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Radar Backscatter Measurement Accuracy for a
Spaceborne Pencil-Beam Wind Scatterometer

with Transmit Modulation
David G. Long,Member, IEEE,and Michael W. Spencer

Abstract—Scatterometers are remote sensing radars designed
to measure near-surface winds over the ocean. The difficul-
ties of accommodating traditional fan-beam scatterometers on
spacecraft has lead to the development of a scanning pencil-
beam instrument known as SeaWinds. SeaWinds will be part of
the Japanese Advanced Earth Observing Satellite II (ADEOS-
II) to be launched in 1999. To analyze the performance of the
SeaWinds design, a new expression for the measurement accuracy
of a pencil-beam system is required. In this paper we derive a
general expression for the backscatter measurement accuracy for
a pencil-beam scatterometer which includes the effects of transmit
signal modulation with simple power detection. Both separate
and simultaneous signal+noise and noise-only measurements are
considered. The utility of the new expression for scatterometer
design tradeoffs is demonstrated using a simplified geometry. A
separate paper [8] describes detailed tradeoffs made to develop
the SeaWinds design.

Index Terms—Scatterometry, SeaWinds, wind measurement.

I. INTRODUCTION

A SCATTEROMETER is a radar system that measures
the radar backscatter coefficient, of an illuminated

surface. The scatterometer transmits a series of RF pulses and
measures the total power (energy) of the backscattered signal
which is corrupted by noise. A separate measurement of the
noise-only power is subtracted from this measurement to yield
the return signal energy. Using the well-known radar equation
[Sec. 7, 9] and the measurement geometry, the backscatter
energy measurements are converted intomeasurements.
Multiple measurements of from different azimuth and/or
incidence angles are used to infer the wind direction. Naderiet
al. [7] provides a recent review of scatterometry with emphasis
on the NASA Scatteometer (NSCAT) instrument.

NSCAT is an example of a fan-beam Doppler scatterometer
which requires multiple large antennas (3 m long) to achieve
the required fan-beam illumination pattern. The field-of-view
requirements of the antennas are very strict making fan-beam
scatterometers very difficult to accommodate on spacecraft.
In addition, complicated onboard processors are required to
achieve a low data rate.
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Scanning pencil-beam scatterometers offer an alternative
design concept which can result in smaller, lighter instruments
with simpler field-of-view requirements [3]. Further, because
the antenna illumination is concentrated in a smaller area, a
much higher signal-to-noise ratio (SNR) can be obtained with a
smaller transmitter, resulting in reduced power requirements.
Complicated signal processing is not required and the data
rate is small. As a result, a pencil-beam scatterometer can
be more easily accommodated on spacecraft than a fan-beam.
(More exhaustive comparisons of fan-beam and pencil-beam
scatterometers are contained in [3] and [6], and in a companion
paper [8].)

A key difference between fan-beam and pencil-beam scat-
terometers is measurement dwell time. Fan-beam scatterome-
ters provide long dwell times, albeit a reduced SNR compared
to the higher SNR, but shorter dwell time of the pencil-
beam scatterometer system. For interrupted CW operation,
fan-beam Doppler scatterometers tend to provide higher time-
bandwidth products. However, the transmit signal of a pencil-
beam scatterometer can be modulated to improve the time-
bandwidth product. In either case, a key design goal is to
optimize the measurement accuracy within the design
constraints.

A common metric for evaluating the accuracy of the
measurement is the so-called parameter [1], [2], [5].
is the normalized standard deviation of measurement

A general goal in scatterometer design is to minimize the
measurement Further, the measurement is also used
in the processing of the the measurements into winds [7].

Expressions for for Doppler fan-beam scatterometers
such as the Seasat scatterometer (SASS) and the NSCAT with
its digital processor have previously been derived [1], [2].
These expressions are for an interrupted-CW transmit signal. A
general expression for a modulated transmit signal is required
for analyzing the performance of a pencil-beam scatterometer.

In this paper we develop a expression for pencil-beam
scatterometers which includes transmit signal modulation and
a simple total power (energy) detection scheme. To derive
this expression we begin with an expression for the return
echo, consider the method for estimating the signal energy,
and derive the general expression. We then relate the
expression to the radar ambiguity function for a simplified
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measurement geometry. This enables tradeoffs in the choice
of modulation function to minmimize which are discussed.
Finally, a summary conclusion is presented. A separate paper
[8] describes the use of the general expression to make
tradeoffs in the design of SeaWinds. Some detailed derivations
are contained in the Appendix.

II. RETURN ECHO (SIGNAL) MODELING

The scatterometer transmits a series of radar pulses and
measures the return echo energy. In this section we develop
an expression for the return echo given a modulated transmit
signal. We first consider the response from a point-target
response and extend this to the response from a distributed
target. Adopting a complex exponential formulation for the
carrier to simplify the discussion, the transmitted radar signal,

for a single pulse can be written in the form,

where is time, is the total transmitted energy for a single
pulse, where is the carrier frequency, and
is the carrier modulation function. The pulse repetition period
is and pulse length is For modeling purposes,
for and for The complex modulation
function is normalized so that

Let be the bandwidth of We assume that
Consider the return echo from a point scatterer on

the Earth’s surface. The scatterometer is moving at a constant
velocity. Fig. 1 shows the antenna illumination geometry for
a conically-scanning pencil-beam scatterometer system. For
a spaceborne scatterometer the return echo from a point
target can be approximated by a time-delayed, Doppler-shifted
replica of the transmit pulse scaled by antenna gain and
spreading term, i.e.,

where is the speed of light, is the slant range to
the target at cross track location and along-track location

is the the Doppler shift due to the relative
velocity between the target on the surface and spacecraft,

is the antenna gain in the direction of the target,is
the radar wavelength, and is the magnitude and phase
of the point target response.

For large spatially distributed targets, such as the ocean,
the return echo can be modeled as the superposition
of the echo from a very large number of point targets. For
a typical spaceborne scatterometer operating at microwave
frequencies, the superposition can be expressed as an area
integral [Sec. 7, 9] given in (1), shown at the bottom of the
next page, where is the effective response from
a large number of point scatterers within the differential area

which we assume is larger than the correlation length of

(a)

(b)

(c)

Fig. 1. Geometry of a conically scanning spaceborne pencil-beam scatterom-
eter. (a) Scanning geometry. (b) Isodoppler and isorange lines. (c) Isodoppler
and isorange lines for several cell locations along the scan.

the ocean’s surface at the frequency It follows from the
central limit theorem that the real and imaginary components
of the sum of scatterers may be assumed to be independent,
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normally distributed random variables [Sec. 7, 9]. Assuming
homogeneity, the second moment of can be related to the
normalized radar cross section

(2)

where denotes statistical expectation andis the area of the
differential element over which the integration is performed.
Because of the short correlation length of the surface,
and are independent for each differential element. We will
assume that is constant over the illuminated area.

We will find it convenient to express the area integral in
(1) in terms of the Doppler shifts and the slant range, i.e.,
(3), shown at the bottom of the pagewhere we have removed
the carrier frequency. For a spaceborne scatterometer the
denominator can be assumed to be approximately constant
over the integral. Let be the mean value ofover the integral.
Equation (3) then becomes

We now develop some results which will be used later.
Using (2) it can be shown that

(4)

where is the weighted modulation correlation function
defined as

(5)

is defined as

is the peak antenna gain over the footprint, andis the
effective cell area defined as

It can be shown that

where is the two-dimensional weighted modulation
cross-correlation function defined as

(6)

and that

where is the weighted time correlation function de-
fined as

(7)

We note that since it can be
shown that These facts
are used in later derivations.

III. ECHO SIGNAL ENERGY ESTIMATION

Ultimately, we want to estimate the surface This es-
timate is obtained by processing the received echo. Unfortu-
nately, the return echo is corrupted by additive thermal noise.
The received radar signal consists of the return echo
with additive noise due to thermal noise in the receiver
and the communication channel, i.e.,

We assume that the down-converted return echo (signal)
and noise are independent and that the noise is a real
white process with a power spectral density of over
the measurement bandwidth. The signal+noise measurement
bandwidth is The noise-only measurement is
made over the bandwidth In the following analysis we
assume ideal filters for simplicity.

To estimate a measurement of the signal energy (to-
tal power) is made by subtracting a “noise-only” measure-
ment from the signalnoise measurement. The noise-only and
signal noise may be made separately (as done by SASS and
NSCAT) or they made be made simultaneously (planned for

(1)

(3)
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(a)

(b)

Fig. 2. Two cases for simultaneous Signal+Noise and Noise-only measure-
ments. (a) Disjoint measurement bandwidths. Measurements are independent
and noise-only measurement bandwidth contains no signal; (b) noise-only
measurement bandwidth includes echo signal.

SeaWinds). When the measurements are made simultaneously,
minimum for a fixed noise-only bandwidth dictates that
the bandwidths be distinct [refer to Fig. 2(a)]. This results
in independent signalnoise and noise-only measurements.
However, when the signal+noise and noise-only bandwidths
overlap [refer to Fig. 2(b)], the measurements are correlated
and the effective is increased. Nevertheless, simultaneous
measurements with overlapping bandwidths may be easier to
implement in hardware (see [8]).

In any case, is inferred from the estimated signal energy.
Accurately estimating the signal energy is thus essential to
accurately determining The accuracy of the estimate is
quantified by

In the following sections we consider the estimation al-
gorithm, the signal energy estimation algorithm, and derive the
signal for the case when the signal+noise and noise-only
measurements are independent. The for the overlapped
bandwidth case is derived in the appendix.

A. Estimation

To estimate , measurements of the signalnoise
and the noise-only are made. A signal estimate is
formed as a linear combination of and i.e.

(8)

where and are described below. An estimate
of is formed from as

where By proper choice of and the
energy estimate is unbiased, i.e., Note that

In the following section is computed

by first determining the variance of and and then
using (8).

B. Energy Estimation

While there are a variety of possible signal processing
and estimation techniques which can be used to obtain
and , these are limited by practical considerations. For
example, the time and frequency dispersion in the echo makes
a matched filter detection very complex and unsuited for
onboard processing. Instead, a less optimum, though very
simple, detection scheme is employed (see Fig. 3) with

(9)

(10)

If the bandwidth of is sufficiently wide, the filter
does not affect the signal component of In this case
the signal noise measurement of (9) can be expressed as

(11)

where is the signal energy, is the noise energy, and
is the signal and noise cross product, i.e.,

(12)

This decomposition simplifies computing the variance of
Noting the independence of the signal and noise and using

the fact that the noise is Gaussian, it can be shown (with some
effort) that the expected value of the third term of (11) is
zero, i.e. Thus,

(13)

In order to compute we note that

where

Since is real and the
unconjugated cross products drop out. It can then be shown
that

(14)
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Fig. 3. Echo total power (energy) detection scheme.

where is noise-to-signal ratio

and [see (7)]

(15)

For the first term of (11), (4) can be used to compute the
expected value of

where the energy normalization coefficient is defined as
[see (5)]

(16)

The noise-free signal variance (due to Rayleigh fading) is then

(17)

where the normalized signal varianceis defined as [see (6)]

(18)

The noise-free measurement denoted by is then

(19)

Assuming ideal low-pass filters, the statistics of the second
term of (11) and the noise-only estimate of (10) are [2]

(20)

(21)

where and the function
is defined as [2]

(22)

Fig. 4. Plot of pI(p):

A plot of is shown in Fig. 4. Note that for large
(corresponding to large time-bandwidth products),

To obtain unbiased measurements the noise-only estimation
coefficient is selected as,

so that

C. Computing

Since the signal is independent of the noise and the noise
is zero mean

Using this result, (13), and the fact that it follows
that

With this result and (14), (17), (20), (21), we obtain,

(23)

Using the definitions of and it follows that

and
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The of the noisy signal energy estimate is then

(24)

For multiple independent pulses this becomes

(25)

which is our final result for distinct signalnoise and noise-
only measurements. In this equationis the noise-to-signal
ratio, is the signal range gate length, is the noise-only
measurement length, is the signal measurement bandwidth,

is the noise-only measurement bandwidth, and is
the number of pulses. As noted earlier for

The energy normalization coefficient is a function
of the modulation, the range geometry, the antenna pattern,
and the signal range gate [(5) and (16)]. The normalized
signal variance term is a rather complicated function of
the modulation, the range and Doppler geometry, the antenna
pattern, and the signal range gate [(6) and (18)]. The signal
and noise cross-term depends on the signal measurement
bandwidth, the range and Doppler geometry, the antenna
pattern, and the signal range gate [(7) and (15)]. In effect,

is the contribution of the signal power variance, is the
contribution of the signal and noise covariance, and the
term is the contribution of the noise variance.

In the appendix it is shown that for interrupted CW opera-
tion (no modulation) with a simplified geometry and antenna
pattern

where is the Doppler bandwidth. Equation (25) is then
equivalent to Fisher’s expression (see (48) in [2]). When
modulation is employed, it is shown in Section IV-A that for a
simplifed geometry and can be expressed in terms of the
radar ambiguity function defined by the modulation function:

is the radar ambiguity function evaluated at the origin and
is a weighted integral of the radar ambiguity function. As

discussed in Section IV, choosing an appropriate modulation
function can reduce by reducing

D. for Overlapping Bandwidths and
Simultaneous Measurements

Some hardware complexity reduction can be obtained by
making simultaneous signal+noise and noise-only measure-
ments. If the bandwidths are distinct and filter sidelobes are
neglected the measurements are independent and (25) can be
used. However, when the bandwidths overlap and the signal
is contained within the “noise-only” measurement bandwidth
(refer to Fig. 2) additional terms in the expression arise due

to cross correlation between the signalnoise and “noise-only”
measurements. For the case of simultaneous measurements
with overlapping bandwidths (SMBW) the expression
is

(26)

where

(27)

(28)

(29)

and is defined similar to (15) but with replaced by
Equation (26) is derived in Appendix A.

IV. VERSUS

Equations (25) and (26) provide analytic expressions for
when the transmit signal is modulated. In this section

we consider the effects of the choice of on We
will show that for some measurement geometries can be
improved by using a wideband however, we note that,
depending on the choice of may increase for some
geometries.

Note that the normalized signal variance termin the
expressions [(25) and (26)] corresponds to the variability due
only to the signal while the term arises from cross products
of the signal and noise. Also note that the term is not
affected by the choice of (other than by the possible need
to increase to insure processing of the complete signal
bandwidth). With these in mind we will consider just the effect
of the choice of on the noise-free given by (19).

In order to gain some insight into the effects of different
modulation functions on we assume a simplified geometry
and antenna illumination pattern to relate the to the to the
radar ambiguity function defined as

(30)

The radar ambiguity function arises from matched filter con-
siderations and is widely used in survellence radar systems
performance analysis.

A. and the Radar Ambiguity Function

In principle each term of the equation has to be evaluated
separately for each different observation geometry. Because
exact expressions are very complicated, (the full expression
is evaluated for SeaWinds in the companion paper [8]) a
simplified analysis is used in this section to provide insight into
the tradeoff between and For the simplified analysis
a simplified geometry for the isorange and isodoppler lines
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Fig. 5. Simplified cell illumination geometry and isolines. (Compare with
Fig. 1)

is assumed (see Fig. 5). A simplified antenna pattern is also
assumed,

illuminated rectangle
else.

With these simplifications, the area function in the
integral in (18) can be pulled out. Let us consider two cases.

Case one corresponds to a 90azimuth angle while case two
corresponds to a 0azimuth angle. For case one (azimuth
angle of 90 the integral in (3) reduces to two integrations
in and with

where is the difference between the maximum
range and the minimum range over the footprint and

is the difference between the maximum Doppler
and the minimum Doppler over the footprint. For later

use we assign which is the Doppler center
frequency and set and

For case two (azimuth angle of and coincide
and the integral in (3) effectively reduces to a line integral.
Choosing as the independent variable,

with where and
are constants. We consider each case in greater detail below.

1) Case 1, Azimuth: For the case one simplified ge-
ometry and are

(31)

(32)

To simplify these expressions, consider the integral

Using the substitutions and this
becomes

(33)

where and Noting that is
zero outside of the pulse and assuming that the range gates are
sufficiently wide to admit all of the echo signal, the limits on
the integral in (33) can be extended to infinity, i.e.,
and without affecting the value of the integral.
With this extension the integral in (33) is equivalent to the
radar ambiguity function defined in (30). With this extension
and assuming that is symmetric it can then be shown that

can be written as

Using the limit extension again it can be shown that,
It then follows that the noise-free is

(34)

where (shown at the bottom of the page) is introduced
to denote as a function of the transmit signal modulation
for measurement geometry case one.

Equation (34) suggests that (and therefore can be
computed as a weighted double integral of the radar ambiguity
function. This makes possible (at least for the simplified
geometry assumed here) to make analytic tradeoffs between
the choice of and by computing the ambiguity function
for a given modulation function. This will be considered later.

2) Case 2, Azimuth: For the case two simplified ge-
ometry, and are [compare (31) and (32)]
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Using previous results, the integral extension idea, and a bit
of tedious algebra it can be shown thatcan be written as

Similarly, from which it follows that

(35)

where

is introduced to denote as a function of the transmit signal
modulation for measurement geometry case two.

Again, we see that is a weighted integral of the radar
ambiguity function. However, while case one is a normalized
volume integral, case two is a normalized integral along a
diagonal slice through the ambiguity function. Depending
on the structure of the ambiguity function, the values of
the normalized integrals may be quite different. Thus, the
measurement geometry can have a significant effect on
and, therefore, on the choice of the modulation function.

B. The Relationship of the Ambiguity Function and

Equations (34) and (35) suggest that the noise-freecan
be expressed in terms of radar ambiguity function which is
a function of the modulation function is a weighted
function of the volume under (or the area under a diagonal slice
of, depending on the geometry case) the ambiguity function.
In general, ambiguity functions which are very localized
(“thumbtack-like” or concentrated near the origin
result in the smallest values.

To illustrate the tradeoffs in selecting a transmit signal
modulation scheme the ambiguity functions for three common
modulation schemes are considered. These radar ambiguity
functions are plotted in Fig. 6. The three modulation schemes
are: 1) interrupted CW (ICW) operation where the signal is
not modulated; 2) linear frequency modulation (LFM) (FM
chirp) which is commonly used in radar applications including
synthetic aperture radar; and 3) minimum shift keying (MSK).
MSK is a form of phase modulation commonly used in
communications [4]. For this application a maximal length
pseudo-random data sequence is used to generate the modula-
tion function The performance is essentially independent
of the particular maximal length sequence used.

The plots shown in Fig. 6 correspond to the pulse length
of 1.5 ms. A 66.7 kHz modulation bandwidth is used for

the LFM and MSK cases. Referring to this figure, while the
ambiguity functions for ICW and LFM are very broad, the
MSK ambiguity function is very narrow and localized. Since

is a function of the area under the ambiguity function,
MSK can be expected to produce smaller netvalues since it
has a significant value only over a very small area. To quantify
this conclusion Table I summarizes the values of and

for each modulation scheme. The values shown
in Table I are normalized by and correspond to

(a)

(b)

(c)

Fig. 6. The radar ambiguity function(jX(t; !)j) corresponding to (a) inter-
rupted CW modulation, (b) LFM, and (c) MSK.

and kHz. Actual values for SeaWinds
are given in [8].

Table I reveals that the choice of the modulation scheme
affects the value of and that the resulting is depen-
dent on the measurement geometry. ICW provides the best
performance for a scan angle (measurement geometry case
two); however, the performance of ICW for geometry case one
(90 scan angle) is not as good as LFM and MSK. Comparing
the overall performance of LFM and MSK, we find that MSK
provides the best performance for measurement geometry case
one with only minimal degradation for case two. Since MSK
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TABLE I
K0

p
FOR THE TWO SIMPLIFIED GEOMETRY CASES, Y1(Xa) AND Y2(Xa);

NUMERICALLY COMPUTED FORVARIOUS TRANSMIT SIGNAL MODULATION

SCHEMES. THE VALUES SHOWN HAVE BEEN NORMALIZED BY Y1(ICW )

can be easily generated in hardware, it was chosen for the
baseline SeaWinds design [8].

for ICW is inversely proportional to the square root of
the product of the pulse length and the Doppler bandwidth
(the time-bandwidth product of the echo return) [see (37)].
The number of “independent looks” is thus proportional to
the time-Doppler bandwidth product. Examining the radar
ambiguity function (Fig. 6), we see that the ambiguity function
for ICW is narrow only in the frequency dimension. In effect,
only the Doppler information in the return provides “looks”
when ICW is used. On the other hand, MSK is narrow in
both the frequency and time dimensions, providing both range
and Doppler resolution. When the Doppler and the range are
coincident (geometry case two), for MSK is essentially the
same as for ICW; however, when the Doppler and range are
not coincident (geometry case one) for MSK is improved
over ICW. In effect, MSK provides “looks” in both the
Doppler and range dimensions. For geometry case one

where is the bandwidth of the MSK modulation. Note
that to improve For LFM the frequency and
Doppler resolution are not independent and is essentially
the same as for ICW.

While increasing arbitrarily will improve the noise-free
the receiver bandwidth must also be increased to

accomodate the signal; however, as the receiver bandwidth
is increased the noise terms in (25) become increasingly
important and the total increases. The total will depend
on the signal to noise ratio as well as the bandwidth, requiring
a tradeoff between the signal modulation, the receiver band-
width, and the total This tradeoff is considered in detail
in the companion paper [8].

V. SUMMARY

Expressions for the measurement for a measurement
from a pencil-beam scatterometer with simple power detec-
tion have been derived. These expressions can be used for
separate signalnoise and noise-only measurements as well
as simultaneous measurements. The expressions include
transmit signal modulation and the effects of the antenna gain
pattern. These expressions reduce to Fisher’s analog
expression when the modulation is interrupted CW. Using
a simplified geometry, is related to the radar ambiguity
function, enabling simple comparisons in performance for
different modulation schemes.

Fig. 7. The two cases forKa(t):

Based on these we conclude (1) that the radar ambiguity
function approach can be useful in making first-order tradeoffs
in modulation functions to minimize the noise-free and
(2) choosing an appropriate modulation scheme can result in
improvements in but (3) the amount of improvement in
is dependent on the measurement geometry and the scan angle.

The existence of analytic expressions for permit detailed
tradeoffs in the design of spaceborne scatterometer systems.
Further, these expressions are needed to compute the actual
measurement signal variance since the measurementis re-
quired when retrieving the wind from the estimated backscatter
measurements [7]. The application of these equations to
design tradeoffs for a spaceborne scatterometer is described in
a separate paper [8].

APPENDIX A:

Interrupted CW Operation

Let us consider the single pulse [(25)] for the separate
measurement case when the signal is not modulated, i.e.,
when the transmitted signal is interrupted CW. This section
demonstrates that Fisher’s equation [2] is a special case
of (25).

We first compute some specific results for the case of
interrupted CW operation where

else.

Depending on the length of compared to the differences
in time-of-flight across the footprint, may be either
triangular or trapezoidal (see Fig. 7). We will concentrate
on the second case. This corresponds to where

For this case, and using a simplified antenna gain pattern
(see Section IV-A), the ramp up and ramp down times can
be ignored and can be approximated as a simple rect
function of length centered about the mean time-of-flight

i.e.,

else.

If the range gates are set so that the integration in (16)
exactly covers the “flat top” of then where

is the range gate length.
Computing is somewhat more difficult. For the inter-

rupted CW case with the simplified antenna gain can
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be written as

where For if we consider only
values of and within the “flat top” period of the return

can be approximated as

Note that is only a function of the time difference
between and i.e.,

In principle we have to evaluate separately for each
illumination geometry. Because the exact expressions are
very complicated, let us again assume a simplified geometry
(Fig. 5). Then, can be written as

which produces

Performing this integration and assuming a large time-
bandwidth product it can be shown that

For our simplified antenna pattern and geometry and inte-
grating over the flat top portion of the return with the ramp
up and down times ignored, reduces to

Performing the integration,

Then

where

Simplifying, and using the substitution

which can be expressed as [2]

For large time-bandwidth products this becomes

It follows that,

where is the Doppler bandwidth in Hz.
Let us now define the signal-to-noise ratio (SNR) as the

ratio of the return echo energy to the noise
power over the signal measurement bandwidth and range gate
length, i.e.,

Assuming a large time-bandwidth product, and
the measurement variance, (23), for the interrupted CW case
becomes

For an optimally chosen range gate and ignoring the rise and
fall time of the pulse It follows that We will
set It follows that for the simplified interrupted
CW case is

(36)

which is equivalent to the analog expression of Fisher
(see (48) in [2]). Thus, (25) reduces to the Fisher’s when
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the modulation is interrupted CW. The noise-free for
this case is

(37)

APPENDIX B:

for Simultaneous Measurements
with Overlapping Bandwidths

In deriving (25), it was assumed that independent mea-
surements of the signal+noise, and of the noise-only,

were made. Let us now consider the case when the
signal+noise and noise-only measurements are made simulta-
neously and the noise-only measurement bandwidth includes
the signal noise measurement bandwidth (the SMBW case)
(see Fig. 2). The “noise-only” measurement now includes a
signal component and is, in reality, a signalnoise measure-
ment. However, the noise-only measurement bandwidth is
much larger than the signalnoise measurement bandwidth,
i.e., We will denote the “noise-only” measurement

for this case by For simplicity we will set
and (thus, though this is not a requirement.

To simplify notation the noise in the signal+noise measure-
ment is denoted as and the noise in the
noise-only measurements as Using this
notation, the received signal+noise and “noise-only”

signals are

Assuming that is wide enough to not affect the signal,
the noise-only measurement is

For this case the signal energy is estimated by [compare (8)]

(38)

where the coefficient and are given by

It is easily shown that
Following the approach given in the main text [see (11)],

may be expressed in terms of the signal-only energy
[defined in (12)], a noise-component and a cross-product,

where

It can be easily shown that

where is given in (17) and

(39)

(40)

where is defined in the same way as in (15) but with
replaced with

For later use we compute several expected values. Noting
the independence of the signal and noise

(41)

(42)

The noise-component of the noise-only signal can
be expressed as the sum of the noise-only portion of the
signal+noise and an independent noise com-
ponent Noting the independence
of and it follows that

(43)

(44)

Then, since and are zero mean,

from which it follows that

(45)

Noting that the expected value of a third-order product of zero
mean Gaussian random processes is zero it follows that

(46)

Similarly,

(47)

(48)

(49)

Using (43), the fact that the noise is real, and noting that

and

(50)
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Defining we can express as

(51)

Combining (41), (50), (42), (49), (48), (51), (42), and (45),
we obtain

(52)

It is easily shown that

from which it follows that

Combining this result with (52) we obtain

(53)

Finally, combining (14), (17), (20), (38)–(40), and (53) and
performing some tedious algebra it can be shown that

Since it follows that for independent pulses
for the SMBW case is

SMBW

(54)

which can be expressed in the form of (26).
Comparing the for the simultaneous, overlapping band-

width measurement case [(26)] with the for the separate
case [(25)] we note the presence of an additional term due
to the presence of the signal in the noise-only measurement
bandwidth. (Note that depends on the SNR via and

arises due to cross-products of the signal and noise
from the signal+noise and noise-only measurements.is
positive and tends to increase However, this increase
can be minimized by choosing and arise
due to the different scaling factors and used for the
simultaneous measurements and the correlation of the noise in
the signal bandwidth.

Fig. 8. Plot ofQ versusb = Bn=Br: Note that asb increases,Q! 1:

Note that for large time bandwidth products
and Then,

where (remembering that

where is the noise-only to signalnoise bandwidth
ratio. Note that as is increased, (See Fig. 8). Thus, the
noise term is larger for the overlapping case but the difference
between the cases is reduced asis increased.

From these results we conclude that while the is larger
for the SMBW case, maximizing minimizes
and, for very large the for the two cases
converge. For large time bandwidth products, (54) can be
approximated by

SMBW

(55)

When the modulation is interrupted CW, (55) can be ap-
proximated by Fisher’s Following the procedure outlined
in Appendix A it can be shown that

Substituting this and the expressions for and derived
in Appendix A into (54) we obtain

ICW SMBW

SNR

SNR
(56)

This result may be compared with Fisher’s which applies
only to interrupted CW modulation with true independent
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signal noise and noise-only measurements, given in (36).
(Remembering that Note the additional term in
the 2/SNR product term and the changes to the 1/SNR2 term.
These arise due to the fact that the noise in the signalnoise
measurement bandwidth is not independent of the noise in
the noise-only measurement, resulting in a somewhat higher
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