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Accuracy of Scatterometer-Derived
Winds using the Cragr—Rao Bound

Travis E. Oliphant and David G. Longenior Member, IEEE

Abstract—A wind scatterometer makes measurements of the well-suited to delivering confidence estimates along with the
normalized radar-backscatter coefficientsc® of the ocean surface. retrieved wind for each cell where the wind is retrieved.
To retrieve the wind, a geophysical model function (GMF), which In this paper, we present the CramRao (C—R) bound as
relates ¢° to the near-surface wind, is used. The wind vector f " d-retri | that i ful for both
can be estimated using maximum-likelihood techniques from a measure o Wm_ e ”e\(a "_’lccure_‘cy a_ IS usetul for bo
several #° measurements made at different azimuth angles. The Scatterometer design and in-flight wind-retrieval assessment on
probability density of the measureds*° is assumed to be Gaussian a cell-by-cell basis. This measure allows useful evaluation of
with a variance that depends on the truec® and therefore, the accuracy of scatterometer-derived winds. The C-R bound
depends on the wind through the GMF. With this model forwind - ,5\/ides a lower bound on the wind-estimate performance for
estimation, the Cramér—Rao (C-R) bound is derived for wind t timati lqorith 1. W v thi ¢
estimation, and its implications for wind retrieval are discussed. parameter-estimation algorithms [4]. We apply this measure to
As part of this discussion, the role of geophysical modeling the ERS-1/2 AMI scatterometer [1] and the NASA Scatterome-
error is considered and shown to play a significant role in the ter (NSCAT) [12]. In addition, we demonstrate the utility of the
performance of near-surface wind estimates. The C-R bound is C—R bound in assessing scatterometer design by applying the
lllustrated using parameters from the ERS AMI, NSCAT, and  tecpnique to the predicted retrieval geometry of the SeaWwinds
SeaWinds scatterometers. .

scatterometer to be launched in 1999 [14].

The organization of this paper is as follows. First, we present
a useful statistical model for scatterometer measurements,
_ ~which incorporates geophysical-modeling error in a simplified

ATTEROMETERS have been used to estimate winfshion. The C-R bound for scatterometer wind retrieval is
ver the Earth’s oceans from normalized radar crosgren derived as an approximation to the covariance of retrieved

section(o°) measurements since the successful flight of Seagghds. The bound is then applied to ERS-1 and NSCAT data
in 1978 [12]. Estimation is possible using the relationshigs a prediction of the statistical uncertainty in winds derived
betweens® and wind velocity given by an empirically-derivedfrom these instruments. Finally, the bound is used to predict
geophysical model function (GMF). This relationship doege effect on wind-retrieval accuracy of the new pencil-beam
not generally admit selection of a single wind vector as thfesign to be used on the SeaWinds scatterometer.
estimate due to inherent near-symmetry in the GMF. As a
result, wind retrieval is typically a two-step process. First,
a collection of wind vectors is estimated for each resolution II. SCATTEROMETERMEASUREMENT MODEL
element (or cell) using a traditional retrieval method such as . .

( ) 9 N . To better understand the accuracy of the wind estimate,
least-squares or maximume-likelihood. Each of these possﬂ‘t)#]ee C—R bound can orovide a useful tool. since it aives the
wind solutions is callel d aambiguityor analias and is fed to minimTJm achievable \?ariance based on thé assumeg statistical
a second step call biguity removabr dealiasing which odel for the measurements. In this paper, we derive the
selects a single wind vector for each cell. The ambiguities haar?e_R bound for scatterometer'wind retrFi)evF;I ’Since the C—R
similar windspeed but differ in direction [12]. - :
bound depends on the statistical model, the scatterometer-

With any estimator, it is important to have a measure of the . .

. . . . . . measurement model is briefly presented.
uncertainty in the estimate. Previous investigators have use ne of the most important factors in determining a reliable
simulations and comparisons with surface-wind data to relO%E{atisticall -based errgr estimate for retrieved w?nds is the
quality in wind estimates [2]. While useful for pre-flight scate ;) ymodel for the noise in the measurements. Previ-
terometer design, simulations require a significant number © : . T o
gus retrieval algorithms focus primarily on the noise due

computatlpns, which somewhat I|.m|ts th.e|r application. Usmg{ instrumentation and background radiation [2], [12]. This
surface-wind data from buoys, ships, or island weather statians

to assess wind-retrieval accuracy has its own dif“ficultie'ganICItIy assumes that the GMF, which relates wind velocity

including limited cover and difficulty comparing surface0 Normalized radar cross sectiarf,, is an exact relationship.

wind data to scatterometer-derived winds. Neither method dH)S(f)rYé ?Vg ét(\;\lrlgds\;ilr? c;g ;zcg?tsg;ai;nlﬁeﬁ;tgrraﬁﬁidm' long

waves can change the observedfor a fixed wind vector. A
Manuscript received July 11, 1997; revised October 28, 1998. statistical model for wind estimation, from which an analysis
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Let M(6,¢v — ¢,U,p) represent the GMF for a given
frequency, wheré is the radar-incidence anglg,is the radar- 05r
azimuth angle is the wind direction (measured from the
same reference ag),l/ is the windspeed, and is the radar  Z(4
polarization. In theory, this represents the meaabbserved _%
under identical wind conditions. Associated with the GMF is = 5|
the variance ofs° for the same identical wind conditions, &
instrument measurement noise not included. In principle, this 2 5
variance, which we denote ag(d,v» — ¢,U,p), accounts
for the unmodeled (or unknown) parameters in relating wind 2 | -~ £

und o

. . - g ¥ PN ¥ P e T F TR
velocity to o°. Lacking a better statistical model for the = et TT Tt
variability, we assume the variation to be Gaussian. Then, . . ‘ ‘ ‘ ‘ .
for a particular set ofd,x(= ¢ — ¢),U and p, the true 0 S0 Lo 150 t?é)r?(D %3(9) 300 350

. . . . ue wi 1mrecty c S
normalized radar cross sectierf is modeled as a Gaussian £
random variable with meai and variancé’. Defining Far swath direction error (Kpm:())

4,
va%
Kprn = a4
M
we write 3

oy = (14 Kpmv1) M

wherewv; is a unit-variance, zero-mean random variable [8].
With this model, for the trues° of the ocean surface, a
scatterometer measurementan be modeled as [2]

—
T
+
|
|
+

Sm/s
o o 15m/s
= 25m/s

Bound on direction std (Deg.)
[\®]

2= (14 Kpeva)op = (1 4+ Kpevo)(1 + Kppv1 )M 0 } , ‘ ‘ ‘ . ‘
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wherew, is a unit-variance, zero-mean random variable inde- True wind direction (Degrees)

pendent ofv;, and K, is the normalized standard deviatiorrig. 1. Unbiased C-R bound and simulation-computed standard deviations
of communication noise often represented as [7], [12] for various windspeeds and wind directions at far swath for the ERS-1
geometry and noise variance, wilti,,» = 0 using the CMOD4 GMF. The
3 ~ rr_larkers are the C—R-bound calculation, and the curves are sinc-interpolated
Kpc = Ja+2Z + simulation results.

Here,«a, 3, andy represent parameters in the noise model th¥gctor is comprised of the GMF evaluated at the true wind
are instrument dependent but independent of wind velocity [2glocity, using the radar information associated with each
[12]. The statistics of the measuremenare difficult to com- measurement. We denote this measurement vectov!as).
pute, sincek,. is a function ofs?, which is unknown for real The maximum-likelihood [4] wind estimate is then
measurements. For typical values @fand~, approximating )

o¢ by its meanM(w) in the equation foi,,. has little effect W = h(z) = arg mjx[bgpz(z|w)]- 1)

on the distribution ofz [13]. Even with this approximation, . o _ _ o

2 is the product of two Gaussian random variables whose TYPically, the likelihood function has multiple significant
distribution has complicated expresssion but near-Gaussf8aAxima, which implies several wind-vector estimates. This
shape. As a result, approximating the distribution .olis Makes it difficult to talk about the statistics of the wind
Gaussian has little impact on wind retrieval [13]. Thus, wesStimate until after ambiguity removal has been performed

write the distribution ofz, given the true wind vectow, as to select a single wind estimate. Trying to account for the
ambiguity-removal step in a complete statistical development

1 exp {_ [ — u(w)]Q} of the wind estimate is difficult given thad hoc nature of
27 6(w) 2¢%(w) most ambiguity-removal algorithms.
: . Instead, we ignore the ambiguity removal and focus at-
where £/ denotes expectation with tention on the wind ambiguities. Each of the ambiguities
p(w) =E[z] = M(w), is a function of the random measurements and is therefore
(w) = Varfz] = ( K]%c + Kim + Kic Kim) M2 (w). a rapdqm vector. By app.rOX|mat|ng Fhe_ covariance of gach
ambiguity and then assuming the ambiguity-removal algorithm
Wind retrieval requires two or more measurements froselects the ambiguity corresponding to the true wind, a reliable
different azimuth angles [2], [12]. Lacking correlation infor-covariance will be selected as well. While this does not convey
mation forK,,,,, we model these measurements as independéme complete picture since ambiguity selection is ignored, it
so the measurement vecteris multivariate-Gaussian with does provide a quantitative measure of how sensitive each
diagonal covariance matrix. The mean of this measuremandividual ambiguity is to the noisy measurements. With this

p.(shw) =
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Predicted Covariance vs. Scatter Plot, Kpm =0

Predicted Covariance vs. Scatter Plot, Kpm =0.13
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Fig. 2. ERS-1 simulation scatter plots compared with C—R bounds using the CMOD4 GMF. Each point represents the result of a wind retrieval from a Monte
Carlo simulation. One thousand wind retrievals were done for each plot. Ellipses represent 70% bounds assuming a two-dimensional (2-D) tBhusisian dis

in mind, we proceed to approximate the covariance of eatrhthis expression/ is the log-likelihood function

wind ambiguity using the C-R lower bound.
L(w, z) = log p.(z|w)

Ill. CRAMER-RAO BOUND and the vector derivative is a row operator.Hiy = w + a,

The C—R bound gives a lower bound on the covariance Wherea is an arbitrary constant vector, we obtain the unbiased
any unbiased estimator [4]. This bound has been generaliféfdR bound
to the case of any estimator (biased or unbiased) [3]. While
the wind estimate is generally unbiased, it can be biased for

and compared to simulations. section, it can be shown that withi measurements ia,
The general C-R bound can be expressed, ugirgs the

expectation operator over the measurementss [4]

c>J 1t

ot 1 9

K
aMy 1 M,
r=3 |G S Gk S L e @
C(w) = E{[& — Fa)ji — Ea]") i L dwi s O, i 25 dw
S OFw (w) oEd" where dM,, /ow; is the partial derivative of the GMF eval-
- Jw Jw uated atw with respect to wind component; [13]. The

subscript & implies the model function is evaluated with

where J(w) is the Fisher-information matrix defined as . L - .
(w) azimuth angle, incidence angle, and polarization determined
1To reflect its range of validity more accurately, it should be termed the
constant-biased C-R bound. However, we stick to more common terminology

and call it the unbiased C-R bound

OL(w,z)]" OL(w,z)
Ow Ow

J(w)=E [
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Fig. 3. C-R lower bound on ERS-1 speed and direction-error standard deviation ¥&gsudor far swath location. Markers are the bound and curves

are sinc-interpolated simulation results.
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Fig. 4. C-R Lower bound on ERS-1 speed and direction-error standard deviation versus cross-track cell loc#fipn fer 0. Markers are the bound

and curves are sinc-interpolated simulation results.

by the kth measurement ig. The variance of théth mea-
surement is denoted in this equationcdslts derivative with
respect tow; can be expressed as

as2 oMy,

— 2

where

= a1+ K2,) + K,

The partial derivatives of the GMF are typically obtaine

numerically and can be computed for polar = (U, ¢)

the implicit function defined in (1) by a first-order Taylor series
about the mean of the measuremegts= M(w) and then
calculate the expected value of this expansion. The result is

Ed(w) ~ arg max [log p.(M(w)|w)]
=h(M(w)).

Note thath(M(w)) is wind retrieval performed on the noise-
lesso° measurement vectok (w). The gradient of the bias

gan be approximated as the gradient of the previous equation.

Using the chain rule

or rectangglarw = (u,y) coordinateg. In this paper, a OE®  Oh(z) OM(w)

polar-coordinate system is assumed with the angle measured —— = —— = D(w)G(w)
. ) ow Oz | __ ow

clockwise from geographical north. z=M(w)

Computing the biased C-R bound is generally dif“ficuI(Nhere

since there is no explicit formula for the bias. In order to

determine the biased C-R bound, we adopt the approach Glw) = OM(w)

discussed by Fessler [5] to approximate the bias. We expand ow
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is aK x2 matrix (which can be numerically approximated) and

z=z=M(w)

which is a2 x K matrix, computed using the chain rule as

described by Fessler [5]
D(w) = —[D*(w)] "' D" (w).

D* is the 2 x 2 Hessian of the log-likelihood function (for
fixed z), while D! is the2 x K matrix of mixed-derivatives
of the log-likelihood function. The elements &' and D*°

are given expressly, using previously defined symbols, as

O?L(w, z)
Dl \""
* 8wiazj ’
_ LMy M- My OF
D2 _ 0?L(w, )
* 8w28wj ’
s [ Lo o 1o
o o 8w7 6% an' 8w7 25,% an'
o
25}% Bwj
My = My [ OMy 0 OMy. O
L M- My 92M,,
0% M- 0
4 (Mp = M) 9%
2 Ow;0w;
where
RS - 5 P M,
—— =2, My, {1+ K, _—
Gundn; [2ex My, + Br(1+ pm)]awiawj
OMy, OMy,
2¢p,
+Zen 8w7 an' ’
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Fig. 5. Unbiased C-R bound for various windspeeds and wind directions at
far swath for the NSCAT geometry and noise variance wifh,, = 0,
using the NSCAT1 GMF. Markers are the C-R bound, and curves are
sinc-interpolated simulation results.

can lead to significant sensitivity to the method used to
compute the derivatives when estimating the biased C-R
bound. Nonetheless, the approximation outlined here (which
was adapted from a more detailed discussion in Fessler in
[5]) is useful in improving the covariance estimate for certain
wind directions where the retrieval process is biased, and
the unbiased C-R bound does not approximate the simulated
covariance well.

As a lower bound on the estimate performance, the C-R
bound is useful in evaluating wind retrieval both as a reporting
tool and a design tool. It also can be a useful measure of

and M, = M, (h(z)). Similar notation for the partial deriva- the covariance of a given wind estimate and as an uncertainty

tives of M; emphasize that they are evaluatedhgt) =

h(M(w)).

measure of the retrieved wind when assimilating scatterometer
wind measurements into global-circulation models. As the

It should be emphasized that the computation for the biasectual bound depends on the true wind vector (which is
bound given here is only an approximation and has twmavailable), the C—R-bound covariance must be reported
significant limitations. First, the linear approximation used tapproximately by assuming that the retrieved wind is the true
compute the mean may not always be adequate to compwiad vector. In simulations or during design in which the true
the gradient of the mean. In principle, a higher-order Taylovind is known, the C—R bound can be reported correctly.
series could be used to improve the approximation. This wouldin the next two sections, the retrieval precision of ERS-
require third-order and fourth-order derivatives of the GMHA/2 and NSCAT are evaluated using the C—R bound. The
which are difficult to obtain accurately from a tabular GMFC-R bound is also useful as a design tool in obtaining
Second, the derivative matrip?° may be nearly singular predictions of scatterometer performance. The final section
for some wind directions and measurement geometries. Thises the bound to give predictions of the accuracy of the
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Fig. 6. C-R lower bound on-speed and direction-error standard deviation vErsysfor NSCAT far-swath location.

SeaWinds scatterometer. In all three sections, the predictedproblems with using the correct model function in wind
covariance is compared to simulation in order to evaluatetrieval, the C—R bound suggests that this behavior is intrinsic
the usefulness of the C—-R bound as a realistic measuret@fthe wind-estimation problem. The larger variance at these
uncertainty. directions can be attributed to the shape of the model function
and the relative azimuth angles of the observations. When one
IV. CRAMER—RAO BOUND FOR ERS-1/2 of the fore or aft scatterometer beams is directly upwind or
. . ._directly downwind, there is less information about the wind
In this section, we evaluate the C—R bound for win
retrieval using ERS-1/2 AMI scatterometer measurements T% the measurements [13] I . .
discussion is intended to be neither a validation of no; For comparison, standar.d-dewatlon .estlmaFes _from a simple
haustive study of the performance of the ERS scatterome e%mpass. 5|mulat|op [2] with the mamr_num-hkehhood (ML.)
thisag?esented >t/o iIIustrpate the utility of the C—R bound ir%{vfrr'ld-retrlevallalgonthm are also shown in F|g..1V\{|th the solid
analyzing the wind-measurement performance lines. For_a given WVC: the compass simulation is performed
' by repeating the following stepd times: 1) calculating the

In order to understand the results presented, a brief revi . ) , ; .
of ERS-scatterometer geometry is instructive. A detailed dg- F for each true wind vector; 2) adding noise according
9 y ' the K. associated with that WVC and desiréd,,,; 3)

scription of the C-band ERS-1 scatterometer is given in [1],, . . ! . . oo e
. ; . . trieving the wind by maximum-likelihood optimization; and
The ERS-2 scatterometer is an identical follow-on instrume . . . . .
selecting the wind alias that is closest to the true wind as

Three beams obtain® measurements from each wind vecto . . . ) .
. . - e simulated wind estimate. ThHeé-retrieved winds are used
cell (WVC) at two incidence angles and three different azimu - ! : .
0 _calculate statistics on the wind estimate. More details on

angles. The measurement SNR is very high, so most of tcgmpass simulation can be found in [2].

noise in wind retrieval comes from the geophysical-modeling In Fig. 1, the curves were created by sinc-interpolation of

eror (Kym). There are nineteen WVC's across the SingIg’imulation results. These lines appear to also interpolate the
swath with (& = 3) measurements from each WVC. Wind- : bp P

. : . C—R bound results, suggesting that the wind-retrieval algo-
retrieval geometry, and consequently wind-retrieval error,

L . rﬁhm is statistically efficient in an estimation-theoretic sense
distinct for each cell across the swath. For convenience

. ; . _at' far swath and zero GMF error. For most ERS-1 WVC's
representative WVC'’s are selected for study. In the following, . . .
%nd true wind velocities, the agreement between covariance

the European Space Angency (ESA) reported ERS-1 geome rP’édicted with the unbiased C-R bound and covariance cal-

and noise variance along with the CMOD4 GMF [6] ar(EE’:)uIated by simulations is excellent [13], as suggested by

ésht;g;;hough we have observed quite similar results with Otrﬁ{;. 2(a)—(d). These figures also show that the small disparity
between the covariance estimated with the C—R bound and the
simulated covariance that occurs at low windspeed and high
K, values can be improved by using the biased C-R-bound
The unbiased C-R bound for a representative far swathproximation, although the effect is small in these cases.
wind-vector cell of ERS-1 as a function of the true windspeed We can use the C-R bound to investigate the sensitivity
and direction is plotted with markers in Fig. 1. The data for thisf wind estimation to other wind-retrieval conditions. In
figure were generated assuming no modeling etfy,( =0 particular, Fig. 3 shows an example at a representative far
and no uncertainty in the GMF). Note that both the windswath WVC of the sensitivity of the wind estimate to the
direction error and windspeed error are peaked at particu@MF normalized variancék,,.,,) for several windspeeds and a
directions. While this behavior has been previously attributetirection of 120 (corresponding to an uncertainty peak). This

V. RESULTS
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Fig. 7. C-R lower bound on-speed and direction-error standard deviation versus cross-track cell locakigp, fet 0.

figure suggests that the accuracy of wind estimates from ERS- VI. CRAMER-RAO BOUND FOR NSCAT
1 data is quite sensitive to the precise valuerf,, (which In this section, we give results of the C-R bound applied to

is not well known). Again, in this figure, markers indicate th?\lSCAT-retrieved winds using representative NSCAT geome-

C—R-bound standard deviation, while the solid lines represew] and noise-data. As before, the discussion is not intended
sinc-interpolations of simulated data. The comparison betwe% be a validation of nor an exhaustive study of NSCAT

simulations and the C-R bound shows good agreement excegtformance but is presented to illustrate the utility the C-R

at high values off(,,,, and low windspeeds, where the unb|
bound in analyzing the wind-measurement performance.
ased C-R bound overpredicts the simulated standard deviatio
order to more fully understand the results, a brief

in the wind-direction estimate. This indicates that under these . . L
erview of NSCAT is helpful. A more detailed description

conditions, the wind estimate is biased. The approxma?é( X . i
contained in [12]. The NSCAT instrument was launched

biased C-R bound is closer to the simulated results, as'1°’n
Fig. 2. in August 1996 aboard the Japanese satellite ADEOS. It

Another point of interest is the accuracy of wind estimatédPerates under the same general principles as ERS-1 but
across the swath. Fig. 4 shows the C-R bound on the standdid significant differences that contribute to different error
deviation of speed and direction estimates as the cross- -r&Raracteristics. Three main factors contribute to differences in
cell number varies from near (1) to far (19). The true win¥ind estimates from ERS-1 and NSCAT: operating frequency,
direction for these plots is 120 and the results for sev-transmit power, and measurement geometry. NSCAT operates
eral windspeeds are shown. This figure shows quantitativéfyKu-band at 14 GHz. As a result, the model function used
that near-swath winds are not as accurate, especially torrelate wind velocity tos° is different from that used
low windspeeds. In addition, at near swath and under |o@ ERS-1 data. One significant difference is that azimuth
windspeeds, the unbiased C—R bound over-predicts simutaedulation is more pronounced at low windspeeds than
tion performance, indicating a biased estimator under thesie C-band, suggesting that wind-direction retrieval may be
conditions. more accurate at lower windspeeds with NSCAT than with
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Fig. 8. NSCAT simulation scatter plots compared to C-R bounds usipg = 0.13 and the NSCAT1 GMF. Each point represents the result of a wind
retrieval from a Monte Carlo simulation. Ellipses represent 70% bounds assuming a 2-D Gaussian distribution.

ERS-1 [9]. The C-R bound allows us to easily quantify thisSSCAT1 GMF [10], [11], although the results are similar for
hypothesis for a specific WVC. the Wentz [15] (SASS-2) GMF.
NSCAT uses 120-W peak-transmit power compared to
about 5 kW for ERS-1. Consequently, the SNR of NSCAT
data is lower, resulting in a larger value &f,.. This does VIl. RESULTS

not necessarily mean NSCAT retrieves wind less accurately.Thjs section details a few results of applying the C-R bound
however, as GMF modeling error plays a major role in thgy representative NSCAT WVC's. The unbiased C—R bound
wind-retrieval precision. for a representative far swath WVC as a function of the
A key difference between ERS-1 and NSCAT is retrievatye windspeed and direction is plotted in Fig. 5, assuming
geometry for the center antenna. NSCAT uses three beams@® modeling error is zeroK,,, = 0). As was the case for
each side of the spacecraft to gather data for two swaths, egeh ERS-1, both the wind-direction error and windspeed error
approximately 600-km across [12]. The fore and aft beamage peaked at particular true wind directions. However, the
are separated by 90while the center beam is offset 25 asymmetric beam arrangement for NSCAT creates a larger
from center to facilitate the use of Doppler processing. lgeak in the direction of the fore or aft beam closest to the
addition, the center beam makes both horizontal and verticaknter beam.
polarization measurements, while the fore and aft beams makeor comparison, sinc-interpolated simulation results are also
vertical-polarization measurements only. Nominally sixteeshown in Fig. 5 as curves. In the simulation, the wind error
measurements are gathered to estimate the wind in a ffor the ambiguity closest to the true wind direction. The
km square WVC. Each of the two swaths has 12 such cel&-R bound and simulation plots are close but not identical.
However, the measurements can also be collocated so thatin ERS-1 at near-swath and low windspeeds, the large
three to five measurements are available for each of 24—2f&ak in wind-direction uncertainty predicted by the C—R bound
km resolution cells per swath. In the following, we use thior a true windspeed aligned with the fore or aft beam is
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significantly reduced in the simulations. For NSCAT, however, Right mid swath speed error (K__ = 0)
this is only true when the true wind direction is closely aligned 5 o

with the fore or aft beam nearest the center beam. The peak is - 5 ms .
lower in the simulation, because the wind estimate is biasegl2.5 T e

at these locations. For all but these locations, the unbiased
C-R bound gives uncertainty predictions that are very close ® 2r
simulations. This suggests that the wind-estimation algorithrg
for NSCAT is statistically efficient in an estimation-theoretic 8157
sense for almost all wind directions. Similar results apply fois
near and mid-swath WVC'’s. These empirical results justif)k';
using the unbiased C-R bound as a predictor of the uncertaingy, 5,
whenever the retrieved wind is not aligned with the fore or aft
beam closest to the NSCAT center beam. 0 : : : :

In order to explore some of the predictions of the C—R bound 0 50 1T01_(l)le Wiég%ireng?(l)egfggg) 300 350
for the NSCAT instrument, consider Figs. 6 and 7. These o

graphs show how wind-velocity uncertainty varies according Right mid swath direction error (Kpm =0)
to K., and cross-track location, as predicted by the C-R ;5. .

bound for the NSCAT instrument. We note that NSCAT ~ oo smps

predictions are also sensitive to the true value/gf,, over ébzof f_f 52 %2 : .

a wide range off,,,,, values at 25-km resoultion. Also, when =
evaluating the cross-track plots, it should be kept in mind thag

some of the WVC'’s have only three measurements available /\ / RS \
x « x N X

thus causing the variable-estimation performance at certaié

O X x o
cross-track locations. S0 ) xo o XWX e ol .
Fig. 8(a)—(d) shows worst-case and typical predictions mad§ [ e« +* *\\ T e ¢T4t Oy\*/ so .
by the unbiased and biased C-R bound for near and fag 5 S S toegs R
swath WVC'’s. Visual inspection suggests that the unbiase€f %o

C-R bound is a good bound for the typical case but is less 0
accurate for the worst case. This is because the wind estimate
is biased at these wind directions. While the approximation to 6. Unbiased C—R bound (markers) and simulation ( | calculated
H H H H . 9. nblase — oun markers) and simulation (curves) calculate
the biased boun_d CaIC_UIated In thIS_ p_aper Improves _the agr% “several true windspeeds and directions. SeaWinds geometry and noise
ment between simulation and prediction, the approximationygiance for a WVC 350 km to the right (facing in direction of satellite

not good enough to completely predict the biased-estimatoetion) from the subsatellite track are used, along with zero-modeling error

erformance and the NSCAT1 GMF. The curves are sinc-interpolated, simulated standard
P ’ deviations. Wind direction is measured clockwise from direction of satellite
motion.

50 100 150 200 250 300 350
True wind direction (Degrees)

VIll. CRAMER-RAO BOUND FOR SEAWINDS

The pre\/ious two sections app“ed the C-R bound to pre-Fig. 9 shows the predictions of the unbiased C-R bound
dicting wind uncertainties for past or current scatterometetssing SeaWinds geometry ard,. at 50-km resolution [14].
This section applies the method to predicting wind uncertaimhe NSCAT1 GMF with akK,, = 0 is used. The results
ties for the future SeaWinds scatterometer to be launchgltown are for a mid-swath cell about 350 km to the right
in 200 [14]. While ERS-1/2 and NSCAT are fan-beanof the subsatellite track when facing the direction of satellite
scatterometers, SeaWinds is based on a scanning pencil-beastion. As with the other instruments, the C—R bound agrees
design. SeaWinds uses a dual-beam, scanning pencil-beaefl with simulations for most true wind directions and
antenna. The two antenna beams are at different incidengiedspeeds. As in the previous case, at the characteristic
angles and sweep out two large circles on the ocean wgbaks in uncertainty, the unbiased C—-R bound overpredicts
radii of approximately 850 and 1100 km, respectively. As #ne simulation result, because the wind estimate is biased at
result, the two to four azimuth measurements from each 25-kfiese wind velocities. Using the approximation to the biased
cell are at fixed incidence angles but have varying azimuthaLR bound outlined in this paper improves the correspondence
relationships depending on the (cross-track) distance from fh&ween prediction and simulation somewhat. Even though
projected along-track of the satellite. This creates a retrieye C—R bound does not perfectly predict the wind-estimate
geometry for SeaWinds that eliminates the nadir gap. covariance, this figure demonstrates that it can be a useful

The effect of these geometries on wind retrieval can Bgediction of the uncertainty of retrieved wind for Seawinds.
explored with the C-R bound. Using this as a prediction of | is jnteresting to note that in the case of the SeaWinds
wind uncertainty allows |nS|ghtl|nto the yvmd-measurement (ﬂflstrument, the large peaks in retrieval uncertainty do not
the performance of the SeaWinds design. occur when the true wind is aligned with the measurement as

2An early copy of Seawinds was successfully launched aboard QuikS(\,[gﬁs the case with the fixed azimuthal relationships in ERS-1
in June 1999. The results presented herein are prelaunch predictions. and NSCAT. Instead, the largest values in wind-retrieval
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Fig. 10. C-R lower bound on-speed and direction-error standard deviation Vépsusor SeaWinds mid- and right-swath locations. Markers are unbiased
C-R bounds and curves are sinc-interpolated simulations.
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Fig. 11. C-R Lower bound on-speed and direction-error standard deviation versus cross-track locations. Negative distances are left swatle and posit
distances are right swath. Markers are unbiased C-R bounds and curves are sinc-interpolated simulations.

uncertainty consistently occur when the true wind velocitselationship between the azimuth angles that are used to
is near 40, 140, 220, and 320 degrees clockwise form thetrieve the wind from the left swath.
direction of the satellite motion at this cross-track distance.
Fig. 10 shows the effect on wind-retrieval uncertainty of
different values ofK,,, as predicted by the unbiased C-R IX. CONCLUSIONS

bound. The data for this figure was generated using a midin this paper, we have derived the unbiased C-R bound
swath location with a true direction of 19qnear a valley). for wind retrieval using scatterometer measurements. Using
This figure suggests that uncertainty in wind retrieval usingmple approximations, we also derived a biased C-R bound.
SeaWinds is sensitive t&,,,, though the sensitivity is less The unbiased bound can be used as a reliable measure of
than for NSCAT. wind-retrieval accuracy for almost all true wind directions.
Finally, Fig. 11 demonstrates use of the C-R bound to ufiy particular, the unbiased bound is an accurate predictor of
derstand cross-track performance of the SeaWinds instrumeiaulation results whenever the true wind direction is not
Also included in this figure are interpolated simulation resultazimuthally aligned with the fore or aft antenna for fan-
There is generally good agreement between the simulateshm scatterometers where the wind estimate is biased. The
results and the C—R bound in this figure except for at isolat€d-R bound provides a lower bound on the covariance of
points where the wind estimate is apparently biased. Otiee estimate [4]. Thus, the C—R bound can be useful in
interesting point is the increased performance of the rigbhderstanding the accuracy of scatterometer-derived winds in
swath when compared to the left swath. This is due to thm®th present and future wind scatterometers. The approximate
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biased bound derived herein can produce improved results for Seawinds,1EEE Trans. Geosci. Remote Sensingl. 35, pp. 115-126,
some cases but requires more calculations and is limited by E\tﬁ Jan. 1997.

. . . L. L F. Wentz, S. Peteherych, and L. Thomas, “A model function for ocean
approximations used in its derivation. The limitations are mo radar cross sections at 14.6 GHZ,” Geophys. Resvol. 89, no. C3,

severe for NSCAT and SeaWinds. Applying the C—R bound pp. 3689-3704, 1984.

to different scatterometers demonstrates that wind-estimator

performance is sensitive to the modeling error and to cross-

track location of the wind-vector cell. Travis E. Oliphant received the B.S. degree in
electrical engineering and mathematics and the M.S.
degree in electrical engineering, both from Brigham
Young University (BYU), Provo, UT, in 1995 and
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Ph.D. degree in biomedical engineering at the Ultra-
sound Research Lab, Mayo Foundation, Rochester,
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