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Abstract—Characterizing the variability in sea ice in the polar
regions is fundamental to an understanding of global climate and
the geophysical processes governing climate changes. Sea ice can
be grouped into a number of general classes with different char-
acteristics. Multisensor data from NSCAT, ERS-2, and SSM/I are
reconstructed into enhanced resolution imagery for use in ice-type
classification. The resulting twelve-dimensional data set is linearly
transformed through principal component analysis to reduce data
dimensionality and noise levels. An iterative statistical data seg-
mentation algorithm is developed using maximum likelihood (ML)
and maximum a posteriori(MAP) techniques. For a given ice type,
the conditional probability distributions of observed vectors are
assumed to be Gaussian. The cluster centroids, covariance ma-
trices, and a priori distributions are estimated from the classifi-
cation of a previous temporal image set. An initial classification
is produced using centroid training data and a weighted nearest-
neighbor classifier. Though validation is limited, the algorithm re-
sults in an ice classification that is judged to be superior to a con-
ventional -means approach.

Index Terms—Maximum a posteriori classification, maximum
likelihood classification, radiometer, sea ice, sea ice classification,
scatterometer.

I. INTRODUCTION

B ECAUSE the polar regions of the Earth play a critical role
in the global climate, the remote sensing community has

had a keen interest in the variability of polar sea ice characteris-
tics. Sea ice influences heat transfer between the warmer ocean
and cooler atmosphere. In this process, ice thickness and den-
sity are particularly important. The extent and surface character-
istics of sea ice affect the global radiation budget by regulating
the amount of solar radiation reflected back out into space. In
addition, these regions influence the planetary water exchange
cycle as well as local biota distributions. Sea ice is also consid-
ered a sensitive indicator of long term global climate change [1].
Hence, an accurate knowledge of important surface character-
istics of sea ice is a valuable tool in acquiring an understanding
of these geophysical processes.

Microwave remote sensing provides an excellent means for
monitoring polar sea ice. Both active and passive microwave

Manuscript received May 3, 1999; revised November 8, 1999. This work
was supported in part by the National Aeronautics and Space Administration
(NASA), Washington, DC, and in part by NASA Code YS Project 665-21-02.

Q. P. Remund and D. G. Long are with the Microwave Earth Remote Sensing
Laboratory, Brigham Young University, Provo, UT 84601 USA (e-mail:
remundq@ee.byu.edu; long@ee.byu.edu).

M. R. Drinkwater is with the Polar Oceanography Group, Jet Propulsion Lab-
oratory, Pasadena, CA 91125 USA.

Publisher Item Identifier S 0196-2892(00)05526-1.

signatures are much less sensitive to atmospheric distortions
than measurements collected at optical frequencies. This is par-
ticularly true in the Arctic and Antarctic, where extensive cloud
cover is common. Many research studies have shown that mi-
crowave signatures of sea ice are sensitive to surface parameters
[2]. In addition, microwave sensors do not require solar illumi-
nation to collect measurements of the surface. However, these
benefits often come at the expense of spatial resolution.

Fundamental sea ice characteristics can be grouped into a
number of general sea ice classes or types. Various studies have
been pursued to classify ice type from observed microwave
signatures. A single-band classifier using 33.6-GHz passive
high-resolution aerial measurements was used on Beaufort
Sea data [3]. Kwoket al. developed a method for classifying
high-resolution ERS-1 SAR imagery using ancillary data from
meteorological databases [4]. Rignot and Drinkwater also
performed a MAP classification on polarimetric airborne SAR
data and compared results to high resolution passive microwave
data [5]. Haraet al. proposed an unsupervised polarimetric
SAR multi/first year ice classifier using a neural network
followed by iterative maximum likelihood (ML) classification
[6]. The primary strengths of these approaches lie in the high
spatial resolution capability of the instruments. Consequently,
image pixels are much less likely to contain a mixture of ice
types. Lower resolution techniques have also been proposed.
Wensnahanet al.proposed a classification method using passive
radiometer data [7] to estimate the concentrations of first-year,
multi-year, and thin ice in the Arctic. In [8], a classifier was
developed that uses single channel 5.3 GHz ERS scatterometer
data. Finally, a neural network classifier for sea ice type is
given in [9]. These studies are representative of the different
work that has been done in microwave sea ice classification.

This paper presents a multisensor sea ice classification ap-
proach that uses multispectral, dual-polarization data collected
from both active and passive spaceborne instruments for the seg-
mentation of Antarctic data. In Section II, important background
information is given describing the instruments from which data
is collected, the image reconstruction methodology, the ice ex-
tent mapping techniques, and the basic ice type signatures. Sec-
tion III introduces the multivariate analysis techniques funda-
mental to the preprocessing stage of the algorithm including
data fusion and principal component analysis. The sea ice clas-
sification algorithm is described in detail in Section IV. A brief
derivation of statistical measures as well as convergence metrics
are given. Results of the application of the algorithm to actual
data are presented in Section V. The final section contains the
conclusions.
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II. BACKGROUND

The proposed ice classification scheme uses data from several
different spaceborne instruments. This section provides a brief
background of each of the data collecting instruments and the
corresponding ice type signatures. In addition, the methodology
for image reconstruction is described. Finally, an ice masking
algorithm that removes open ocean pixels is summarized.

A. Spaceborne Microwave Sensors

Data from three different sensors are used in the classification
approach that follows. The sensors are chosen for their temporal
simultaneity of measurement collection during the target time
frame of September–October 1996. In addition, all of the se-
lected instruments have large scale coverage capability. The first
data set comes from the NASA scatterometer (NSCAT) that flew
from August 1996 to June 1997. NSCAT is a dual-polarization,
dual-swath, fanbeam scatterometer that collects measurements
at multiple azimuth and incidence angles [10]. Doppler filtering
is used to segment each fanbeam footprint into cells with reso-
lution on the order of 25 km. Operating at Ku-Band (14 GHz),
NSCAT has six vv-pol and two hh-pol beams. While NSCAT
was originally designed to measure near surface wind vectors
over the ocean surface, it has also found great utility in land and
ice studies such as in [11] and [12].

The second sensor is the active microwave instrument (AMI)
aboard the European remote sensing satellite (ERS-2) [13]. One
mode of operation of the AMI is the wind scatterometer mode,
which measures the vv-pol normalized radar cross section
( ) at several azimuth and incidence angles. While similar to
NSCAT in its fanbeam configuration, the ERS-2 scatterometer
has only a single side-looking swath. The instrument uses range
filtering to resolve the measurements to an effective resolution
of about 50 km.

Finally, passive radiometer data is used in concert with the
active scatterometer data to produce a merged data set. The spe-
cial sensor microwave imager (SSM/I) aboard the Defense Me-
teorological Satellite Program (DMSP) series of satellites is a
total-power, seven channel, four frequency radiometer [14]. The
channels are h- and v-pol at 19.35, 37.0, and 85.5 GHz and v-pol
at 22.235 GHz. Brightness temperature () measurements are
collected from each channel. The 3 dB antenna footprints range
from about 15–70 km in the along-track direction and 13–43
km in the cross-track direction. The 3 dB antenna footprints,
which are different for each frequency, generally have an ellip-
tical shape on the surface of the earth due to the elevation angle
of the radiometer [15].

B. Image Reconstruction

While the inherent resolutions of the various instruments are
sufficient for the study of large-scale phenomena such as sur-
face winds or atmospheric parameters, they can be too low for
use in some studies. In an effort to ameliorate this problem and
to place the data on compatible grids, the scatterometer image
reconstruction (SIR) algorithm is used to enhance the spatial
resolution of both scatterometer and radiometer data [16], [17].
SIR is an iterative block multiplicative algebraic reconstruc-
tion technique that increases the resolution of reconstructed im-

agery through the use of multiple passes of the satellite. SIR uti-
lizes the increased sampling, though irregular in geometry and
sample spacing, to raise the side lobes of the antenna pattern in
the spatial frequency domain and thus increase resolution.

For scatterometers, (in dB) has a nearly linear incidence
angle dependence over a limited range of incidence angles

, given by

(1)

where is normalized to 40incidence and is the inci-
dence angle dependence of. SIR creates images of both
and for each scatterometer. NSCAT images are reconstructed
on a 4.45 4.45 km grid with an effective resolution on the
order of 8–10 km. For NSCAT, the SIR with filtering (SIRF) al-
gorithm is used [16]. For ERS-2, the median filter is not used.
ERS-2 images are generated on a 8.98.9 km grid with an ef-
fective resolution of 20–25 km.

A univariate version of SIR can be applied to radiometer data
such as SSM/I [17]. The lower side lobes of SSM/I make resolu-
tion enhancement more difficult. However, a clear improvement
in resolution is observed in the reconstructed imagery. That is,
surface features are more clearly defined in SIR imagery than in
nonenhanced images on the same grid. SSM/I brightness tem-
perature SIR images are reconstructed on a 8.98.9 km
grid for all channels except 85V and 85H which have a pixel
spacing of 4.45 4.45 km.

All images are generated using six days of data with three
days of overlap in consecutive images. While NSCAT v-pol and
SSM/I can achieve full coverage of the Antarctic ice pack in
much less time, ERS-2 and NSCAT h-pol require the full six
days. For consistency in pixel spacing between the different im-
ages, the 8.9 km images are interpolated to the 4.45-km grid.
All parameter images are used in the classification except for
the ERS-2 images, which have relatively high noise levels
and are thus discarded. The final merged data set consists of 12
dimensions with three , two , and seven images. Sample
images of all 12 types are shown in Fig. 1 for 1996 JD 261–266.
Fig. 2 shows two zoomed versions of these images, which il-
lustrate the Weddell Sea quadrant of the NSCAT v-poland
the SSM/I v-pol 37 GHz images. The imagery shown has been
masked with an ice extent mapping algorithm discussed in the
next section. A significant amount of detail is evident in the sea
ice regime of these images. This is exploited in the proposed
classification algorithm.

SIR enables comparison of sensors on compatible grids with
similar resolution. While the SIR algorithm increases the reso-
lution of the reconstructed imagery of a particular instrument,
ice motion during the imaging period is a concern. In a six-day
period, sea ice can potentially move tens of kilometers. This rep-
resents several pixels in the reconstructed imagery. As a result,
the classification results presented as follows are treated as av-
erage behavior during the imaging interval for each pixel.

C. Ice Masking

Open ocean pixels in the reconstructed imagery are masked
out for two reasons. First, the sea ice classification algorithm
presented below uses statistical preprocessing techniques that
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Fig. 1. Image set for 1996 JD 261-266.

Fig. 2. Sample Weddell Sea quadrant images of NSCATA (left) and SSM/I
37V (right).

take advantage of the covariance structure of the data to reduce
the dimensionality of the data space. Since ocean pixels have
typically high covariance values in all of the active and passive
signatures, undue weight would be given to ocean pixels in the
new data space, effectively reducing the classification potential.
Second, a significant number of the image pixels are open ocean
and the removal of these pixels reduces the size of the classifi-
cation data set.

The ice extent mapping algorithm used in this study is de-
scribed in [18]. The technique uses the NSCAT polarization
ratio , as well as the NSCAT v-pol incidence angle de-
pendence of ( ) to discriminate between sea ice and ocean
pixels. Linear and quadratic segmentation techniques are ap-
plied, resulting in an estimate of sea ice extent. Since wind-in-
duced roughness of the sea surface causes ambiguities in the
discrimination, a third parameter , estimating error standard
deviation, is introduced. This metric is sensitive to temporal and
azimuthal variations during the imaging period and is conse-
quently quite large in regions of high winds. Through an em-
pirically derived threshold on this parameter, many of the ini-
tial sea ice extent mapping errors are eliminated. When com-
pared with NASA-Team SSM/I-derived ice concentration maps,
the NSCAT ice extent edge most closely corresponds with the
30% ice concentration edge. A similar study conducted by Yueh
and Kwok found that the NSCAT ice edge was close to the
NASA-Team 25% edge in the Arctic [19]. While very similar,
the discrepancies may be attributed to differences in the char-
acteristics of Antarctic and Arctic sea ice or the analysis tech-
niques. The NSCAT algorithm is used for this study because it
provides an ice edge matching the image resolutions.

Fig. 3 shows the NSCAT and NASA-Team ice edges
plotted over a C-band hh-pol RADARSAT SAR image. The
NASA-Team edge was generated by averaging six days of
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Fig. 3. Ice edge comparison with NSCAT edge (black) and NASA-Team 30% ice-edge (white) plotted over a RADARSAT SAR mosaic (uncalibrated) of a sea
ice region [Radarsat data © Canadian Space Agency, 1996]. A portion of Saunder’s Coast is evident on the left of the image on February 20, 1997.

data to be consistent with the NSCAT imaging interval. While
the RADARSAT image is not calibrated and some obvious
geolocation errors exist, a clearly defined ice edge is observed.
Although both edges are relatively good estimates of sea ice
extent, the NSCAT curve most closely follows the actual ice
edge in this particular case. For the purposes of this study, the
NSCAT method was used to ice mask all parameter imagery
during the preprocessing stage of the algorithm.

D. Ice Type Signatures

Data collected by NSCAT, ERS-2, and SSM/I are used to seg-
ment the data into six general ice types or classes. While the fol-
lowing discussion is based on the general behavior of scattering
and emission from sea ice,in situmeasurement averages for the
various ice classes can be found in [8] for C-Band scatterometer
Antarctic data and [9] for Arctic SSM/I data.

The first ice type to be considered is smooth first-year (SFY)
ice. This class represents relatively young ice that has not been
roughened by the differential motion and deformation of the ice
pack. Ranging in thickness from 10 cm to 1 m, smooth first-year
ice is highly saline with a high density of brine pockets caught
within the ice crystal lattice. The high salinity causes this ice
type to be very lossy and thus dominated by surface scattering
and emission at virtually all frequencies used in the study. The
active signatures exhibit low and values due to the strong
incidence angle dependence of smooth surface scattering from
level ice. measurements are expected to be relatively high.

Like SFY ice, rough first-year (RFY) ice is very saline and
lossy. Surface scattering and emission dominate the signatures.
Motion within the ice pack causes extensive roughening of this
ice type. In general, the rough surface scattering causesvalues
to be higher than for smooth ice types andvalues to rise (i.e.,
have less incidence angle dependence) [20], [8]. While passive
signatures are less sensitive to the difference in RFY and SFY
ice classes, values are radiometrically cooler for RFY when
compared to SFY ice.

Perennial (PER) ice is another important Antarctic ice type.
While multi-year ice is common in the Arctic, less Antarctic sea

ice survives more than one summer’s melt since the Antarctic
continent limits the southern extent. Regardless, a small amount
of perennial ice can be found and is included in the classifica-
tion. Over time, brine drainage results in much lower salinity
and hence lower electromagnetic absorption in this ice type.
This leads to greater penetration depths and volume contribution
to scattering and emission.and values are typically higher
than those for RFY ice, while measurements are lower.

Another sea ice type to be considered in the classification is
the iceberg class (IB) consisting of large floating plates of fresh
water ice that have calved or broken off from an ice shelf. In
the absence of surface melt, this ice class has very low loss re-
sulting in a large contribution from volume scattering and emis-
sion especially at lower microwave frequencies. Furthermore,
these targets may extend vertically out of the water several tens
of meters, thereby acting as strong reflectors. As a result,and

are very high and values are very low compared to other
ice classes. The volumetric scattering contribution also causes a
depolarization resulting in similar response for both v- and h-pol
measurements.

Pancake ice is also included in the classification effort be-
cause of its unique appearance over extremely large areas of
the marginal ice zone during winter ice growth. This ice regime
is normally found in the outer portions of the ice pack where
wave action aggregates and deforms newly growing frazil ice
into small floes called pancakes. The high roughness of this type
results in a signature that is very similar to perennial ice in both
active and passive signatures [8], [21].

The final ice type is the marginal ice zone (MIZ). This dy-
namic region of the ice pack consists of mixtures of ice and
open water. The open water contribution drivesdown. Wind
roughening of the ocean surface in these regions causesand
values to often be confused with other ice types. While pancake
ice is typically found in the marginal ice zone, the two classes
are considered separately in this study in order to discriminate
between regions of low ice concentration in the MIZ and high
concentration pancake regimes existing only under ice growth
conditions.
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One of the complicating factors in sea ice classification is the
seasonal dependence of the ice type microwave signatures. The
signatures are most distinct during the Austral winter months
when ice types exhibit negligible surface melt. Hence, the differ-
ences due to subsurface contributions are strong. When temper-
atures rise and water content increases (typically during the mid-
November to March Austral summer months), the scattering and
emission from lower ice layers become increasingly masked and
surface scattering mechanisms begin to dominate. This causes
ice type clusters to drift in the 12-dimensional (12-D) data space
with some clusters merging together. For this reason, an effec-
tive classification technique must have the ability to adapt to
changing signatures in order to maintain a maximal degree of
accuracy.

III. M ULTIVARIATE DATA ANALYSIS

As previously discussed, the classification data set consists of
12 parameters from which sea ice type is to be extracted. Addi-
tional preprocessing is performed on the data to maximize clas-
sification accuracy and minimize required computational effort.
Since the parameters are measured in very different units, data
fusion techniques are used to give equal weighting to all of the
data. In an effort to reduce the computational complexity and
the noise levels, principal component analysis is implemented.

A. Data Fusion

The 12-D data space consists of three basic types of data with
differing units. The first data type, , is measured in dB with a
typical range of 30.0 to 0.0 dB. The incidence angle depen-
dence of , given by , contains dB/deg values ranging from

0.4 to 0.1 dB/deg. The last data type is , measured in de-
grees Kelvin with sea ice values from 150 K to 290 K, depending
on frequency and polarization. Since each data type is quite dif-
ferent from the others, standardization is required to ensure that
each data type is given appropriate weight in the classification.
The standard approach is to shift and scale the data so that each
of the 12 parameters have zero mean and unit variance. How-
ever, this may remove some ice class information that exists
between the mean responses of parameters that are within the
same data type. In an effort to preserve the ice class-dependent
biases that exist in each data type, the following standardization
technique is applied for a particular observation

(2)

where and are the collective mean and standard de-
viation of all the parameters belonging to a particular data type
(e.g., , , or data), and is the new standardized param-
eter value. Hence, the three general data types, , and
are transformed such that they have zero mean and unit vari-
ance though specific parameters (e.g.,, , etc.) may not
have these characteristics. The resulting data resides in a 12-D
unitless space, in which each data type has similar range and
variance.

B. Principal Component Analysis

The high dimensionality of the classification data set equates
with significant computational requirements. To reduce the
number of required parameters, principal component analysis
(PCA) is implemented. PCA is a powerful data analysis tool
that effectively rotates the data space by projecting each
observation onto a new orthonormal basis [22]. The resulting
basis vectors are chosen such that the first spans the direction of
maximum variance in the data. Successive vectors are chosen
to span the maximum variance not accounted for by previous
vectors.

For the classification problem at hand, data vectors are com-
posed of the 12 standardized values

(3)

where the represent the standardized versions of the NSCAT,
ERS-2, and SSM/I data values. PCA uses an eigenvalue/eigen-
vector decomposition of the data to construct the necessary or-
thonormal basis vectors. The eigenvalue/eigenvector equation is
given by

(4)

where is the 12 12 covariance matrix of the standardized
data, is a matrix with eigenvectors of along the columns
(which form a basis for the original 12-D space), andis a
diagonal matrix with the eigenvalues of along the diagonal
(which represent the variances spanned by each eigenvector).
Once these are obtained, a 121 data vector containing stan-
dardized parameters is transformed through projection onto the
new basis

(5)

The elements of are called the principal component scores
[22].

The analysis technique is used on land/ice masked imagery
to produce 12 principal component images composed of a com-
bination of information contained in the original parameters.
The pixel values in individual PCA images represent coeffi-
cients of the eigenvector associated with that principal compo-
nent score. The size of the corresponding eigenvalues determine
the variance and informational content of each of the images.
For example, the PCA transformation was performed for the mi-
crowave data set during the imaging interval 1996 JD 261-266.
Fig. 4 illustrates the resulting eigenvalue spectrum. Clearly, a
majority of the data variance is contained in the top few principal
component images, implying that lower PCA images can be
neglected with minimal effect on the final classification. Wen-
snahanet al.suggest keeping only PCA parameters whose vari-
ance is much larger than measurement uncertainty (converted
into principal component space) [7]. Such a choice of eigen-
vectors allows information to be separated from noise. Indeed,
the lower principal component images used in this study appear
very noisy with image reconstruction artifacts dominating the
features. Hence, by ignoring these eigenvectors, we eliminate
undesirable noise as well as reduce data dimensionality.

Another method for choosing principal component images is
to keep the top PCA transformed images that account for
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Fig. 4. Eigenvalue spectrum for the principal component data rotation during
the imaging interval of 1996 JD 261-266. A large majority of the data variance
is contained in the first few eigenvectors.

some predetermined percentage of the total variance in the data.
For this classification project, the eigenvectors that span 90%
of the variance are kept for use in the data segmentation. The
90% threshold was chosen to balance increased computational
complexity and increased informational content when including
additional individual components. That is, eigenvalues for the
principal components beyond the first 90% are typically negli-
gible in comparison. Only three PCA images must be retained
in the case of the sample data set, representing 1996 JD 261-266
Antarctic sea ice data. These principal component scores are
shown in the composite RGB image of Fig. 5, where the red
channel contains the maximum variance principal component
score, green contains the second highest variance, and blue con-
tains the third highest. Features from all 12 original data value
images are evident in this figure. The training regions are also
indicated and will be discussed later.

The composite image is composed of a variety of signatures in
the sea-ice annulus around Antarctica. For example, pixels that
contain known icebergs are bright orange in the image. Regions
of old perennial ice are visible in locations where a residual
amount of old ice have been observed in late winter, such as
near the northeastern tip of the Antarctic peninsula [20], [23].
Signatures that appear close to that of perennial ice may be ob-
served in other coastal zones. In the southern Weddell Sea, a
patch of deformed old ice and fast ice may be found surrounding
a number of grounded icebergs [8], with a resulting purple color.
Furthermore, such regions of deformed ice may be found in the
Amundsen and Eastern Ross Seas along the coast. Large por-
tions of the central ice pack have blue and green hues. Blue re-
gions of undeformed, medium, snow-covered first year ice are
found in the central Weddell and Ross Seas, while green appears
more closely related to the younger regions of first-year ice. For
instance, recently formed ice in the Ross Sea, just north of the
Ross ice shelf and relatively thinner, saline young ice formed
around East Antarctica, display larger areas of green hues. One
factor that appears to confirm the relationship between prin-
cipal component two and young ice is the appearance of green
in known coastal polynya regions such as along the Ronne ice
shelf front in the Southern Weddell Sea [8] and in the wake of

the large drifting icebergs, such as those observed off the Terre
Adelie Land coast and those grounded off the Amery ice shelf
[24].

Interesting mixtures of browns and cyans are observed pre-
dominantly at the outer ice margin. Bright cyan signatures ap-
pear to be extensive regions of pancake ice formation, as for
instance in the region of maximum northern ice extent in the
Amundsen Sea. Brown hues are more extensively found at the
ice margin, and likely are associated with mixtures of deformed
and wave fractured floes found in the marginal ice zone, together
with mixtures of open water and ice signatures.

Although previous classification efforts have identified
many of these primary cluster types [8], [25] in single channel
datasets, the unique attribute of the top three principal compo-
nents shown in Fig. 5 is that they show mixtures of the primary
members. Pure red may be thought of as the ice with the
most typical volume-scattering signatures. This encompasses
icebergs, old, thick, snow-covered perennial ice, and fast ice:
all with low salinity. In contrast, pure green appears to indicate
the most different cluster of ice, typifying signatures having
the greatest rate of incidence-angle signature change and the
least volume-scattering-like signatures. Lastly, the pure blue
appears to imply intermediate ice salinity and the least amount
of surface deformations.

PCA can be used not only to reduce the dimensionality and
noise levels of the data but to quantitatively assess the infor-
mational content of multisensor data. By observing the relative
magnitudes of the elements of the first few eigenvectors, one can
determine levels of informational content of the original param-
eters. An example is given in Fig. 6, in which the coefficient
magnitudes of the top three eigenvectors of the sample data are
plotted. The first eigenvector gives very low weighting to the
NSCAT and SSM/I 85 GHz images, while high weighting is
given to the NSCAT and SSM/I 19H and 37H images. The
eigenvector plot can also be used to determine which parame-
ters can be eliminated from the classification. For example, the
first two eigenvectors have very low NSCAT and values,
indicating that the data types do not contribute to the majority
of data variance. We note also that the third principal component
eigenvector has a much higher weight onthan , implying
that one of the parameters could be eliminated without major
impact on the classification.

IV. CLASSIFICATION ALGORITHM

Several techniques are available for classification of N-di-
mensional data sets. A nearest-neighbor approach is perhaps the
simplest when centroids from training samples or electromag-
netic models can be obtained. Iterative clustering algorithms
such as -means or ISODATA represent another methodology
and search for natural clusters in the data. The task then remains
to label the resulting clusters as different classes. In contrast, the
proposed approach is a statistical classification scheme with the
goal of maximizing the probability of correctly classifying sea
ice type. This section presents the classification methodology
through a development of an iterative maximuma posteriorial-
gorithm.
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Fig. 5. RGB composite image of the first three principal components for 1996 JD 261-266. The red channel is the top principal component image, the greenis
second, and blue is third. The image is useful in evaluating the type of information contained in the top three PCA scores. The six training regions are also indicated.

A. Statistical Classification

The intrinsic value of statistical methods of classification
stems from the ease of interpretation of results. That is, sta-
tistical classifiers attempt to maximize a probability measure
given some level of knowledge of class distributions. Two
primary branches have evolved in the field of statistical classi-
fication and estimation: ML and Bayesian classification.

ML methods as applied to discrete classification problems
such as the determination of sea ice type choose the solution
that maximizes the conditional probability of data vector obser-
vation over all possible sea ice types

argmax (6)

where is the chosen ice class,is the principal component
data vector, is a discrete variable of different ice types, and

is the probability of observing given a particular

ice type . Hence, the ML method can be implemented as
long as the conditional distributions are known. Unfortunately,
this is rarely the case. A weakness of this method lies in the fact
that the occurrence of each sea ice type is effectively considered
to be equal. Consequently, classes that occur infrequently, such
as icebergs, are given equal weight in the data segmentation and
may be chosen too often.

Bayesian methods represent another class of statistical ap-
proaches. This scheme requires the definition of a loss function,
which assigns a penalty for misclassifications. The Bayes solu-
tion then minimizes the expected loss, which is also called the
Bayes risk. Under a uniform loss function, this reduces to a max-
imum a posteriori(MAP) classifier. The MAP technique treats
the ice type as a random variable and maximizes the proba-
bility of ice type given the observation vector

argmax argmax (7)
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Fig. 6. Vector element magnitudes for the first three eigenvectors. Eigenvector
1 spans the most data variance, 2 spans the second highest variance, and 3
spans the third highest. The parameter numbers correspond with 1-NSCAT
A , 2-NSCATA , 3-NSCATB , 4-NSCATB , 5-ERS-2A , 6-SSM/I 19V,
7-SSM/I 19H, 8-SSM/I 22V, 9-SSM/I 37V, 10-SSM/I 37H, 11-SSM/I 85V, and
12-SSM/I 85H.

where is thea priori distribution. Since is fixed for a
particular observation, this reduces to

argmax (8)

MAP classification has an advantage over ML techniques in
that the probability of each class is included in the derivation
ensuring that less likely ice types appear less frequently in the
final classification. However, thea priori distribution and the
conditional distributions are required.

Under a Gaussian assumption, the conditional distributions
are

(9)

where is the mean vector, and is the covariance matrix
of ice type , respectively. Hence, the statistical structure of the
data for each ice class is completely determined by the mean
vectors and covariance matrices. Even if the Gaussian assump-
tion is not entirely correct, it is considered to be an improvement
over the simple equal and isotropic distribution assumption in-
herent in a nearest-neighbor classifier, since the Gaussian model
can account for covariance between separate principal compo-
nent scores. This allows the classifier to use cluster shapes in
addition to the centroids to segment the data. For the ML devel-
opment, the maximization of (9) can be simplified. After taking
the natural log (a monotonic function) and with a little mathe-
matical manipulation, we obtain

argmax

argmax (10)

which is equivalent to

argmin (11)

We note that the second term in (11) is the Mahalanobis distance
commonly used in Gaussian classification problems [26]. Thus,

Fig. 7. Flowchart depicting the iterative ice classification algorithm for both
ML and MAP methods.

the ML classification can be interpreted as choosing the class
centroid that minimizes a modified Mahalanobis distance.

A similar development applied to the MAP equations yields

argmax

argmax

(12)

Both ML and MAP methods are separately used and compared
in the sea ice classification given below.

B. Iterative Approach

In order to fully implement the ML and MAP techniques, the
mean vectors and covariance matrices of the individual
ice-type clusters are required along with thea priori distribu-
tion . While a rough estimate of the cluster centroids can be
generated from small homogeneous training regions, it is more
difficult to obtain reasonable estimates of thematrices. How-
ever, estimates can be obtained through an iterative procedure,
assuming that the statistical measures converge to the correct
values.

Fig. 7 illustrates the complete process for the classification of
a time series of image data. The initial SIR-derived images are
first masked to remove all land and ocean pixels using the ice ex-
tent mapping procedure defined in an earlier section. The PCA
linear transformation is then performed to rotate the coordinate
space into ordered maximum variance axes. Next, the resulting
12-D principal component space is truncated by choosing the
top eigenvectors that span 90% of the data variance.

After the preprocessing, an iterative ML or maximuma pos-
teriori classifier is implemented. The first iteration uses the,

, and statistical measures computed from the classifica-
tion of the previous image set. Thus, the preceding classification
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TABLE I
TRAINING REGION SIGNATURES USED IN

THE INITIAL NEAREST-NEIGHBORCLASSIFICATION FOR1996 JD 261-266

is treated as a training set to obtain initial sea ice-type cluster
centroids, covariance matrices, and thea priori distribution. Due
to the seasonal nature of cluster characteristics, the approxi-
mated values are likely erroneous. However, they represent a
good initial starting point for the iterative procedure. After the
first iteration, the statistical measures are updated using the cur-
rent classification. These are then used in a new classification.
The process iterates until predefined convergence criteria are
met. The result is a classified image that maps the spatial ex-
tent of each sea ice type.

One important issue regarding the MAP algorithm is the be-
havior of the estimate during the iterations. It is conceiv-
able that an element of this distribution could go to zero if the
corresponding ice class becomes very scarce. If the ice type later
becomes more abundant, the zero probability from a previous
iteration precludes any pixels from being classified as this ice
type. While this phenomenon is not observed in any of the real-
izations in this study, the problem can be solved by setting some
very low value as a lower limit on values of , preventing
any of them from becoming zero.

C. Convergence Metrics

Two metrics are used to determine algorithm convergence.
Since the Gaussian clusters are completely defined by the cen-
troid vectors and covariance matrices, appropriate norms are
used to obtain scalar measures of individual cluster behavior as
a function of iteration. The Euclidean norm is used to measure
the behavior of the cluster centroid vectors. The matrix spectral
norm of each covariance matrix is computed as a measure of
the overall variance structure of each cluster. The spectral norm
is equivalent to the square root of the maximum eigenvalue of

. Convergence of both metrics for a particular cluster is
a good indication that the cluster remains unchanged from one
iteration to the next.

D. Algorithm Initialization

The algorithm described above is a recursive method using
the classification result from the previous imaging interval to
compute the present sea ice type map. In order to obtain an ini-
tial classification result to start the process, the following proce-
dure is used. Cluster centroid vectors are estimated from small

Fig. 8. ML classification cluster convergence metrics. (Top) Euclidean norms
of each ice type cluster as a function of iteration. (Bottom) Spectral norms of
the covariance matrices.

homogeneous training regions derived from a basic knowledge
of sea ice type spatial behavior and expected microwave sig-
natures. For the ML classifier, a simple nearest-neighbor (min-
imum distance) classification yields the needed initial classifi-
cation result. For the MAP method, the data is segmented with
a weighted nearest-neighbor technique in which the distances
to each cluster are inversely weighted by an initial estimate of

. While an accurate estimate of thea priori distribution is
difficult to produce, an educated estimate can be made through
a knowledge of sea ice type population in Antarctica. For ex-
ample, a large majority of the Antarctic ice pack consists of var-
ious types of first-year ice. Other classes are much less preva-
lent. For either ML or MAP, the nearest-neighbor solution is
used to compute the necessary statistics for the classifier and
initiate the iterative algorithm.

Simulations of the algorithm for both the ML and MAP
techniques are performed. The simulation data consists of
four different 2-D Gaussian distributions with different mean
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Fig. 9. Maximum a posteriori classification cluster convergence metrics.
(Top) Euclidean norms of each ice type cluster as a function of iteration.
(Bottom) Spectral norms of the covariance matrices.

vectors, covariance matrices, and cardinalities. The distribu-
tions are chosen to have significant overlap to increase the
classification difficulty. Simulation results indicate that the
iterative algorithms converge to solutions that are very close to
the actual ML or MAP solutions, given two conditions. First,
the individual cluster centroids must be relatively close to the
actual centroids. In the simulations, this means that the centroid
estimate merely has to be closer to its actual centroid than
any of the others. Second, for MAP classification, the initial
distribution estimate of must be a reasonable estimate of
the actuala priori distribution.

V. RESULTS

The iterative algorithms are applied to the classification
of Antarctic data during consecutive imaging periods in
September and October of 1996. The algorithm is initiated
with multisensor data from JD 261-266. As noted in the
previous section, the nearest-neighbor segmentation is required
for the first image of the time series. As indicated in Fig. 5,
small homogeneous training regions are defined through a

Fig. 10. Centroid locations in the plane of the top two principal components for
the MAP classification of 1996 JD 261-266 data. The initial centroids (triangles)
as well as the final converged centroid points (squares) are shown. Also plotted
are the isoprobability contours according to the sample covariance matrices
obtained from the final classification. The ellipses are 2-� wide.

TABLE II
ICE TYPE CENTROID SIGNATURES AFTER 25 ITERATIONS OF THEMAP

ALGORITHM FOR 1996 JD 261-266

knowledge of sea ice dynamics and microwave signatures.
Table I contains the cluster centroids obtained from these
regions. In addition to the centroids, the MAP algorithm
requires an initial estimate of thea priori distribution. For
the 1996 JD 261-266 image classification, we use

.
Figs. 8 and 9 show the convergence metrics as a function of it-

eration for the ML and MAP classifications, respectively. After
about 25 iterations, all metrics have converged relatively well.
Some minimal centroid drift is still evident in the centroid norm
trends. Most of the ML centroid norms shift significantly (and
erroneously) during the iterations. On the other hand, only two
of the MAP centroid norms move significantly, indicating that
the original centroids are reasonable estimates of the true values.
Fig. 10 illustrates the centroid drifts in the plane of the top two
principal components for the MAP implementation using data
for 1996 JD 261-266. The starting points for each centroid are
denoted with triangles while the final centroid locations are rep-
resented by squares. The effect of the algorithm’s iterative na-
ture is evident, as each of the points move varying amounts.
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Fig. 11. ML (left) and MAP (right) sea ice classifications of 1996 JD 261–266 Antarctic data. The ML result is in error because of the assumption that each ice
type is equally likely.

Isoprobability elliptical contours have also been plotted, sur-
rounding each centroid convergence point using the sample co-
variance matrices from the final classification. The major and
minor axes for each ellipse are 2-wide. This figure not only
shows iterative migration of centroids, but gives a feel for how
much separation exists between different ice classes in the plane
of the top two principal components. Table II contains the final
MAP cluster centroids in the normal parameter space. Table II
can be compared with Table I for an indication of how much the
initial training signatures were modified by the algorithm.

Fig. 11 depicts the final ML and MAP sea ice type images.
Since the ML image has large regions classified as icebergs
and perennial ice, we conclude that the ML algorithm performs
poorly. The primary source of the error is the ML assumption
that all sea ice types are equally likely. This causes clusters that
should have low cardinality to grow to sizes similar to more
common ice types. This effect is responsible for the undesirable
centroid drift discussed above.

In contrast, the MAP result exhibits a much more reason-
able spatial distribution. Several icebergs known from the Na-
tional Ice Center iceberg inventory are classified correctly (see
www.natice.noaa.gov). The largest concentration of perennial
ice is found just off the tip of the Antarctic Peninsula. The ice
here has survived the previous melt season by avoiding being
swept out to sea by the Weddell Gyre. Rough first-year ice in the
classification surrounds smooth first-year ice, which is located
primarily in the inner portion of the ice pack. This is consistent
with the classification results in [8]. In addition, the marginal
ice zone exists on the perimeter of the ice pack as expected.

In order to gain an understanding of possible cross-confusion
that may occur between classes using this algorithm, the Maha-
lanobis distance is computed between the final cluster centroids
in principal component space. Since the Mahalanobis distance
requires a cluster covariance matrix, and each centroid comes
from a different cluster, one of the centroids is treated as the
reference and the other is considered the test vector. In the com-
putation, the covariance matrix of the reference vector is used.
The results are given in Table III for the 1996 JD 261-266 clas-
sification. The table contents may be interpreted by observing
individual columns corresponding to a test ice type cluster. Each
row value within a particular column is a measure of dissimi-
larity between the reference and test vectors. Thus, lower values

TABLE III
MAHALANOBIS DISTANCESBETWEEN CENTROIDS FOR1996 JD 261–266

PROVIDING A MEASURE OFDISSIMILARITY BETWEENDIFFERENTCLUSTERS IN

THE CLASSIFICATION. THE COVARIANCE MATRIX OF THE REFERENCE

CENTROID IS USED IN EACH COMPUTATION

correspond with higher probability that an ice type will be mis-
classified as the reference type. For example, the PER column
implies that perennial ice is much more likely to be misclassi-
fied as pancake ice than smooth first-year ice.

As previously stated, the MAP algorithm requires an initial
estimate of thea priori distribution . The technique is de-
signed to use the resulting from the classification of the
previous image set. However, the first classification in the se-
ries requires the user to provide an approximate for ini-
tialization. In an effort to determine the sensitivity of the final
ice classification to the this parameter, a Monte Carlo analysis is
performed. Several random realizations within a neighborhood
of a nominal are used in the 1996 JD 261-266 image seg-
mentation. The study showed that the final spatial distribution
of ice types is not particularly sensitive to the originala priori
distribution.

Fig. 12 shows classification images generated using two
other methods for comparison. Both were implemented using
the same training data for initial cluster centroids. The left
image is the classification result of the standard-means
clustering algorithm. The -means approach yields a solution
that minimizes the within cluster sum of squared distances
under the Euclidean distance metric. Since no regard is given
to the probability of ice type, the-means result has problems
similar to the ML image. The second image was generated
using a modified form of -means in which a “MAP distance
metric” measured the similarity between data samples and
the centroids. The MAP distance metric is the negative of
the argument in (12). The resulting ice type map is
nearly identical to the MAP classification. In fact, the two
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Fig. 12. K-means clustering classification results of 1996 JD 261–266 Antarctic data using different distance metrics. The left image is the conventionalk-means
result with the Euclidean distance metric. The right isk-means with the “MAP distance” metric as defined in the text.

Fig. 13. MAP ice classification of the image series with day ranges 1996 JD 261–266, 270–275, and 279–284.

agree for 96.5% of the image sea ice pixels. The differences
primarily occur in the number of pixels classified as pancake
ice. Consequently, the modified-means classifier result is
similar to the maximuma posterioritechnique result.

An obvious error in the MAP classification in Fig. 11 is the
RFY-labeled tongue extending from the Ross Ice Shelf. The
perimeter of the ice shelf is actually a region of new ice forma-
tion and divergence. Consequently, the ice in this regime should
have been identified as SFY. The source of the discrepancy is
likely due to frost flower formation on the surface of smooth
ice. Drinkwater and Crocker [27] found that frost flower forma-
tion can yield microwave signatures that are similar to RFY ice.
The proposed classifier did not include a separate classification
cluster for this ice type. A useful line of future research would
include a study of the potential of segmenting frost flower-cov-
ered ice from RFY ice using the results of Wensnahan [7] and
Ulander [28].

Fig. 13 shows the algorithm results when applied to a time
series of images. The original images are generated with three
days of overlap between consecutive intervals. The three-day
spaced classification maps illustrate stability in the ice classes
between contiguous images. Since geophysical variability is
greater on longer time scales, we show results from images
separated by three-day gaps. The ice maps in Fig. 13 reveal a
number of interesting features. First, the temporal continuity
between the spatial distributions of classes such as RFY and
SFY ice types indicates that the algorithm is stable. However,

some misclassification does occur such as the region of MY ice
that appears in the outer ice margin of the Weddell Sea in the
JD 270–275 image. In this case, pixels are exchanged between
the RFY and MY categories.

Classified imagery can be used to better understand certain
geophysical processes. For example, the tongue of RFY ice ex-
tending from the Ross Ice Shelf exhibits some interesting tem-
poral behavior. As discussed previously, this region is likely not
RFY ice, but SFY ice covered with frost flowers formed, as off
ice-shelf winds drive the ice pack northwards. Hence, temporal
changes in the direction of the tongue relate to changes in wind
direction over the ice pack through dynamic adjustments to the
ice drift direction.

Another region of interest is in the outer Weddell Sea, where
a large region classified as pancake ice appears in the last frame.
Initially, this feature appears to be an error in the classifica-
tion. However, examination of the original data set images re-
veals that this classification relates to an actual physical event.
From the first image in Fig. 13 to the last, the scatterometer

values increase several dB, and the radiometervalues
drop significantly. For example, the average NSCAT value
in the area rises from 11.2 to 7.4 dB. The SSM/I 37V
average decreases from 236 to 210 K. The final signatures are
typical of pancake ice. A possible cause for this event is the
occurrence of storm-induced swells penetrating the ice margin.
Under such conditions, intense ice floe fracturing and wave-
washing of floes are observed in the field. Subsequent return of
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the signatures to values more typical of the marginal ice zone,
and rough first-year ice confirm that this is an event of transitory
nature. If this is indeed the case, it may be possible to relate pan-
cake ice “blooms” in ice margin signatures to increased wave
radiation stresses or to surface flooding events caused by in-
creased swells. Further analysis of this phenomenon could com-
pare the occurrence of such signatures with the significant wave
heights observed by altimeters in the region of the Southern
Ocean directly off the ice margin at those times. Similarly, these
events may be classified as “flooding” in future extensions of the
algorithm.

VI. CONCLUSION

This study has demonstrated the utility of a multisensor, iter-
ative maximuma posteriorisea ice type classification algorithm
for Antarctic sea ice. The use of data collected from multispec-
tral, dual-polarization, active, and passive instruments increases
the level of information that can be exploited in segmenting the
data. Through the use of principal component analysis, not only
is the data dimensionality minimized, but the effects of noise
and imaging artifacts are reduced. The resulting data set is clas-
sified in an iterative manner that utilizes MAP statistical tech-
niques. The MAP classifier performs better than ML and the
standard -means and is very similar to a modified version of

-means with a different distance metric.
The iterative classification algorithm yields ice maps with

spatial ice type distributions that are reasonable when general
Antarctic sea ice dynamics are considered. However, while the
algorithm appears to function well, a more detailed validation
study is needed. Unfortunately, Antarctic validation data is dif-
ficult to obtain during this period of sensor overlap. Though
SAR data exists for continental Antarctica, sea ice SAR imagery
during the period spanned by our multisensor data set is scarce.
Future research will apply the algorithm to Arctic data where
validation data is much more abundant both spatially and tem-
porally, and where current efforts are underway to plot ice drift
and dynamics on a Lagrangian grid.

Several implications must be considered in a medium-scale
classification such as the method presented in this study. First,
the six-day imaging period may introduce blurring in the im-
ages due to sea-ice motion, resulting in ambiguous signatures
and misclassification. The limiting factors for this data set are
the scatterometers, which need more time to achieve full cov-
erage of the Antarctic ice pack. In the future, similar algorithms
may be applied using instruments with wider swaths such as the
SeaWinds scatterometer on board the QuikSCAT and ADEOS
II spacecrafts. Furthermore, AMSR in conjunction with Sea-
Winds aboard ADEOS II will provide temporally and spatially
coregistered active and passive data. This provides many of the
channels required for such a method to be applied in the fu-
ture. Both SeaWinds missions reach full coverage in one to two
days rather than six days. SeaWinds on QuikSCAT is currently
in flight, while ADEOS II is scheduled for launch before the end
of 2001. Also, the relatively low resolution, even in the recon-
structed imagery, implies that some pixels may contain a mix-
ture of ice types. Thus, the classification result for a particular
pixel is considered the spatial and temporal average behavior

of sea ice in that region. A promising line of future research is
the extension of this algorithm from a hard to a fuzzy classifier.
That is, for each pixel the concentration of each ice type may
be estimated. It is conceivable that the MAP probabilities could
be used to achieve this. However, a greater understanding of the
effects of within-footprint mixtures on observed microwave sig-
natures is first required. Nevertheless, the algorithm yields re-
sults consistent with historic ice distributions and expectations.

This study has demonstrated one method for the application
of multisensor data sets to classification problems. The use of
multiple sensors appears to improve the ability to identify dif-
ferent classes by combining the inherent strengths of each in-
strument. The three sensors used each add unique information to
assist in segmenting the images into separate ice types. The scat-
terometer NSCAT and ERS-2 are sensitive to surface roughness,
volume inhomogeneities, and other scattering mechanisms that
vary across different ice types. In addition, these instruments
collect measurements at multiple incidence angles. Incidence
angle dependence varies over the spectrum of sea ice types, jus-
tifying the value of this parameter. NSCAT in particular is valu-
able in that it collects dual polarization measurements over a
wider swath at higher resolution. The primary strength of the
C-Band ERS-2 lies in greater penetration depth due to its lower
frequency of operation. Unfortunately, both of these sensors re-
quire several days of data to obtain complete coverage of the
Antarctic. SSM/I also contributes a great deal to the classifica-
tion. As a passive instrument, the SSM/I sea ice signatures are
more a function of surface emissivity and dielectric properties
than their active counterparts. The wide spectrum of frequen-
cies and dual polarization nature of the SSM/I channels offers
sensitivity to a larger range of surface properties than single fre-
quency/polarization instruments. Additionally, the SSM/I mea-
surement collection geometry allows complete coverage of the
Antarctic, usually in one day, though at a lower resolution than
NSCAT.
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