dot line corresponds to 10
GHz, and the bold solid line corresponds to 14 GHz. Asterisks correspond to
bins with no data, and circles indicate bins with only one or two minutes of
data.

(11) are derived as shown at the bottom of the page. The mean
is given by (12), shown at the bottom of the next page. Using
the change of variables

with

(13)

Fig. 5. Distribution shape progression for the Rayleigh/generalized lognormal
distribution according to wind speed. Data is for 10 GHz, v-pol, downwind, 20,
and wind speed 1–10 m/s. Distribution with the lowest tail is for 1 m/s wind
speed, highest tail is 10 m/s.

Equation (12) may be written as (14), shown at the bottom of
the next page, and thus the mean of the generalized lognormal
distribution is given by

(15)

By a similar method, the variance may be written as

(16)

Note that the same distribution is generated regardless of the
sign of . Also note that the parameter appears only as a

(11)
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Fig. 6. a , a , and C values for the Rayleigh/generalized lognormal
distribution for 10 GHz, v-pol, downwind, 20, wind speed 1–10 m/s.C values
are scaled by the relation20 log (C)� 100. Solid line representsa values.
Dashed line representsa values. Dotted line representsC values.

squared quantity in (15) and (16). Due to this, in Section IV the
absolute value of is plotted instead of .

C. Rayleigh/Generalized Lognormal Distribution

The distribution defined by (10) is referred to in this paper
as the Rayleigh/generalized lognormal (R/gln) distribution. An
analytical solution to this integral is not known by the authors.
However, (10) may be successfully integrated numerically over
all possible wave slopes for a given set of parameters,

, and and for a specific value of backscatter amplitude
. Amplitude probability distributions produced in this

Fig. 7. a , a , and C values for the Rayleigh/generalized lognormal
distribution for 10 GHz, v-pol, downwind, 20, significant wave slope
0.1–0.34.C values are scaled by the relation20 log (C) � 100. Solid line
representsa values. Dashed line representsa values. Dotted line represents
C values.

manner may be fit to histograms generated from YSCAT94
10 Hz sampled raw data records [10] for each data case
using the Kullback–Leibler distance between two probability
distributions [12]

(17)

By minimizing (17), , , and values are determined for
each YSCAT94 case according to frequency, polarization, wind
direction, incidence angle, wind speed, and estimated signifi-
cant wave slope. An example fit of the R/gln is shown in Fig. 1.

(12)

(14)
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Fig. 8. Log-mean (�) and log-variance (� ) according to Bragg wavelength (�). (a) and (b) show the mean according to the Bragg wavelength for (a) wind speed
of 4 m/s and (b) significant wave slope of 0.2. (c) and (d) show the log-variance according to the Bragg wavelength for the same cases. Circles indicate v-pol,
upwind values. Pluses indicate h-pol, upwind values.

The fit produced by the R/gln is excellent even in the tails while
a best fit Weibull distribution does not model the high amplitude
portion of as accurately. , , and results calculated in
this manner for the more than one thousand data cases are dis-
cussed in Section IV.

IV. RESULTS

Fitting the R/gln distribution to the YSCAT94 data results
in the distribution parameters which describe the behavior of
the instantaneous amplitude backscatter distributionsof the
YSCAT94 data set. Some statements about trends visible in the
R/gln parameters, and specific examples from a few select cases
are presented here. For a more exhaustive report of these results,
the reader is referred to [10].

Each R/gln parameter displays general trends when tabulated
versus environmental parameters. For example, the mean
backscatter amplitude for each data case exhibits a general
trend of increasing with wind speed and significant wave slope,

though the increase is more gradual with significant wave
slope. In general, the higher the frequency and the higher the
incidence angle (i.e., the smaller the Bragg wavelength), the
lower the mean amplitude. The same (very) general statements
may be given for the variance of the amplitude measurements
for each data case, although for both the mean and variance
a decreasing trend can be observed for 0(nadir) scattering,
especially at higher frequencies. Fig. 2 shows the amplitude
mean and variance for different Bragg wavelengths.

In general, values display trends reversed from those of
the amplitude mean and variance.values tend to decrease ac-
cording to a log relationship with wind speed and significant
wave slope with the exception of 0(nadir) cases, which dis-
play a slight tendency to increase. It should be remembered,
however, that the model under consideration has no theoretical
justification at very low incidence angles and therefore model
parameters in this regime should be viewed accordingly.

R/gln values tend to stay in the same range of 5–25 for dif-
ferent frequencies and incidence angles. A slight upward trend
can be seen in many cases when plotted versus significant wave
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slope as in Fig. 3. A similar relationship is observed when these
quantities are tabulated according to wind speed [10].

R/gln values also tend to decrease as incidence angle
increases, as can be seen in Fig. 3. R/glnvalues display
a decreasing trend when considered versus wind speed and
significant wave slope. These values tend to be lower for
smaller Bragg wavelengths (higher frequencies and increasing
incidence angles) as illustrated in Fig. 4. A typical progression
of the backscatter distributions for incidence angles of 0
(nadir)—60 is shown graphically in Figs. 5–7. For the case
of 5 GHz, vertical polarization, downwind, and 20incidence
angle, Fig. 5 shows how the distribution shape changes as wind
speed changes, Fig. 6 shows the relationship between R/gln,

, and parameters and wind speed, while Fig. 7 shows the
relationship of these same parameters according to significant
wave slope.

The statistics of the data after taking the log of each amplitude
measurement also display an interesting behavior. While the
log-mean values rise in a similar fashion to the linear mean, the
log-variance exhibits only poorly defined trends for a given fre-
quency, polarization, incidence angle, and wind direction. This
can be seen in Fig. 8 by plotting the log-mean and log-variance
(mean and variance of the log of the amplitude measurements)
versus the Bragg wavelength (). This failure of the log-vari-
ance to increase with increasing wind speed has been noticed by
others and a possible explanation for this phenomenon is given
in [13].

V. CONCLUSION

Following Gotwols and Thompson [2], the probability dis-
tribution function for the amplitude of the backscatter was cal-
culated based on conditional probabilities (2). For YSCAT94
data, was assumed to be Rayleigh distributed, and the
distribution for was theoretically shown to be the gen-
eralized lognormal distribution for midincidence angles. This
model was based on a second degree polynomial in log space
which approximated the normalized radar cross section ()
predicted by the composite model of a sea containing waves
generated by a simple Phillips power spectrum. The resulting
Rayleigh/generalized lognormal distribution derived from (2)
was fit to YSCAT94 empirical amplitude data distributions. The
goodness of the fit demonstrates validity of this model espe-
cially for midrange incidence angle backscatter. Trends in the
Rayleigh/generalized lognormal distribution parameters, ,
and were identified. displayed a very distinct trend with an
inverse relationship to the mean: data cases with greater means
corresponded to smaller values for. The and parame-
ters also displayed trends when considered versus wind speed
and significant wave slope.
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