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Radar Backscatter Measurement Accuracy for a
Spaceborne Pencil-Beam Wind Scatterometer
with Transmit Modulation

David G. Long,Member, IEEEand Michael W. Spencer

Abstract—Scatterometers are remote sensing radars designed Scanning pencil-beam scatterometers offer an alternative
to measure near-surface winds over the ocean. The difficul- design concept which can result in smaller, lighter instruments
ties of accommodating traditional fan-beam scatterometers on with simpler field-of-view requirements [3]. Further, because

spacecraft has lead to the development of a scanning pencil- . N .
beam instrument known as SeaWinds. Seawinds will be part of the antenna illumination is concentrated in a smaller area, a

the Japanese Advanced Earth Observing Satellite Il (ADEOS- Much higher signal-to-noise ratio (SNR) can be obtained with a
I) to be launched in 1999. To analyze the performance of the smaller transmitter, resulting in reduced power requirements.
SeaWinds design, a new expression for the measurement accuracyComplicated signal processing is not required and the data
of a pencil-beam system is required. In this paper we derive a (ata j5 small. As a result, a pencil-beam scatterometer can
general expression for the backscatter measurement accuracy for b i dated ft th fan-b
a pencil-beam scatterometer which includes the effects of transmit € more easl y_ accommo _a €d on spacecra ana a.n- eam.
signal modulation with simple power detection. Both separate (More exhaustive comparisons of fan-beam and pencil-beam
and simultaneous signat-noise and noise-only measurements are scatterometers are contained in [3] and [6], and in a companion
con_sidered. The _utility of the new e_xpressi_on f_o_r scatterometer paper [8].)
design tradeoffs is demonstrated using a simplified geometry. A~ 5 key difference between fan-beam and pencil-beam scat-
separate paper [8] describes detailed tradeoffs made to develop . .
the Seawinds design. terometers is measurement dwell time. Fan-beam scatterome-
ters provide long dwell times, albeit a reduced SNR compared
to the higher SNR, but shorter dwell time of the pencil-
beam scatterometer system. For interrupted CW operation,
|. INTRODUCTION fan-beam Doppler scatterometers tend to provide higher time-
. ndwidth pr . However, the transmit signal of ncil-
SCATTEROMETER is a radar system that measurbs‘:’l dwidth products. However, the trans tgg aiora penc
- . . eam scatterometer can be modulated to improve the time-
the radar backscatter coefficient?, of an illuminated : . : .
. . bandwidth product. In either case, a key design goal is to
surface. The scatterometer transmits a series of RF pulses and . o - .
. optimize the ¢° measurement accuracy within the design
measures the total power (energy) of the backscattered sig tal raints
which is corrupted by noise. A separate measurement of the ) . .
. : : . /A common metric for evaluating the accuracy of the
noise-only power is subtracted from this measurement to yield )
: . .measurement is the so-calldd, parameter [1], [2], [5].K,
the return signal energy. Using the well-known radar equation . Y
X the normalized standard deviation &f measurement
[Sec. 7, 9] and the measurement geometry, the backscatter
energy measurements are converted igtomeasurements. var{o? .}
Multiple measurements of° from different azimuth and/or K, =
incidence angles are used to infer the wind direction. Nagteri
al. [7] provides a recent review of scatterometry with emphasfs general goal in scatterometer design is to minimize the
on the NASA Scatteometer (NSCAT) instrument. measurement,,. Further, the measureme#f, is also used
NSCAT is an example of a fan-beam Doppler scatterometerthe processing of the the” measurements into winds [7].
which requires multiple large antennas (3 m long) to achieveExpressions fork, for Doppler fan-beam scatterometers
the required fan-beam illumination pattern. The field-of-viewuch as the Seasat scatterometer (SASS) and the NSCAT with
requirements of the antennas are very strict making fan-beém digital processor have previously been derived [1], [2].
scatterometers very difficult to accommodate on spacecrdfthese expressions are for an interrupted-CW transmit signal. A
In addition, complicated onboard processors are requiredgeneral expression for a modulated transmit signal is required
achieve a low data rate. for analyzing the performance of a pencil-beam scatterometer.
In this paper we develop &, expression for pencil-beam
scatterometers which includes transmit signal modulation and
Manuscript received September 21, 1995; revised May 15, 1996. a _S|mple tOt_al power (e_nerg_y) detection S?heme' To derive
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measurement geometry. This enables tradeoffs in the choice
of modulation function to minmimizés, which are discussed.
Finally, a summary conclusion is presented. A separate paper
[8] describes the use of the genetd), expression to make
tradeoffs in the design of SeaWinds. Some detailed derivations
are contained in the Appendix.
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The scatterometer transmits a series of radar pulses and A
= rea

measures the return echo energy. In this section we develop
an expression for the return echo given a modulated transmit
signal. We first consider the response from a point-target @)
response and extend this to the response from a distributed
target. Adopting a complex exponential formulation for the
carrier to simplify the discussion, the transmitted radar signal,
&(t), for a single pulse can be written in the form,

y (cross-track)

St(t) = Eta(t)ej“’“t

wheret is time, E, is the total transmitted energy for a single
pulse,w. = 27 f. where f, is the carrier frequency, andt)

is the carrier modulation function. The pulse repetition period
is 7; and pulse length ig},. For modeling purposesy(t) = 0

for t <0 and a(t) = 0 for ¢t>17},. The complex modulation
function «(t) is normalized so that

T, )
/0 la(®)2 dt = 1. o

Let B, be the bandwidth of(t). We assume thaB, < f.. VI

Consider the return echg,(¢) from a point scatterer on M
the Earth’s surface. The scatterometer is moving at a constant Along-track N
velocity. Fig. 1 shows the antenna illumination geometry for
a conically-scanning pencil-beam scatterometer system. For
a spaceborne scatterometer the return echo from a point
target can be approximated by a time-delayed, Doppler-shifted
replica of the transmit pulse scaled by antenna gain and
spreading term, i.e.,

p E.G(z, )\
(0 = Vit Rttt

—jwa(z,y)t e—j?wcr(w,y)/c ejwct

)orI}-SSOI)

*C

I
where ¢ is the speed of lighty(z,y) is the slant range to :
the target at cross track locatianand along-track location T
Yy, wqg = 2v-/c is the the Doppler shift due to the relative
velocity v, between the target on the surface and spacecraft,

G(z,y) is the antenna gain in the direction of the targets

the radar wavelength, arid,c’¢» is the magnitude and phase

of the point target response. ---- Isodoppler lines

For large spatially distributed targets, such as the ocean,

the return echct;(t) can be modeled as the superposition ©

of the echo from a very large number of point targets. F(ﬁ{g 1. Geometry of a conically scanning spaceborne pencil-beam scatterom-
. . . eter. (a) Scanning geometry. (b) Isodoppler and isorange lines. (c) Isodoppler

a typical spaceborne scatterometer operating at microwayg isorange lines for several cell locations along the scan.

frequencies, the superposition can be expressed as an area

integral [Sec. 7, 9] given in (1), shown at the bottom of the

next page, Wheré((x,y)ej¢(m’y) is the effective response fromthe ocean’s surface at the frequengty It follows from the

a large number of point scatterers within the differential areantral limit theorem that the real and imaginary components

dA which we assume is larger than the correlation length of the sum of scatterers may be assumed to be independent,

—— Isorange lines
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normally distributed random variables [Sec. 7, 9]. Assuminghere J,(¢,7) is the two-dimensional weighted modulation
homogeneity, the second momentidf can be related to the cross-correlation function defined as

normalized radar cross sectioif 1 " ' N
Jo(t, 7)) = i / . -/a(t —2r/c)a* (T — 2r/c)

EVE(a,y)] = Az, y)o” )
o _ _ ~a*(t —2r'[c)a(T — 21" /c)
wheref denotes statistical expectation asdis the area of the G2y e AV Al
differential element over which the integration is performed. ,(7’%), (1", wa) Ar(r; wa) An(r, wq)
Because of the short correlation length of the surface, eI @ameDET) g oy di du, (6)
and ¢, are independent for each differential element. We Wiﬁnd that
assume that is constant over the illuminated area.
We will find it convenient to express the area integral in EE ()& (1)) = Xo Lo(t, 7)
() in terms of the Doppler shifts and the slant range, i.e.,
(3), shown at the bottom of the pagewhere we have remO\)@,{Here La
the carrier frequency. For a spaceborne scatterometer Wi‘gd as
denominator-? can be assumed to be approximately constant La(t,7)
over the integral. Let be the mean value afover the integral. ’

(t,7) is the weighted time correlation function de-

1 /
=— a(t—2r/c)a* (T — 2r/c
G | at=2/0w =20

Equation (3) then becomes ,e—jwd(t—r)G2(7,7 wa) Ar(r,wg) dr dwq. (7)
E N We note that sinc&[{V,(r,wq)e/?("“4)12] = 0 it can be

S(t) & G(r t—2r s\hyd
S0 2 Gyt /L° (rywajalt = 2r/e) shown that€l[¢,(£),(7)] = E[EX(H)EX(r)] = 0. These facts

Ziwat 2w o (rw are used in later derivations.
L eiwat pdwer/e Vi(r,wa)e J¢s(rea) g duy.
We now develop some results which will be used later. [Il. ECHO SIGNAL ENERGY ESTIMATION

Using (2) it can be shown that Ultimately, we want to estimate the surfag&. This es-

5[|5s(t)|2] = Xo°K,(t) (4) timate is obtained by processing the received echo. Unfortu-
_ ) ) _ ~ nately, the return echo is corrupted by additive thermal noise.
where i, () is the weighted modulation correlation functionrhe received radar signdl,.(f) consists of the return echo

defined as with additive noisev(t) due to thermal noise in the receiver
Ko(f) = ﬁ/ la(t — 20 /0)2G2(r, wa) and the communication channel, i.e.,
07 e Eon(t) = & (1) + 1(2)
- Ap(r,wy) dr dwy, (5)
We assume that the down-converted return e¢lio) (signal)
and noiser(¢) are independent and that the noise is a real
Y E)G3A. white process with a power spectral density raf/2 over
T (4m)3T the measurement bandwidth. The signal+noise measurement
bandwidth isB, (B, > B,). The noise-only measurement is
made over the bandwidtiB,. In the following analysis we
assume ideal filters for simplicity.
A, = i/ G2(r,wa) Ar(r,wq) dr dwq. To estimates®, a measurement of the signal energy (to-
G? rwd ’ ’ tal power) is made by subtracting a “noise-only” measure-
ment from the signatnoise measurement. The noise-only and
signak-noise may be made separately (as done by SASS and
ENE@)P1E(T)] = X202 (Ko () Ko(T) + Ju(t, 7)] NSCAT) or they made be made simultaneously (planned for

X is defined as

(G, is the peak antenna gain over the footprint, ahdis the
effective cell area defined as

It can be shown that

£.t) = / &(1) dA

L R [l = B P

— Jwet
(4?2 (ey) e dd @)

2 . Ny Y —jwat ,j2wer/c . —jds (rwa)
£(t) = 5;);3 / G(r,wg)a(t — 2r/c)e e Vi(r,wa)e dr duoy. 3)
4 T,Wd

r2
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by first determining the variance @, and C,, and then

Signal+Moise Snise-cnky . ®)
e : Measuremem Measurement using :
il Bala i Bandwidih Bunchwidih
/ B. Energy Estimation
While there are a variety of possible signal processing
and estimation techniques which can be used to obfain
= | and(C,,, these are limited by practical considerations. For
example, the time and frequency dispersion in the echo makes
@ a matched filter detection very complex and unsuited for
SianalNoise Minize—oails onboard processing. Instead, a less optimum, though very
o o sl 7 SR simple, detection scheme is employed (see Fig. 3) with
Signal Bandwidth gy, qyici Bamlwidth T
[ 2
~ ‘/' / Con = / Ean(t) # RO dt )
lI'. T
- T4
Cho = / (1) * h, (£)|? dt. (10)
- T3
(b) If the bandwidth of H(w) is sufficiently wide, the filter

Fig. 2. Two cases for simultaneous Sighaloise and Noise-only measure- does. not aﬁelc'[ the S|gnal component @L(t) In this case
ments. (a) Disjoint measurement bandwidths. Measurements are indepentfagt signaf-noise measurement of (9) can be expressed as
and noise-only measurement bandwidth contains no signal; (b) noise-only

measurement bandwidth includes echo signal. Co,=Cs+C, +C. (11)

reC, is the signal energy,, is the noise energy, and.

SeaWinds). When the measurements are made simultaneoﬂgh ; : .
he signal and noise cross product, i.e.,

minimum K, for a fixed noise-only bandwidth dictates that®

the bandwidths be distinct [refer to Fig. 2(a)]. This results Ty
in independent signalnoise and noise-only measurements. Cs =/ €5(8)|? dt
However, when the signal+noise and noise-only bandwidths TlT
overlap [refer to Fig. 2(b)], the measurements are correlated C, = / ’ (t) * h(t)|? dt
and the effectivel(, is increased. Nevertheless, simultaneous T
measurements with overlapping bandwidths may be easier to Tz
implement in hardware (see [8]). Ce= | A& (@) =h*(t)]
In any caseg? is inferred from the estimated signal energy. +T1£;*(t) [(t) « h(£)]} dt. (12)

Accurately estimating the signal energy is thus essential to

accurately determining. The accuracy of the estimate isthig gecomposition simplifies computing the variance’of.
quantified bpr- _ _ o Noting the independence of the signal and noise and using
In the following sections we consider the estimation al- he fact that the noise is Gaussian, it can be shown (with some

gorithm, the signal energy estimation algorithm, and derive “é?fort) that the expected value of the third term of (11) is
signal K, for the case when the signal+noise and noise-onjy i.e.£[C.] = 0. Thus

measurements are independent. Tg for the overlapped

bandwidth case is derived in the appendix. E[C2] = E[(Cs + Cu)H + E[C2). (13)
A. +° Estimation In order to computear[C.] we note that
To estimates®, measurements of the sigraloise (C,) EL& ()& (T (T)]

EE (D& (MIEW () (T)]
=R, (t, )R, (t —7)

and the noise-onlyC,,,) are made. A signal estimat8; is
formed as a linear combination @f,,, andC,,,, i.e.

E\s = CLlc(sn + blcno (8) where

whereC,,, Cy,, a1, andb,_are described below. An estimate Ry(t,7) = X0 Lo(t,7) = EsLqo(t,7)

a° of ¢° is formed fromE, as no .
R,(t—71)= QBT?SIHC(QBT [t—7]).

1

— a1 bl al
o= Es = % Csn _Cno = % Csn Cno . .

TTXTTX [ T } x G el gce, ) is real ande[e, (1)e(r)] = €[ (€. (1)] = 0, the

unconjugated cross products drop out. It can then be shown

where ¢; = a;/b;. By proper choice ofa; and b;, the that
energy estimate is unbiased, i.&, = £[E;]. Note that
K,[0°] = K,[E,]. In the following sectionk,, is computed var[C.] = E2SU (14)
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Signal+Noise

: ace Fi Signal
Recelved_> Bandpl;iss Fllter_> Range Gate || Square ||Integrate Ener, v ngergy
Echo ® Estimate 4 Estimate
Noi Band Filt Noise-only
o18¢e- anapass rlter Ener
only — hn(t) ! Gate ! Square |{Integrate Estaie
Fig. 3. Echo total power (energy) detection scheme.
where S is noise-to-signal ratio
1.0
1 no
S=— (2T,B ,_)
E N\ 2 0.8 4
and [see (7
[see (7)] e
2 Th pTh §-
U= 2 / Re[Ly (+, 7)[sinc[2B, (t — 7)] dt dr. (15) =
T Jr Jn 04
For the first term of (11), (4) can be used to compute the , |
expected value of”;
Ty Xo° | 00 . : ' 10
g0 = Xo° | Ku(t) dt = 2B, ja 0 2 oy 8 s
T, a1

o L ) Fig. 4. Plot of pI(p).
where the energy normalization coefficiest is defined as 9 ot ofpI(p)

[see (5)]
. A plot of pI(p) is shown in Fig. 4. Note that for large
T2 (corresponding to large time-bandwidth productd)p) — 1.
o= l T Ka(t) dt] ) (16) To obtain unbiased measurements the noise-only estimation
' coefficientd; is selected as,
The noise-free signal variance (due to Rayleigh fading) is then ) B.T.
= a1 ———
var[Cy] = £[C?] - £2[C,] = E2V (17) ' MB,T,

so that&[a,C,, — b,:C,,| = 0.
where the normalized signal varianteis defined as [see (6)] [ 1Cnol

Ty Ty .
V= / / Jo(t,7) dt dr. (18) C. Computingk,
CEN A Since the signal is independent of the noise and the noise
The noise-free measuremelt,, denoted byk, is then IS zero mean
ES no
K, =aVV (19) E[Cun] = E[C] +E[C] = = + 2B, T

Assuming ideal low-pass filters, the statistics of the secohtsing this result, (13), and the fact th&fiC..] = 0, it follows
term of (11) and the noise-only estimate of (10) are [2]  that

no
elenl = 2BTTT?0 = En var[Csn]| = var[Cs] + var[Cr] + var[C.].
var[C,] = (21;,3,%)221(23,,7;,) (20)

no _ BnT, With this result and (14), (17), (20), (21), we obtain,
2 B.T. "

var[Cro] = (2Tn3n%)221(2Tan) (21)

E[Cnol =2B.T,, 2
var[Cyn] = E2V + E2SU + 2I(2T,.B,) (27;,3,%) . (23)

Using the definitions ofi; andb; it follows that

whereT, = T, — T1,T,, = Ty — T3, and the function/(p) — )
is defined as [2] E[E;s] = E[a1Csp — b1Cho] = w1 E[CS] = Xo® = E;

L sin mpa 2 and
I(p) = 2/ (1- a)( ) da. (22) -
0 mpo var[Ey] = a3 E2{V + SU + 2S*[1(21,.B,) + I1(27,,B,,)]}.
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The K, of the noisy signal energy estimate is then to cross correlation between the sighabise and “noise-only”
— y 12 measurements. For the case of simultaneous measurements
KplBs] = a{V + SU+ 257121, B,) + 121, Bu)I}/. with overlapping bandwidths (SMBW) thé(, expression

(24) is
For multiple independent pulses this becomes K,[E(SMBW)] = \/a]lv_{V—i— S(U+W)
p
o a1
KolBe] = AV + SU+ 255U L By) +25°(QuI(2B,T;) + QuI(2B,T,)|}*/?
p
12T, B,)[}? (25) (20)

which is our final result for distinct signg&hoise and noise- where
only measurements. In this equatiéhis the noise-to-signal , B?
ratio, 7, is the signal range ggte length, is the noise—on_ly W=(U" - U)(Bn - B,)? (27)
measurement lengtti3,. is the signal measurement bandwidth, B2
B, is the noise-only measurement bandwidth, aNg is Q=1- m (28)
the number of pulses. As noted earlié(zx) ~ 1/z for o "
x > 1. The energy normalization coefficient is a function Qy = B (29)
of the modulation, the range geometry, the antenna pattern, (Bn — By)?

and the §|gnal range .gate [(5) and (1(.5)]' The “Ofma"z%dnde is defined similar to (15) but witl,. replaced byB,,.
signal variance tern¥’ is a rather complicated function ofE uation (26) is derived in Appendix A

the modulation, the range and Doppler geometry, the antenn ’
pattern, and the signal range gate [(6) and (18)]. The signal

and noise cross-tery depends on the signal measurement IV. K, VERsUSa(t)

bandwidth, the range and Doppler geometry, the antenngquations (25) and (26) provide analytic expressions for
pattern, and the signal range gate [(7) and (15)]. In effegt when the transmit signal is modulated. In this section
V' is the contribution of the signal power variancd/ is the we consider the effects of the choice aft) on K,. We
contribution of the signal and noise covariance, and $Re will show that for some measurement geometde€s can be
term is the contribution of the noise variance. improved by using a wideband(t); however, we note that,

In the appendix it is shown that for interrupted CW operatepending on the choice ef(t), K, may increase for some
tion (no modulation) with a simplified geometry and antenngeometries.
pattern Note that the normalized signal variance teirin the K,

expressions [(25) and (26)] corresponds to the variability due

a =1 only to the signal while thé/ term arises from cross products
V= 1 4 1 of the signal and noise. Also note that t1$¢ term is not

1T,BpT, 1,Bp affected by the choice af(¢) (other than by the possible need

U— 2 to increaseB, to insure processing of the complete signal

- T,Bp bandwidth). With these in mind we will consider just the effect

of the choice ofa(t) on the noise-fred(,, K, given by (19).
where Bp is the Doppler bandwidth. Equation (25) is then In order to gain some insight into the effects of different
equivalent to Fisher's(;, expression (see (48) in [2]). Whenmodulation functions oik,, we assume a simplified geometry
modulation is employed, it is shown in Section IV-A that for and antenna illumination pattern to relate tifg to the to the
simplifed geometry:; andV' can be expressed in terms of theadar ambiguity functionX,(r,), defined as
radar ambiguity function defined by the modulation function: -
a7 ! is the radar ambiguity function evaluated at the origin and Xo(r,v) = / a(t)a*(t + 7)™t dt. (30)

V' is a weighted integral of the radar ambiguity function. As —c0
discussed in Section 1V, choosing an appropriate modulati

function can reducék, by reducingV. Me radar ambiguity function arises from matched filter con-

siderations and is widely used in survellence radar systems
performance analysis.

D. K, for Overlapping Bandwidths and

Simultaneous Measurements A. K, and the Radar Ambiguity Function

Some hardware complexity reduction can be obtained bylIn principle each term of th&’, equation has to be evaluated
making simultaneous signal+noise and noise-only measuseparately for each different observation geometry. Because
ments. If the bandwidths are distinct and filter sidelobes aggact expressions are very complicated, (the full expression
neglected the measurements are independent and (25) caisbevaluated for SeaWinds in the companion paper [8]) a
used. However, when the bandwidths overlap and the sigsahplified analysis is used in this section to provide insight into
is contained within the “noise-only” measurement bandwidtie tradeoff betweelk’, anda(t). For the simplified analysis
(refer to Fig. 2) additional terms in th€,, expression arise duea simplified geometry for the isorange and isodoppler lines
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a5l / L]

’ o (t—7a (1 —ra)a*(t — ' a)a(t — ')

0° —Jjlwg—wy ) )(t—7
(Range an(li Doppler coincide) ceIas A=) dr dwg dr’ dwd dtdr. (32)

Along-track

To simplify these expressions, consider the integral

Q Azimuth Angle

2 T )

i E / a(t —r'a)a*(r — ra)e“ 7 dr.

8 l il

o,
f Using the substitutiong = ¢ — ar’ and p = a(»' — r) this
: becomes
' o m .

ama — Isorange lines e / a(y)a*(y + p)e’“Y dy (33)
—( ler lines 1

90° sodoppler lines

whereT] =T; — oo’ and Ty = T> — ar’. Noting thata(t) is
zero outside of the pulse and assuming that the range gates are
Fig. 5. Simplified cell illumination geometry and isolines. (Compare wnf?ummemly wide to admit all of the echo signal, the limits on
Fig. 1) the integral in (33) can be extended to infinity, i&,= —co
and T, = o0, without affecting the value of the integral.
is assumed (see Fig. 5). A simplified antenna pattern is al\%th th|s extension the integral in (33) is equivalent to the
assumed, radar ambiguity function defined in (30). With this extension

A and assuming thai(¢) is symmetric it can then be shown that

Glr,wa) = {Go r,wq € illuminated rectangle V can be written as
0 else.

With these simplifications, the area functiefy(r,w;) in the —— / / — |z
V integral in (18) can be pulled out. Let us consider two cases. T —wp
Case one corresponds to a®%rimuth angle while case two . (wD -
corresponds to a°0azimuth angle. For case one (azimuth

. . . . . 1
angle of 90) the integral in (3) reduces to two integrationd/Sing the limit extension again it can be shown that, =
in ~ and wy with X,(0,0). It then follows that the noise-fre&), is

\

)Xo (2, u))|2 dz dw.

A, K, (case 1) = aVV = Y1(X,) (34)

Ar(r,wa) = Arwp

whereY; (X, ) (shown at the bottom of the page) is introduced
where Ar =, — 7, IS the difference between the maximuny, denotek’, as a function of the transmit signal modulation
ranger, and the minimum range,, over the footprint and for measurement geometry case one.
wp = wa—wy IS the difference between the maximum Doppler Equation (34) suggests thaf! (and thereforel”) can be
we and the mmlmum Dopple;, over Fhe footprint. For later computed as a weighted double integral of the radar ambiguity
use we assigiv. = ws + w, Which is the Doppler center function. This makes possible (at least for the simplified
frequency and se = 2/c andT. = aAr. . geometry assumed here) to make analytic tradeoffs between
For case two (azimuth angle df°),wq and r coincide o o oice ofu(t) and K, by computing the ambiguity function
and the integral in (3) effectively reduces to a line integr or a given modulation function. This will be considered later.

Choosingr as the independent variable, 2) Case 20° Azimuth: For the case two simplified ge-

A wg) = % ometry,a;* andV are [compare (31) and (32)]

,
with wg = Br + v where = wp/Ar andy = w. — wp/2 al =5 / / a(t —ra |2 dr dt
are constants. We consider each case in greater detail below. " n
1) Case 190° Azimuth: For the case one simplified ge- / / / / ot — ra)
ometry a;* andV are
r (1 —ra)a*(t — ' a)a(t — ')
o wDA7 / / / alt = re)l” dr duwq di - (31) -e—f"“’ e dr dr' dt dr.

1 2
Yl(X“):Xa(O,O)\/ TQ/ / — [el)wp — WD Xa(t. )P do do
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Using previous results, the integral extension idea, and a bit
of tedious algebra it can be shown tHatcan be written as

= / — uDIXay, Bufo)]? dy.

Similarly, 7! = X,(0,0), from which it follows that
K, (case 2) = aVV = Ya(X,) (35)

where

Yo (X,) = 0.0 \/TQ/ — DI Xa(y, B'y)|2dy.

is introduced to denoté’;, as a function of the transmit signal
modulation for measurement geometry case two.

Again, we see thaf(, is a weighted integral of the radar
ambiguity function. However, while case one is a normalized
volume integral, case two is a normalized integral along a
diagonal slice through the ambiguity function. Depending
on the structure of the ambiguity function, the values of
the normalized integrals may be quite different. Thus, the
measurement geometry can have a significant effecgn
and, therefore, on the choice of the modulation function.

B. The Relationship of the Ambiguity Function aﬁg

Equations (34) and (35) suggest that the noise-kgecan
be expressed in terms of radar ambiguity function which is
a function of the modulation functioa(t). K, is a weighted ®)
function of the volume under (or the area under a diagonal slice
of, depending on the geometry case) the ambiguity function.
In general, ambiguity functions which are very localized
(“thumbtack-like” or concentrated near the origii(0,0))
result in the smallesk’, values.

To illustrate the tradeoffs in selecting a transmit signal
modulation scheme the ambiguity functions for three common
modulation schemes are considered. These radar ambiguity
functions are plotted in Fig. 6. The three modulation schemes
are: 1) interrupted CW (ICW) operation where the signal is
not modulated; 2) linear frequency modulation (LFM) (FM
chirp) which is commonly used in radar applications including
synthetic aperture radar; and 3) minimum shift keying (MSK).
MSK is a form of phase modulation commonly used in ©
communications [4]. For this application a maximal Ierlgthi 6. The radar ambiguity functiof).X (¢,w)|) corresponding to (a) inter-
pseudo-random data sequence is used to generate the mocﬁ)ﬁ@—d' oW modulation,%b)yLFM’ and (¢ MSK. ponding
tion functiona(t). The performance is essentially independent
of the particular maximal length sequence used.

The plots shown in Fig. 6 correspond to the pulse length = 1,,/6 andwp = 12 kHz. Actual K, values for Seawinds
T, of 1.5 ms. A 66.7 kHz modulation bandwidth is used fogre given in [8].
the LFM and MSK cases. Referring to this figure, while the Table | reveals that the choice of the modulation scheme
ambiguity functions for ICW and LFM are very broad, theffects the value of{, and that the resulting(;, is depen-
MSK ambiguity function is very narrow and localized. Sincglent on the measurement geometry. ICW provides the best
K, is a function of the area under the ambiguity functiorperformance for &° scan angle (measurement geometry case
MSK can be expected to produce smaller Agtvalues since it two); however, the performance of ICW for geometry case one
has a significant value only over a very small area. To quantifg0° scan angle) is not as good as LFM and MSK. Comparing
this conclusion Table | summarizes the valued’ofX,) and the overall performance of LFM and MSK, we find that MSK
Y2(X,)(K},) for each modulation scheme. The values showprovides the best performance for measurement geometry case
in Table | are normalized by (ICW) and correspond to one with only minimal degradation for case two. Since MSK

( \
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TABLE |
K, FOR THE TWO SIMPLIFIED GEOMETRY CASES Y1 (X, ) AND Y2(X,), Ka(t) Ka(t)
NUMERICALLY COMPUTED FORVARIOUS TRANSMIT SIGNAL MODULATION
ScHeMES THE VALUES SHOWN HAVE BEEN NORMALIZED BY Y1 (JC'W)

Modulation | Yi(X,) | Y2(X,)
ICW 1.0 1.0
> =t
LEM 0.9 1.16 Tp<Atr/c t Tp>Ar/c
MSK 0.43 1.05

Fig. 7. The two cases fai(,(t).

can be easily generated in hardware, it was chosen for th
baseline SeaWinds design [8].

K, for ICW is inversely proportional to the square root o
the product of the pulse length and the Doppler bandwid
(the time-bandwidth product of the echo return) [see (37).
The number of “independent looks” is thus proportional t
the time-Doppler bandwidth product. Examining the rad §dependent on the measurement geometry and the scan angle.

ambiguity function (Fig. 6), we see that the ambiguity function The existence of analytic expressions foj permit detailed

for ICW is narrow only in the frequency dimension. In eﬁecttradeoffs in the design of spaceborne scatterometer systems.

only the Doppler information in the return provides “Iooks’Further' these expressions are needed to compute the actual

when ICW is used. On the other hand. MSK is narrow iR€asurement signal variance since the measurefigig re-

both the frequency and time dimensions ,providing both ran gired when retrieving the wind from the estimated backscatter

and Doppler resolution. When the Doppler and the range a_lsurements [71. The application of thesg quanons t_o .

coincident (geometry case twdy!, for MSK is essentially the esign tradeoffs for a spaceborne scatterometer is described in
p

same as for ICW; however, when the Doppler and range aa}eseparate paper [8].

not coincident (geometry case onk), for MSK is improved

eBased on these we conclude (1) that the radar ambiguity
;unction approach can be useful in making first-order tradeoffs
modulation functions to minimize the noise-frég, and
) choosing an appropriate modulation scheme can result in
provements ik, but (3) the amount of improvement g,

over ICW. In effect, MSK provides “looks” in both the APPENDIX A:
Doppler and range dimensions. For geometry case one Interrupted CW Operation
) 1 ) Let us consider the single puld€, [(25)] for the separate
K,(MSK) ~ BaiT KL,(ICW) measurement case when the signal is not modulated, i.e.,

when the transmitted signal is interrupted CW. This section

where By, is the bandwidth of the MSK modulation. Notedemonstrates that Fisherk,, equation [2] is a special case
that to improveK, By > 1/T.. For LFM the frequency and of (25).
Doppler resolution are not independent alif] is essentially ~ We first compute some specific results for the case of
the same as for ICW. interrupted CW operation where

While increasingV, arbitrarily will improve the noise-free
K,, K, the receiver bandwidth must also be increased to
accomodate the signal; however, as the receiver bandwidth a(t) =
is increased the noise terms in (25) become increasingly
important and the totak,, increases. The totd{,, will depend Depending on the length of, compared to the differences
on the signal to noise ratio as well as the bandwidth, requiriri}g p

) k ' time-of-flight across the footprint/{,(¢) may be either
a tradeoff between the signal modulation, the receiver bar{ﬂéngular or trapezoidal (see Fig. 7). We will concentrate

width, and the totaliK;,. This tradeoff is considered in detail ;1o second case. This correspondsT}o > 7. where
in the companion paper [8]. T, = 2F/c ‘

{% 0<t<T,

p
0 else.

For this case, and using a simplified antenna gain pattern
V. SUMMARY (see Section IV-A), the ramp up and ramp down times can

Expressions for the measuremdts for a o° measurement P€ ignored andi,(#) can be approximated as a simple rect
from a pencil-beam scatterometer with simple power detgéiction of lengthZ;, centered about the mean time-of-flight
tion have been derived. These expressions can be used (fde), i-e.,
sepa_rate signainoise and noise-only measure.ment.s as well (1T, W/e<t< /et T,
as simultaneous measurements. Thig expressions include Ko(t) ~

o . . 0 else.
transmit signal modulation and the effects of the antenna gain
pattern. Thesds{, expressions reduce to Fisher's analig If the range gates are set so that the integration in (16)
expression when the modulation is interrupted CW. Usirgxactly covers the “flat top” of(,(¢) thena; = T,,/T; where
a simplified geometryK,, is related to the radar ambiguityZ;. = 75 — 13 is the range gate length.
function, enabling simple comparisons ), performance for ~ Computing V' is somewhat more difficult. For the inter-
different modulation schemes. rupted CW case with the simplified antenna gdjfit, ) can
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be written as

1
Jath :_// t—2r/c T—2r/c 1
~p(t = 27" Je)p(T — 27" [c)
. AT(T, CUd)Ar(T/v wZi)
. e—j(wd—wé)(t—‘r) dr dwgy dr’ dwii
wherep(t) = \/Tpa(t). For T, > T., if we consider only

values oft and = within the “flat top” period of the return
Jo(t,7) can be approximated as I

1
Jo(t,T) " ——— / . -/A,,(T, wa) A (', Wh)
AT

eI @a=w) (=) g gy dr! dwl.

which can be expressed as [2]

<wD/2 + we — 27rB,,3U>2
2

wD/2+wc —27TBT )

wD/2+wc +2rB, \*

+ T

wD/2+wc + 27 B,

H

I

Note that.J,(¢,7) is only a function of the time difference
betweent and, i.e., J(t — 7) = Jo (¢, 7).

In principle we have to evaluaté(t) separately for each -
illumination geometry. Because the exact expressions are wD/2—wc+27rB,
very complicated, let us again assume a simplified geometry I< )}
(Fig. 5). Then J( ) can be written as

wp/2— wc+27rB 2

T

1(

( )
( )
<wD/2 we — 27 B, )
( <)
( )

For large time-bandwidth producis.p > 1 this becomes

e~ Hwa=wt g,
g [
7 wD L.(z) ~ LI
prd
T2 2 [1 cos(wpt)]
Pwb It follows that,
which produces 2
U=
T,
v 1 2
V= [ @ = lalg g oyl - coswpa)] da. b
-T. p¥D where Bp = wp/2r is the Doppler bandwidth in Hz.

Performing this integration and assuming a large time-Let us now define the signal-to-noise ratio (SNR) as the
bandwidth productl;wp it can be shown that ratio of the return echo energy¥; = a;E[C;]) to the noise

1 power over the signal measurement bandwidth and range gate
Vm2nliwp s — length, i.e.
prD 1 1
For our simplified antenna pattern and geometry and inte- SNR = by _ a1 €[C] _ l
grating over the flat top portion of the return with the ramp E, E, S

up and down times ignored,q(t, 7) reduces to Assuming a large time-bandwidth produdix) ~ 1/x and

the measurement variance, (23), for the interrupted CW case

Lo(t, ) =L{t—71)= Ton
P

Performing the integration,

L{z) = 2Tp1)D e_j““xi sin(wpz/2).
Then
U= 21T
T,
where

L.(z)= /m (z — |a|) Re[L{e)]sinc(2B,.«) dov.

—T

Simplifying, and using the substitution= «/z,

1
L.(x)= Ty a:2/0 (1 —y)cos(wezy)
sin(wpxy/2) sin 27 Braxy

Ty 27 Brxy

/ww e Iwa(t=7) dwy.

becomes
2
— 1 1 2
ar[E,] =a?EX{ T.B
varlf] = ap { D<TPBD> T T B, SNR

n 1 1 1 T.B,
SNR? T;.B,. T.B,)
For an optimally chosen range gate and ignoring the rise and
fall time of the pulsel;, ~ 7. It follows thata; ~ 1. We will

setB, = Bp. It follows that K, for the simplified interrupted
CW case is

1 2
KplEs] = == {1 TSR

1 B, T.1*?
+ R {1 + T BJ} . (36)

which is equivalent to the analog, expression of Fisher
(see (48) in [2]). Thus, (25) reduces to the Fishdt's when
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the modulation is interrupted CW. The noise—erg,K;,, for It can be easily shown that

this case is 1 £[C] =0
K, = (37) g[C!] =2B, T, 2 — 2,1,
»~ JT,B, (€] nTn T
ar[C,,] = Var[Cs] + Var[C.] + Var[C),
APPENDIX B: vaz{Cro] ] ] Ol
K, for Simultaneous Measurements wherevar[C;] is given in (17) and
with Overlapping Bandwidths , 9 sy
o ] . var[C] = E;SU (39)
In deriving (25), it was assumed that independent mea- B2
surements of the signal+nois€;,,, and of the noise-only, var[C!] :2E§SQB—’QLI(2B,LT,,) (40)
C,r,, Were made. Let us now consider the case when the r

signal+noise and noise-only measurements are made simufiere U/’ is defined in the same way d$ in (15) but with
neously and the noise-only measurement bandwidth includgs replaced withB,,.

the signak-noise measurement bandwidth (the SMBW case) For later use we compute several expected values. Noting
(see Fig. 2). The “noise-only” measurement now includestfe independence of the signal and noise

signal component and is, in reality, a sigiabise measure- 1o E S

ment. However, the noise-only measurement bandwidth is E[CsCr] =2B,T,— = = E? =~ (41)
much larger than the signahoise measurement bandwidth, 2 m ay

. - “ B _ ” nO ES S Bn

i.e., B, > B,. We will denote the “noise-only” measurement £lC,Cl =2B,T,——= =E>=" (42)
C,,, for this case by’ . For simplicity we will setT3 =T 2 m ap B,

andT; = 15 (thus,T,, = T;.) though this is not a requirement.  The noise-component of the noise-only signakz) can
To simplify notation the noise in the signal+noise measurge expressed as the sum of the noise-only portion of the
ment is denoted as,(t) = 1(t) + h(t) and the noise in the gjgnal+noise/,(t) = 1(t)«h(t) and an independent noise com-

noise-only measurements a3(t) = v/(¢) * ha(t). Using this - ponentuy (£)(1(£) = v, (t) — v4(t)). Noting the independence
notation, the received signal+noigg, () and “noise-only” ¢ v5(t) and () it follows that

£,0(t) signals are
Esn(t) =&(t) + vs(t)
Eno(t) =&s(t) + vn(t).
Assuming thath,,(¢) is wide enough to not affect the signal,Then, sincev;(t), v, (t), andy(t) are zero mean,
the noise-only measuriment is SO b (D] — s ()]
Cro = / 4 €5 () + vn ()] dt. + ENws 1€ o (M)A
T3

from which it follows that
For this case the signal energy is estimated by [compare (8)]

Eps(typ ()] =Elws (v (1)] (43)
=R, (t—7)= 23,%5111(:(23,,@ —1]). (44)

- E[C,CL) = E2S?21(2B,T,) + B,/ B,]. (45)
E, = d,C,, - b,C", (38)
o _ Noting that the expected value of a third-order product of zero
where the coefficient; and ] are given by mean Gaussian random processes is zero it follows that
;L B, Ty T»
G =up g sie.cil= [ [ etteoi
B, Tl Tl
b= + €OV O} va(r)?) de dr = 0. (46)
Similarly,

It is easily shown thaE[E] = E,.
Following the approach given in the main text [see (11)], g[CiC,] =0 (47)
C! . may be expressed in terms of the signal-only energy

[g/efined in (12)], a noise-compone@t,, and a cross-product, ﬁgzg‘/j ig Eig
c,=C,+C. +C Using (43), the fact that the noise is real, and noting that
E[&s(H)én(T)] = 0,
where
T2 EQE Mg (t) + &5 (s ()} - {& (T () + & (Trn(T)}
Ci= [ ) + €t (o) =28, Re{L,(t, 7Ry, (¢~ 7)
Iy
Ty d
Cl = / v, ()2 dt. o
7 E[C.C] = E2SU. (50)
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Defining V' = a7? we can expresg[C?] as 5-
E[C?] = X202 (V' + V) = E2(V' + V). (51) 4
Combining (41), (50), (42), (49), (48), (51), (42), and (45), 3
we obtain 0
B 27
E[CnC ) =E? V' +V +SU + S<1 + B#)
T 1
+ 28%(1(2B,1;) + B, /B,,)} . (52) 0 . . ‘
0 5 10 15 20

It is easily shown that b

o Fig. 8. Plot ofQ versusb = B, /B,. Note that a$ increases() — 1.
8[0571] = Es/a/l + 21—;B7? 9 2 / 2

n
E[C,] = Es[ay +2Tan?0 Note that for large time bandwidth product®,.7;. > 1

and BT, > 1), I1(p) — 1/p. Then,
from which it follows that ) 1) /P

1
B B ~
' 1= E2|V’ _n 270n QI(2B,T,) 4+ Q21(2B,T,) = ———Q
E[C)E[C,] = E; [V +S<1+ BT> +5 BJ. 2B, T,
Combining this result with (52) we obtain where (remembering thaB, > B;)
E[CsnChy] — E[CsR)EC,] 0= B2+ B,B,.—2B2 b2 —b-2
= E2{V + SU + S*21(2B,T;)}. (53) T (B.-B.)?  (b—1)2

Finally, combining (14), (17), (20), (38)—(40), and (53) an@vhereb = B,, /B, is the noise-only to signainoise bandwidth
performing some tedious algebra it can be shown that  ratio. Note that a8 is increasedq) — 1 (See Fig. 8). Thus, the
. B2 noise term is larger for the overlapping case but the difference
var[E; | :afEf{V + S|:U+ (U’ - U)ﬁ} between the cases is reducedbas increased.
(2 n=B) From these results we conclude that while #ig is larger
4282 [I(2B,,T,,)<1 _ B; ) for the SMBW case, maximizing3,, > B, minimizes K,

(B — B;)? and, for very largeB, > B,, the K, for the two cases
B2 converge. For large time bandwidth products, (54) can be
T (B, — B1,)2I(2B"T") ) approximated by
SinceS[E\S] = E; it follows that for independent pulse, ;- W ~ X vaslusw —u B2
for the SMBW case is ol W]~ VN, + +( )(Bn — B,)?
- @ B2 B2 4 B,B, — 2B2\'/?

K, [E, SMBW| = V+S|:U+ U-u 77:| 2Pn nLy v ) 55

P[ ] \/Fp{ ( )(Bn_Br)2 + S (Bn _ BT)Q ( )

B?
+ 252 {I(2BTTT)<1 - m) When the modulation is interrupted CW, (55) can be ap-
" T proximated by Fisher'd(,,. Following the procedure outlined

B2 1/2 . e
+ 7712_7(23”7;)” (54) in Appendix A it can be shown that
= B0) , 2 Bp
which can be expressed in the form of (26). T T.Bp B,

Comparing thek, for the simultaneous, overlapping bandsybstituting this and the expressions fai/, anda, derived
width measurement case [(26)] with tli€, for the separate jn Appendix A into (54) we obtain
case [(25)] we note the presence of an additional tg#m due
to the presence of the signal in the noise-only measurementhUCW’SMBW]

bandwidth. (Note that? depends on the SNR vi& and 1 9 B,

U’.) W arises due to cross-products of the signal and noise = {1 + {1 - }
from the signal+noise and noise-only measuremeWts.is v LrBpNy SNR Bn(Bn — Bp)
positive and tends to increask,. However, this increase 1 B?+B,B,-2B? 1/2

can be minimized by choosing,, > B,. J; and (), arise + SN2 (B, — B,)? (56)

due to the different scaling factofs; and b}) used for the
simultaneous measurements and the correlation of the noisdinis result may be compared with Fishe&s,, which applies
the signal bandwidth. only to interrupted CW modulation with true independent
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signak-noise and noise-only measurements, given in (3
(Remembering thafl,, = 7,,.) Note the additional term in
the 2/SNR product term and the changes to the 1/tRn.
These arise due to the fact that the noise in the sigmaise
measurement bandwidth is not independent of the noise
the noise-only measurement, resulting in a somewhat hig
K.

(1]
(2]
(3]

[4]
(5]

(6]

(7]

(8]

(9]
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