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Abstract-The NASA Scatterometer, NSCAT, is an active space­
borne radar designed to measure the normalized radar backscatter 
coefficient o0 of the ocean surface. These measurements can, in turn, 
be used to infer the surface vector wind over the ocean using a geo­
physical model function. Because of the nature of the model function, 
several ambiguous wind vectors result. A process commonly known as 
"dealiasing" or ambiguity removal must be used to select the "best" 
wind vector from the set of ambiguous wind vectors. An automated, 
median-filter-based ambiguity removal algorithm which requires only 
the scatterometer measurements will be used by the NSCAT ground 
data-processing system. The algorithm incorporates a number of se­
lectable parameters such as window size, mode, and likelihood weight­
ing which can be adjusted to optimize algorithm performance. This 
paper describes the baseline NSCAT ambiguity removal algorithm and 
the method used to select the set of optimum parameter values. An 
extensive simulation of the NSCAT instrument and ground data pro­
cessor provides a means of testing the resulting "tuned" algorithm. 
This simulation generates the ambiguous wind-field vectors expected 
from the instrument as it orbits over a set of realistic mesoscale wind 
fields. The ambiguous wind field is then dealiased using the median­
filter-based ambiguity removal algorithm. Performance is measured by 
comparison of the selected wind fields with the "true" wind fields. Re­
sults have shown that this median-filter-based ambiguity removal al­
gorithm satisfies NSCAT mission requirements, and it therefore has 
been incorporated into the baseline geophysical data-processing system 
for NSCAT. 

I. INTRODUCTION 

THE feasibility of spacebome scatterometers to make esti­
mates of both wind speed and direction over the ocean was 

demonstrated by the Seasat-A scatterometer [5]. A scatter­
ometer measures the normalized radar backscatter coefficient a0 

of the ocean surface. These measurements can then be used to 
estimate vector surface wind using a geophysical model func­
tion and a wind retrieval algorithm. The NASA scatterometer, 
NSCAT, is scheduled to fly in the mid-1990's [9]. The a0 data 
will be processed to vector wind estimates at 50-km resolution 
using a point-wise Maximum Likelihood (ML) technique [3]. 
Because of the harmonic dependence of a0 on wind direction, 
though, the retrieval technique is unable to uniquely resolve the 
wind vector. A set of 2 to 6 possible wind vectors known as 
ambiguities are determined [2]. Associated with each ambiguity 
is a likelihood value which may be used to order the ambigui­
ties. The NSCAT ambiguity removal algorithm, employing only 
scatterometer-derived data, will be used to select one wind vec­
tor from the set of ambiguities that, when successful, is the 
closest vector to the true wind for each wind resolution cell. 
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The problem of ambiguity removal for scatterometer-derived 
wind vectors has been studied extensively for Seasat SASS [II]. 
The advantage of a third scatterometer beam for ambiguity re­
moval was pointed out by Schroeder [ 10) for the NOSS scatter­
ometer design, which was the forerunner of the NSCA T 
3-antenna, 4-beam design. Ambiguity removal algorithm de­
velopment for NSCA T, since 1986, has mainly concentrated on 
the median filter concept. 

This paper describes the NSCA T ambiguity removal algo­
rithm and the process used to optimize the adjustable parame­
ters (tuning) and to evaluate the algorithm's performance. The 
wind field and instrument simulations used to provide the test 
input data for this process are also described, and the methods 
used to evaluate algorithm performance are developed. Finally, 
the results of tuning the algorithm parameters and the subse­
quent performance tests are presented. 

II. ALGORITHM DESCRIPTION 

The ambiguity removal algorithm employed in this investi­
gation uses a modified median filter technique to select a unique 
wind vector out of a set of ambiguous wind vectors at each wind 
vector cell (WVC). Median filter techniques were first intro­
duced in 1974 to filter time-series data, and were later applied 
to image enhancement. The median of a set of N values is de­
fined for N (odd) as the (N + I )/2-th largest number; i.e., 
there is an equal number of values greater and lesser in mag­
nitude than the median. Because the selection of a median is 
determined only by the order of numbers, the median is not 
affected by extremely large or small values in the data. The 
advantage of a median filter is that it eliminates isolated impul­
ses while preserving edges. On the contrary, a linear filter such 
as a mean filter or a Hamming window filter smooths, rather 
than eliminates, impulses and smears edges. 

The conventional definition of the median can only be applied 
to scalar data in which the ordering of the values is obvious. 
The pixel brightness levels in an image is an example. For cir­
cular data (such as directions) or vector data the conventional 
definition of median fails because the order of numbers cannot 
be specified, and the median itself can be ambiguous. One 
method given by Mardia [8] defines the median of directional 
data to be the direction 0, such that an equal number of data 
exist in the half circles ( 0, 0 + 180°) and ( 0 - 180°, 0). This 
definition is not only cumbersome for computation, but also 
gives multiple solutions. An alternative definition, also due to 
Mardia, is that the circular mean deviation is a minimum when 
measured from the median direction, i.e., for circular data a(l), 
a(2),· • ·, a(N), and that the median is the value a(m) which 
minimizes the function: 

N 

S(m) = -~ la(m) - a(i)I, ,= I 
( I ) 
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Here the absolute deviations are defined as positive angles be­
tween 0° and 180°. This fonnulation is much simpler from a 
computational standpoint than the conventional definition. For 
multidimensional data such as vectors and complex numbers, it 
is even more difficult to define the median. However, the min­
imum deviation approach can be extended to define the median 
of multidimensional data. For vector data V( i ), the median can 
be defined as the vector V(m) which minimizes S(m), where 

N 

S(m) = ;~1 II V(m) - V(i) II and I s m s N. (2) 

The vector nonn fonnulation for the vector median as defined 
here behaves similarly to the median of scalar and circular data 
in that it is also unaffected by extreme values in the data. The 
minimum deviation approach given by (1), and its extension in 
(2), fonn the basis for our subsequent development of a wind­
vector ambiguity removal algorithm. 

A median-filter based on (1) or (2) is implemented by con­
structing a fixed-length data window which is passed over the 
data. At each step in the filtering process, the computed median 
of the values in the window replaces the value at the center of 
the window interval. Applying a one-dimensional filter of length 
N to a sequence of vector data {A;}, we may rewrite (2) in the 
fonn of the "error" function E;: 

i+h 

(3) 

where h = ( N - I ) /2 is the half-width of the window centered 
on A;, and Wm' is an arbitrary window weighting function that 
detennines the contribution of each tenn relative to the central 
value (m' = m - i). In this case, we seek a replacement for A; 
from the set {Am} that minimizes E;. The directions-only filter 
is deriv~d analogously to (3), except that the vector noon II A; 
- Am II 1s replaced by the direction nonn: 

IB; - 8ml = cos-
1 

[
1
1;

1
•
1
!:il (4) 

The extension of (3) to create a median filter of a two-dimen­
sional vector field { Au } is trivial: 

i+h j+h 

Eu= m=2i'-h n=o/-h wm·n·IIAu - Amnll (5) 

where A1j is the vector at the center of the N x N window ( N 
~dd ), h_ IS defined as for (3), wm'n' is the window weight func­
tion <:with m' = m - i and n' = n - j), and we seek to replace 
Au with a vector from { A 111n} that minimizes £. . Extension of 
the di~ection-only filter to two dimensions is a~complished by 
replacmg_the_ vectors in (4) with doubly indexed vectors in (4) 
and subst1tutmg for the vector nonn in (5). 

The fi~al extensi_on required for the wind-vector ambiguity 
problem 1s to consider the two-dimensional wind-vector field 
{At}, where each grid point ( i, j ) on the field has a set of k 
ambiguous vectors. Associated with each wind vector is a like­
lihood Lt assigned by the wind-retrieval algorithm. Let us as­
sume, for convenience, that the vectors have been sorted in 
descending likelihood order (i.e., A& is the highest likelihood). 
We may also weight each ambiguity by a simple power function 
of its likelihood value (Lt)P, where p ~ 0. Let U; be an array 
?f_ ~ec_tors o~ the ( i, j) grid selected from the At ~mbiguities, 
m1t1ahzed with the set of highest-likelihood vectors: 

for all i, j. (6) 

We may now write our fonnulae for the median filters as: 
Direction-Only Median 

k I '+,h j + h -I [ At • Umn J 
E,1 - -- ~ ~ Wm'n' cos 

(Lt)" m=i-h n=j-h IAtl I Um,,I 
(7) 

Vector Median 

The initial field Uu selected from the field of ambiguities is 
compared via (7) or (8) with each member of the set { At } in 
the center of the filter window, computing a set of values {Et} 
of the filter function. The ambiguity that minimizes the filter 
function is selected to be U'!; } , the new array of selected vectors 
which replaces Uij for the next iteration. The filtering/selection 
process continues at each grid point ( i, j) in the array to create 
U;j. Then Uu is replaced by uJ, and the whole process is re­
peated to select a new U'!;. This iterative process continues until 
U'!; = U;j• Note that two copies of Uij must be maintained to 
ensure stability and convergence of the process. 

An advantageous feature of surface wind-vector fields is that 
they are relatively smooth and continuous. There are significant 
discontinuities such as fronts and convergence zones, as well 
as cyclonic structures, that must be preserved by the ambiguity 
removal algorithm. The median filter is thus well suited to the 
problem in that it will eliminate random selection errors, while 
simultaneously maintaining those large-scale discontinuities that 
are of key interest. However, if the ambiguity removal algo­
rithm based on the foregoing fonnulation is to succeed, it is 
necessary that the wind-retrieval algorithm produce an initial 
wind field in which the true features are dominant. 

The NSCA T maximum-likelihood wind-retrieval algorithm 
computes a set of wind vectors ranked by their relative likeli­
hoods for each wind-vector cell (WVC) (3). The highest-ranked 
solution is referred to as the "most likely" wind vector. The 
solution closest to the true wind is called the "closest" solu­
tion, and all the wind-vector solutions found in each WVC are 
referred to as ''ambiguities.'' Based on simulated NSCAT data, 
there are usually two to six ambiguities per WVC. Typically, 
about 90% of the two "most likely" (i.e., highest value of like­
lihood) ambiguities are either the closest vectors, or are about 
180° opposite to the closest vector. For NSCAT, the solution 
with the highest likelihood is the closest vector about 60% of 
the time. The objective of the ambiguity removal algorithm is 
to choose the closest solution from the list of ranked ambigui­
ties, which is equivalent to detecting cases where the most likely 
ambiguity is not the closest vector and then selecting the correct 
solution. 

The median-filter ambiguity removal algorithm was chosen 
for use by NSCA T because it requires no auxiliary data ( in situ 
data, numerical weather models, etc.) and because of its sim­
plicity, tunability, and overall perfonnance. The vector median 
computation given in (8) retains the desirable properties of a 
median filter. The additional weighting parameters ( W , , and k ,,, II 
(Lu)"] have been introduced to pennit algorithm tuning and 
perfonnance enhancement. 

The four adjustable parameters which pennit algorithm tun­
ing are: Mode (direction (0) or vector median (I)), window size 
(N), likelihood weight exponent (p), and window weight 
( W,,,.,,. ). The mode controls whether wind speed is included in 
the calculation of the error function; N can range between 3 and 
11 WVC's on a side; W,,,.,,. controls the relative contribution of 
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each vector in the window; and p determines the advantage 
given to vectors with a higher retrieval algorithm likelihood. 

Ill. ALGORITHM PERFORMANCE 

The performance of any given ambiguity removal algorithm 
is ultimately determined by its ability to faithfully reproduce the 
intrinsic features of the observed wind field. A robust algorithm 
must be capable of handling the full range of possible situa­
tions. In this section we discuss the principal factors that affect 
algorithm performance and introduce several metrics with which 
to analyze and optimize the median-filter algorithm. 

External factors affecting the performance of any ambiguity 
removal algorithm are attributable to either the geophysical 
model function or the scatterometer design. The azimuthal 
modulation of the backscatter/wind model function, or upwind/ 
downwind asymmetry, exhibited by the model function affects 
the ability of the retrieval algorithm to distinguish the relative 
likelihood of the principal ambiguities, which are typically 
180°. The degree of upwind/downwind asymmetry of a given 
model varies with the incidence angle, polarization, and wind 
speed. 

The relative amount of noise as measured by the signal-to­
noise ratio (SNR) in the backscatter measurements affects not 
only the wind vector solutions but also their assigned likeli­
hoods. The numbers, azimuthal arrangement, and polarizations 
of the scatterometer antenna beams also affect the wind retrieval 
[7]. On NSCA T, the introduction of a dual-polarization middle 
beam in addition to the two orthogonal fore/aft beams (see Fig. 
1) is intended to improve the ability of the retrieval algorithm 
to distinguish the correct wind vector. 

This "native" ability of the instrument/wind retrieval algo­
rithm to find the correct solution is referred to as '' instrument 
skill." Instrument skill is defined as the percentage of WVC's 
for which the highest-likelihood wind vector is also the vector 
closest to the true wind. An instrument skill of 100% would 
indicate a "perfect" retrieval algorithm; i.e., no ambiguity re­
moval required. For NSCA T, the averge instrument skill is typ­
ically of the order of 60%. An analogous statistic for the 
ambiguity removal algorithm is called the "ambiguity removal 
skill." We define ambiguity removal skill as the percentage of 
WVC's for which the wind vector selected by the ambiguity 
removal algorithm is also closest to the true wind. 

In general, good ambiguity removal skill can be achieved 
when the average instrument skill is high. However, the aver­
age instrument skill alone does not provide sufficiently detailed 
information. The instrument skill can vary systematically in dif­
ferent regions of the measurement swath, depending on mea­
surement SNR and relative azimuth of the antenna beams to the 
local wind direction. This effect is referred to as "local instru­
ment skill"; that is, the skill of the wind-retrieval algorithm on 
small spatial scales. Local skill can be quite low for far-swath 
cells and low-wind speeds (due to low SNR) and at particular 
wind directions where the wind-retrieval algorithm cannot dis­
tinguish (or reverses) the relative likelihoods of the two prin­
cipal ambiguities. This causes ambiguity selection errors to 
appear in clusters rather than being randomly distributed. Suf­
ficiently large regions of low skill can cause ambiguity selection 
errors to propagate, depending on the algorithm used. Based on 
simulated NSCAT data, high algorithm skills ( > 96 % ) with 
randomly distributed errors can usually be attained when re­
gions of low instrument skill are much smaller than the median­
filter window size. 

Two performance metrics were adopted to select the optimum 
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Fig. I. The NSCAT antenna beam and swath configuration. 

set of ambiguity removal parameters: The ambiguity removal 
(algorithm) skill defined above, and a 12 by 12 WVC "dump­
iness" metric. Clumpiness is the tendency of ambiguity selec­
tion errors to occur in the proximity of other ambiguity errors. 
It is defined as the percentage of 12 by 12 contiguous WVC 
regions having greater than 85 % successful selection. This met­
ric increases as the ambiguity removal errors become more ran­
domly distributed. The NSCAT science requirements state that 
the algorithm skill must be greater than 96 % and the dumpiness 
metric be greater than 98 % in regions of the swath where the 
true wind speed is between 3 and 30 m/s [7]. To conform with 
these requirements, both performance measurements are only 
calculated in this wind speed region. 

IV. ALGORITHM TESTING PROCEDURES 

Our approach to testing the NSCAT ambiguity removal al­
gorithm consists of two stages: Parameter optimization (tuning) 
and algorithm evaluation. The goal of ambiguity removal tun­
ing is to select the set of parameters which maximizes the al­
gorithm performance. The optimized algorithm is then tested to 
determine its strengths and weaknesses. 

An extensive simulation of the NSCA T instrument and real­
istic wind fields, described in Section V, provided the input 
datasets for these tests. The obvious advantage to using a simu­
lation is that the true wind field is available for comparison with 
the results of the tests. The winds fields from which the instru­
ment data were simulated were divided into two separate 
groups-a test group and a withheld group. The test group was 
used to optimize the ambiguity removal algorithm, while the 
withheld group was used for the performance evaluation of the 
algorithm. The simulated instrument data was processed to 
backscatter measurements and then to ambiguous, ranked wind 
vectors. 

In the tuning stage, over 100 different input parameter con­
figurations for the algorithm were used, spanning most degrees 
of algorithm freedom: Mode, window size, location weight, and 
likelihood weight. Each configuration of the algorithm was run 
to dealias the six ambiguous wind files in the test group. For 
each run, the algorithm skill and dumpiness metrics were com­
puted to characterize the parameter configuration. In addition, 
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Fig. 2. Flow diagram of the NSCAT instrument/wind field simulation that was used to provide realistic scatterometer data for 
testing the ambiguity removal algorithm. 

spatial plots of the ambiguity errors and distributions of the er­
rors as a function of wind speed and swath location were made 
as aids to visualization. The performance metrics were aver­
aged over the six wind files in the test group, providing a mea­
sure for ranking the sets of input parameters. The results of the 
tuning stage are discussed in Section VI. 

Having optimized the algorithm to account for "typical" 
wind fields and instrument and model function factors, the al­
gorithm is evaluated against a further set of wind fields (the 
withheld set) to test its robustness-the algorithm versus the 
winds. Again, the skill and dumpiness metrics are averaged 
over the six wind fields to measure performance. Any signifi­
cant deviation in the measured performance from that found in 
the tuning stage would indicate sensitivity to the peculiarities 
of the wind vector fields, an undesirable result. 

V. INSTRUMENT/WIND FIELD SIMULATION 

The spaceborne NSCA T instrument uses 6 fan-beam anten­
nas to provide multiple azimuth angle observations of the nor­
malized radar backscatter ( o-0 ) of each resolution element (Fig. 
l). The o-0 measurement cells have a resolution of 25 km, with 
24 on each side of the spacecraft. The wind measurements are 
retrieved at 50-km resolution (12 on each side) with 16 a0 's per 
wvc. 

We have developed an end-to-end system simulation of 
NSCA T, including both instrument and ground-processing sys­
tems. In this simulation the scatterometer is "flown" over re­
alistic wind fields. The changing orbital geometry is included. 
Monte Carlo techniques are used to generate o-0 measurement 
noise, geophysical modeling error, and o-0 retrieval error [2]. 
All noise components are assumed to be Gaussian. The o-0 mea­
surement noise, which is a function of SNR, is based on the 
measurement geometry and NSCAT hardware design [6]. The 
SNR can range from a low of - 20 dB to a high of 18 dB de­
pending on the wind-dependent o-0 and the measurement cell 
location. The geophysical modeling error reflects the uncer­
tainty in the SASS I model function relating o-0 and the surface 
wind vector. Following earlier work, a value of 0. 7 dB has been 
,used for the model function uncertainty [2]. The retrieval error 
arises from the uncertainty in the parameters of the radar equa­
tion such as the slant range, antenna gain, and cell area used to 
compute o-0 from the instrument power measurement. Uncer­
tainty values are based on the instrument calibration accuracy, 
the antenna pointing uncertainty budget, and the orbit deter­
mination budget. The retrieval error amounts to about 0. 7 dB, 
depending on the orbit and measurement cell location. 

As shown in Fig. 2, at each step of the simulation each of 
the measurement cells is first located in latitude and longitude. 
After conversion to swath coordinates (along-/cross-track), the 
mesoscale wind vector ("true" wind) at that location is as­
signed to the cell. The wind speed and direction, along with the 

20 

• 40 

Ul 

Fig. 3. An example of a mesoscale wind field mapped onto the NSCAT 
wind measurement swath. The wind vectors are shown here at 100-km res­
olution (every other vector) for clarity; the winds are converted to simu­
lated backscatter measurements at 25-km resolution, and retrieved at 50-
km resolution. 

local incidence angle and beam polarization, are input to the 
geophysical model function to produce a "true" o-0 . This true 
o-0 is converted to a received power via the radar equation. Noise 
is then added to produce a simulated scatterometer power mea­
surement. These steps are repeated for all o-0 cells on the swath. 
In the ground-processing simulation, the "measured" a0 's are 
then recovered and assigned to 50-km wind vector cells. A 
point-wise maximum-likelihood wind-retrieval algorithm [3] is 
used to generate ambiguous winds. 

As input to this system simulation, high-resolution mesoscale 
surface wind fields are required. Since little conventional me­
soscale wind field data over the ocean are available, simulated 
wind fields were generated. As described by Bevan and Freilich 
[l], original ECMWF surface wind fields at 1.875° resolution 
were interpolated to 10 km and nondivergent small-scale vari­
ability with a ak- 2 spectrum [4] was added. For a given 2000 
x 2000 km region, the value of "a" was selected to be con­
sistent with the spectrum within the region. Twelve wind fields 
were selected to span a wide range of meteorological condi­
tions, including sharp fronts and small-scale cyclones with wind 
speeds between 0 and 30 m/s. An example of one mesoscale 
field used in this study is plotted in Fig. 3. 

VI. PARAMETER 0PTIMIZA TION 

The variation in ambiguity removal performance observed in 
this part of the study indicates that algorithm tuning can have a 
small but significant effect. About 75% of the cases achieved 
an ambiguity removal skill between 94 and 97 % . Thus the gain 
in algorithm skill achievable by adjustment of the parameters is 
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Fig. 4. The algorithm skill is plotted as a function of filter size and like­
lihood weight for boih mode O (a), and mode I (b). 

small. The 12 by 12 metric exhibited similar behavior. Over 
73 % of the filters evaluated achieved better than 95 % of the 12 
by 12 contiguous regions with over 85% successful selection. 
Forty-six percent of the filters achieved better than the required 
98%. Therefore the improvement in the 12 by 12 metric achiev­
able by tuning the algorithm parameters is also small. 

One of the most prominent features is the dependence on the 
algorithm mode. The "mode" parameter selects between one 
of two distinct median-filter algorithms. In every case where 
two configurations differ only by mode, the configuration using 
the vector median algorithm (mode 1) has a higher algorithm 
skill; hence the vector error function performs better than the 
direction error function. The superiority of the vector median 
formulation (equation (8)) was recognized at an early stage in 
the tuning process. 

The median-filter algorithm also exhibits a strong depen­
dence on window size. The filter window size sets the number 
of wind cells adjacent to a particular cell that are utilized in the 
ambiguity removal process. The window dimensions must be 
odd integers so as to ensure that the particular WVC under con­
sideration is in the center of the window. In these tests the win­
dows were not restricted to being square, but it was found that 
square filters performed better than rectangular filters. The al­
gorithm performance peaks at 7 by 7, although the difference 
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Fig. 5. The 12 by 12 clumpiness metric is plotted as a function of filter 
size and likelihood weight for both mode O (a), and mode I (b). 

between 5, 7, and 9 is quite small. The algorithm skill drops 
substantially when the window size is reduced to 3 by 3 WVC's. 

The results also display a slight dependence upon the likeli­
hood weighting. The algorithm skill for both modes O and I 
increases as the likelihood weight increases between O and 2. 
The skill for mode 1 drops as the likelihood weight increases 
from 2 to 3. Mode O increases slightly over the same range, but 
the increase is insignificant. Fig. 4 summarizes this observed 
relationship between mode, window size, likelihood weight, and 
the average algorithm skill for uniformly weighted configura­
tions over the test group of wind files. A comparison has also 
been made us:ng the 12 by 12 metric with similar results (see 
Fig. 5). 

With the exception of configurations using mode O or a win­
dow size, N = 3, the algorithm performance is quite good and 
fairly uniform, making the selection of a single "optimum" 
configuration difficult. Based on Figs. 4 and 5, the optimum set 
of ambiguity removal algorithm parameters has been chosen as 
follows: Mode = I (vector median error function); filter size 
= 7 by 7 WVC; filter shape = square, uniform weight; and 
likelihood weight = 2 (advantage to "most likely" ambigui­
ties). With these values the median-based ambiguity removal 
algorithm achieves an algorithm skill of96.7% and a 12 by 12 
metric of 98. 7 % over the test group. 
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(a) 

(b) 

(c) 

Fig. 6. A magnified example of one test wind field. showing: (a) The starting ··true" wind: (b) the field of highest-likelihood 
ambiguities after wind retrieval: (c) the field of vectors selected hy the median-tilter ambiguity removal algorithm. 

Although several configurations utilizing nonuniform loca­
tion weighting were also tested, it is clear that any improvement 
in performance due to location weighting will be small. De­
tailed analysis of nonuniform configuration performance was 
complicated by the large number of possible weighting gra­
dients. 

Vil. ALGORITHM PERFORMANCE EVALUATION 

To validate the selection of an optimum set of algorithm pa­
rameters, the test was repeated using the withheld group of wind 
fields. Although the average performance of all algorithm con­
figurations was slightly lower for the withheld data set, the drop 
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(d) 

Fig. 6. (continued). (d) The field of ambiguities "closest" to the "true" winds (i.e., that should have been selected). 

TABLE I 
MEDIAN-BASED AMBIGUITY REMOVAL ALGORITHM 

METRIC PERFORMANCE 

Wind Files Algorithm 12 by 12 
Skill Metric 

Test Set 96.7% 98.69% 
Withheld Set 96.0% 98.07% 
Combined 96.4% 98.38% 

was not significant. Several of the highest-ranking filters from 
the tuning stage were also re-tested on the withheld set and their 
results were ranked against the new baseline. The optimum pa­
rameters configuration selected above ranked 4th using the 
withheld group of wind fields. The difference in algorithm skill, 
however, between the tuned optimum and the highest ranked 
configuration for the withheld group was only 0.3 % . Because 
the individual wind files which went into the average algorithm 
skill may have had different average instrument skills, a high 
standard deviation would not have been unexpected. However, 
the standard deviation in the algorithm performance averaged 
over the six withheld wind fields is approximately 2 % , making 
this difference insignificant. When the statistics from both wind 
field sets were combined, the optimum set of algorithm param­
eters ranked the highest. The performance of both metrics for 
the optimum algorithm configuration is summarized in Table I. 

Fig. 6(a)-(d) demonstrates the characteristics of the true wind 
field, the "most likely" wind field, the selected field after am­
biguity removal, and the field of "closest" wind vectors (found 
by direct comparison of the ambiguities with the true field) for 
a portion of one of the test wind files. Differences between the 
"selected" (Fig. 6(c)) and "closest" (Fig. 6(d)) fields are in­
terpreted as algorithm errors. The difference between the "clos­
est" and "true" fields are due to noise added in the simulation. 

VIII. CONCLUSION 

The median-filter-based ambiguity removal algorithm is a 
very effective method of selecting the closest vector to the true 
wind field from a set of ambiguities. It is a simple algorithm to 
implement and performs well over a large variety of wind fields. 

I 

An optimum configuration for the ambiguity removal algorithm 
has been selected. The configuration consists of a 7 by 7 square 
filter with all locations within the filter weighted equally and an 
advantage given to ambiguities selected as the most likely wind 
vector by the wind-retrieval algorithm. The algorithm skill is 
96.7%, with 98.69% of the 12 by 12 contiguous regions having 
greater than 85 % successful selection. A comparative perfor­
mance study of several ambiguity removal algorithms, includ­
ing the median-filter algorithm presented here, is planned. This 
algorithm, to be used for NSCA T, can be applied as well to 
other three-beam scatterometers such as the ERS-1. 
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