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Model-Based Estimation of Wind Fields Over the
Ocean From Wind Scatterometer Measurements,
Part I: Development of the Wind
Field Model

DAVID G. LONG, MEMBER,

Abstract—In this first of two papers, we develop a parametric model
for near-surface mesoscale wind fields suitable for use in a model-based
approach (described in Part IT [26]) to simultaneously estimate the wind
field over a large region of the scatterometer measurement swath from
measurements of the radar backscatter of the ocean’s surface. In this
paper we describe the assumptions made in developing the model and
evaluate the accuracy of the resulting model. The model is based only
on scatterometer data and is computationally tractable, consisting of
a linear equation relating the near-surface wind field to a vector of
model parameters which is estimated from the scatterometer measure-
ments. We consider tradeoffs in the accuracy of the model and the
number of unknown parameters. While we have developed our wind
field model expressly for wind field estimation from scatterometer mea-
surements, it is our hope that these results will prove helpful in other
research areas.

I. INTRODUCTION

LAUNCHED IN 1978, the NASA-sponsored experi-
mental sateflite known as SEASAT demonstrated,
among other things, that winds over the ocean could be
measured from space using a wind scatterometer [71, [12],
[25]. The scatterometer measures the wind-dependent ra-
dar backscatter of the ocean’s surface from which the
speed and direction of the wind over the ocean’s surface
can be inferred.

In this paper we introduce a parametric descriptive
model for near-surface mesoscale wind fields over the
ocean that is suitable for use in a new estimation-theory-
based approach to estimating the wind vector field from
spaceborne scatterometer measurements. Qur approach,
described in Part II [26], uses this model for the under-
lying wind field. The scatterometer measurements are used
to estimate the parameters of the wind field model, and
then the wind field estimate is computed using the esti-
mated model parameters. This approach is fundamentally
different from the traditional point-wise approach to wind
field estimation and yields more accurate estimates of the
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wind field. Our companion paper describes the model-
based estimation approach and provides a comparison of
the model-based and traditional point-wise approaches to
wind field estimation.

In this paper we first describe our requirements for the
wind field model, and then present the assumptions used
to derive our very simple descriptive wind field model
which represents near-surface mesoscale wind fields. This
is followed by the mathematical development of the wind
field model. Various modeling options are then explored
and, finally, the ability of the resulting model to describe
“‘realistic’” near-surface mesoscale wind fields is evalu-
ated.

II. MopeL-Basep WIND FIELD EsTIMATION

For a model-based wind field estimation we need a
mathematical model for describing and/or representing the
wind field. This model must be capable of representing
near-surface mesoscale wind fields to the desired accu-
racy. Since other data sources are not always available,
we require that the model be based only on scatterometer
data. To be useful for wind field estimation, the wind field
model must be computationally tractable and lend itself
to a model parameter estimation formulation [14], [18].
Note that the model does not necessarily have to be based
on time-dependent atmospheric dynamics, since the model
is used only for describing a snapshot of the near-surface
wind field and not for propagating winds.

In this paper we present a particularly simple wind field
model which is based on the geostrophic equation and
simplistic assumptions regarding the divergence and curl
of the horizontal wind field. While our final model does
introduce some wind field smoothing, this smoothing can
be controlled by the selection of the model order. We
show that this model is adequate for use in wind field es-
timation from scatterometer measurements. As part of our
continuing research we are investigating more sophisti-
cated models.

The role of the wind field model in model-based wind
field estimation is to provide a description of the wind
field over the scatterometer measurement swath at a fixed
instant of time and at a resolution of from 25 to 50 km.
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Fig. 1. An illustration of a typical (NSCAT) scatterometer measurement
swath. Observations of the radar backscatter are obtained on either side
of the subsatellite track in the shaded region (see references [13] and
[25]). A typical region for which the wind field model is applied is il-
fustrated.

This corresponds to the scatterometer sampling resolu-
tion. We note that the scatterometer measurements of the
radar backscatter are ‘‘averages’’ over the resolution
““cells’’ of 25 to 50 km on a similarly spaced sample grid
[6]. Thus the scatterometer measurements can only pro-
vide ‘‘smoothed’’ measurements of the wind field. On this
basis we implicitly assume ‘‘mean field’’ approximation
techniques in our wind field model development; our wind
field model will be applicable for smoothed, sampled wind
fields at the scatterometer resolution. To simplify matters
we restrict our attention to limited-area regions with a
maximum spatial extent of approximately 600 km (cor-
responding to the maximum scatterometer swath width for
the planned NASA Scatterometer [NSCAT] [13]). For
reference, Fig. 1 illustrates a typical region of interest
within the NSCAT measurement swath.

Based on experience with the SEASAT scatterometer
data, the Satellite Surface Stress (S°) working group [21]
recommended wind estimate accuracy requirements for
use in the next generation of scatterometers. Their re-
quirements are summarized in Table 1. Based on these
requirements and the performance of the model-based
wind estimation approach presented in Part II [26], only
relatively mild requirements are needed on the accuracy
of the wind field model. For example, an acceptable root-
mean-square (rms) wind direction modeling error of <6°
and an rms wind speed error of <7.5% over the region
are considered acceptable for use in scatterometer wind
estimation. These mild requirements permit us to use a
very simple parametric wind field model, one with only a
small number of parameters. This simplifies the use of the
model in the wind field estimation process.

III. WIND FIELD MODEL ASSUMPTIONS

At the scatterometer resolution of 25 to 50 km, the
atmosphere can be considered to be essentially two-di-

TABLE 1
SUMMARY OF THE S WIND MEASUREMENT ACCURACY REQUIREMENTS FOR
FUTURE SPACEBORNE WIND SCATTEROMETERS

Wind Speed Range Speed Accuracy Direction Accuracy Resolution

< 3m/s — — —
3-6 m/s + 2m/s + 20 deg 100 km
6-100 m/s + 2m/sor 4 20 deg < 50 km

10% of wind speed

mensional [23]. The scatterometer provides indirect mea-
surements of the neutral stability near-surface wind at 19.5
m. Denote this near-surface horizontal wind field of in-
terest by U = (u, v)7. We are interested in a mathemat-
ical model which provides a reasonably accurate descrip-
tion of U over a (limited-area) region £. The vorticity {
and divergence 6 of U are defined as

c=k-VYXxU (1)
§=V-U. (2)

Following Lynch [17] and using the Helmholtz theo-
rem, U may be defined by a stream function ¢ and veloc-
ity potential x, according to

U=k XV + Vyx (3)

where k X Vi is a nondivergent vector field and Vy is a
curl-free vector field [1].

Taking the divergence and curl, respectively, of (3), we
obtain Poisson equations for ¢ and x [17]:

VY =
Vi = 6.

(4)
(5)

These equations appear in the classic problems of par-
titioning a given wind field into its rotational and nondi-
vergent components and reconstructing a wind field from
specified vorticity and divergence [1], [17]. For this latter
problem, Lynch [17] argues that the reconstruction is not
unique over a limited domain; an arbitrary harmonic func-
tion may be added to x, provided that y is also altered,
to produce the same wind field. From this he concludes
that the boundary values of x may be set arbitrarily. He
shows that setting the boundary values of x to zero min-
imizes the divergent component of the kinetic energy.
Choosing x = 0 on the boundary ensures a unique recon-
struction of the wind field. Note, however, that this is not
equivalent to assuming that the divergence is zero along
the region boundary.

Based on this line of reasoning, our first modeling as-
sumption is to assume that x = O on the boundary of £,
which corresponds to assuming that the wind field has a
minimum of divergent kinetic energy. Assuming that x =
0 on the boundary, (4) and (5), the vorticity and diver-
gence fields, and the boundary conditions for y are suffi-
cient for describing the wind vector field.

To obtain simple boundary conditions we make a sec-
ond major modeling assumption by attributing y to geo-
strophic motion. This second assumption is that the
streamfunction y is proportional to the geostrophic pres-
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sure field p; i.e.,
1

0"
where p; is the density and fis the Coriolis parameter [23].
This represents a departure from Lynch’s [17] direct
method for reconstructing a wind field from the normal
velocity component along the boundary and the vorticity
and divergence fields. Our approach allows further sim-
plification of the model at a later step.

Note that in a strictly geostrophic formulation the wind
field would be nondivergent and x would be identically
zero [23]. Mesoscale winds, however, may exhibit non-
zero divergence; hence we adopt a more general formu-
lation in which x is not set to zero. Instead, y is attributed
to the ageostrophic component of the wind. This gener-
alization allows us to apply the model to mesoscale wind
fields that depart from strict geostrophy. Inclusion of the
ageostrophic flow permits the model to span a wider space
in describing the wind field, including fronts. Note that
in applying the wind field model, ¥ and x will be deter-
mined from the observed wind field.

By making our second modeling assumption we are able
to specify the boundary values for (4) and (5) in terms of
the geostrophic pressure field. This avoids the difficulties
of using velocity boundary conditions that may yield an
overdetermined system (see the discussion by Lynch
[17D.

Our third modeling assumption is that, over our region
of interest £, p,fis essentially constant (i.e., an f-plane
approximation [23]); we do this to simplify the mathe-
matics. We can then normalize the pressure field by p, f
so that ¢ = p. Doing this, (3) can be written in component
form as

¥ (6)

agp  0x
= —_—— + -
" dy  ox )
dp  Ix
==+ =,
v ax  dy (8)

These two equations, along with (4) (in which ¢ = p)
and (5), form the basis of our wind field model.

To complete the wind field model, descriptions of the
vorticity and divergence fields are needed. Our fourth and
final modeling assumption is that the vorticity and diver-
gence fields are relatively smooth at the scatterometer
sampling resolution and vary relatively slowly over the
region of interest £; hence the vorticity and divergence
fields can be modeled using only a small number of un-
knowns. This appears to be consistent with the limited
data available [4], [5], [22]. We should point out that since
the scatterometer inherently produces ‘‘smoothed’’ mea-
surements of the wind, the corresponding vorticity and
divergence fields can be expected to be ‘‘smooth.”’

Lacking a widely accepted model for the vorticity and
divergence fields at the desired resolution, we have
adopted a parameterization approach to modeling these

fields. We have considered a number of different param-
eterizations of the vorticity and divergence fields [16] and
have found that for our application (wind estimation from
wind scatterometer measurements), bivariate polynomial
approximations for these fields result in adequate accu-
racy; i.e.,

¢(x, )

He>
1 M
(9}
X
=
o
~
=

d(x, y) & X"y (10)

where M and M), are the model orders and ¢, , and d,, ,
are vorticity and divergence coefficients. Note that only
the values of the vorticity and divergence polynomials at
the scatterometer sample points are needed, and that the
coeflicients of these polynomials will be derived from the
observed wind fields.

While the use of bivariate polynomials to model the
vorticity and divergence fields is not physically based, this
approach is simple and allows for tradeoffs in the model
accuracy and number of unknowns. This approach also
can directly provide the vorticity and divergence of the
measured wind fields as well as permit us to control the
geostrophy of the resulting wind fields. We have found,
based on the results presented below, that M- = M, = 2
is adequate for wind estimation from scatterometer mea-
surements. However, more sophisticated models can be
used. We are continuing to investigate alternative models
for the vorticity and divergence fields.

IV. MobpEL DEVELOPMENT

To further develop our simple wind field model for the
purposes of wind field estimation from scatterometer
measurements, we discretize (4), (5), and (7)-(10) on an
N X N equally spaced grid with spacing & over the region
£. For our purposes the value of & is selected to corre-
spond to the 25-50-km sampling resolution of the wind
scatterometer. The swath is segmented into abutting
along-track regions (see Fig. 1). In the case of NSCAT,
N = 24 and h = 25 km will cover the entire left or right
swath width [6], [13]. By further segmenting the swath
into adjacent cross-track regions, N may be chosen to be
less than 24. In this case, the Nh X Nh dimensions of the
region £ are reduced. We have found that choosing N =
8 or 12 provides a good tradeoff between the number of
unknowns in the model and the model’s accuracy.

The discretization of (4), (5), and (7)-(10) is stable and
will converge, assuming that the boundary conditions of
the pressure field are bounded and have bounded higher-
order derivatives [20].

We will show below that a simple linear equation can
be used to relate the wind vector field at the sample points
to the boundary conditions for ¢ (i.e., the geostrophic
pressure field along the region boundary) and the param-
eters of the vorticity and divergence field models.
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Applying the first-order difference approximations [19],

U

2 aw),_,, = 5 latx) = alx )] (11)

& 1
ya(x)‘)(:ih =P [a(xis1) — 2a(x) + a(xi-y)]
(12)

to (4), (5), (7), and (8) and scaling by the discretization
interval &, we obtain the following finite-difference equa-
tion (FDE) system:

u(x;, )’j) = _[P(xi» Yj) = p(x;, yj—l)]

+ [X(xi’ y) — x(xi-i, yj')] (13)
U(xi, )’j) = [P(xi’ )'j) = p(xi-, y,‘)]

+ [x(x ) = x(xi, y-1)] (14)
C(xi yy) = plxic, y) + p(xi yia) + p(xiy, )

+p(xi, y-1) — 4p(xi, ) (15)
8(xis ¥) = x{xivrs ) + x (x5 yjer) + x(xio1s yp)

+ x(x; yim1) — 4x(x. y;) (16)
wherei =1, -+ ,Nandj =1, - - - | N, and where,

for convenience, {(x;, y;) and 6(x;, y;) have been scaled
by an additional factor of 4. The boundary conditions for
the p field are the geostrophic pressure field p (xo, y;) and
p(xN+l! yj) fOI'j = 1’ +++, Nand p(xh yO) andp(xis
Yy+1) fori =1, - - -, N (refer to Fig. 2). The boundary
conditions of the x field are assumed to be zero.

For notational simplicity we write the discretized
streamfunction (pressure field) p(x;, y;) as p; ;, where x;
= ih and y; = jh. A similar notation will be used for the
velocity, vorticity, divergence, and potential velocity
fields.

Collecting the finite-difference equations for the
streamfunction and potential velocity fields at each point
of the square lattice covering £, (15) and (16) can be
written as two matrix equations; i.e.,

QP + PQ = 1B +1C (17)
0S + 50 =1D (18)

where P, S, C, and D are N X N matrices with elements
Pij» Xi,j» §ij» and §; ;, respectively; Q is an N X N tridi-
agonal, symmetric, Toeplitz matrix with elements ¢ ;,
where,

L, ifi=j

I

if |i = j| (19)

0, otherwise

0,1 B 0,N!
.0 0 © 0 O.
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Fig. 2. lllustration of the model region boundary conditions.

and B is a matrix containing only the p field boundary
values (the geostrophic pressure field p along the bound-
ary). For later convenience we decompose B into 3N X
N matrices:

B=B"+B"+ B (20)
where the elements of each matrix are
u pi‘o ifj=l,i=1,"‘,N
b, = . (21)
0 otherwise
Do.j ifi=1,j=1----,N
by, =10 _ (22)
0 otherwise

Pine1 if Si=N-—landj=N
Dn+1yj ifi=Nandforl <=j<N-—-1
bi; =< PN+t T Pyein (23)
ifi=Nandj =N
0 otherwise.

Using an overbar to denote an N> X 1 vector of lexi-
cographic-ordered (row order) elements of an N X N ma-
trix, (17) and (18) can be reexpressed as

KP =1iB + 1C (24)

-
-

KS = 1D (25)

where [ is the N X N identity matrix, and
K2I®Q0+0®1 (26)

is an N* x N*? Toeplitz matrix, and ® is the Kronecker
product [3], [11]. It can be shown that K is invertible and
has a simple closed form [16].

Since K is invertible, (24) and (25) have the unique so-
lutions:

P =1Kk"'[B+ C]
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Starting with the first two equations of the FDE system,
(13) and (14), reexpressed as

Uij = _(l//i,, - ‘//i,j—l) + (Xi,j - Xi—l,j)
vij = (‘//i.j - ‘//i~l,j) + (Xi‘j - Xi,j—l)

wherei =1, -+ Nandj =1, -, N, we can relate
the p and x fields to the velocity field. To write (29) and
(30) in matrix form, let U and ¥V be N X N matrices with
clements u; ; and v; ;, respectively. These equations can
then be written as

(29)
(30)

U=[P(D,-1)"+B]+(I-D) (31)
V=[-D)P-B]-5(D -1 (32)
where D is an N X N matrix with elements d ;, which

e
has a unity subdiagonal and is zero everywhere else; i.e.,

d . = L
(2% O,

Using lexicographic-ordered vectors, (31) and (32) can
be written as

ifi=i—1
’ (33)
else.

U = [GP + B*] + HS (34)
V = [HP - B"] - GS (35)

where the N? x N? matrices G and H are defined as
GLI®I[D -1I] (36)
HE[I-D]®I (37)

Both G and H are full rank and invertible [16].

Note that B“ and B* are N2 element vectors with a max-
imum of N nonzero elements, whereas B is an N2 ele-
ment vector with a maximum of 2N — 1 nonzero ele-
ments. Consequently, there are a maximum of 4N — 1
nonzero parameters in the B’ E“,»and BY vectors.

We note that the wind velocity is proportional to the
partial derivatives (or, in this formulation, first-order dif-
ferences) of the p and x fields. An arbitrary constant can
be added to or subtracted from the p and x fields without
affecting the results; hence a constant can be added to or
subtracted from the boundary condition vectors. Since this
additive constant is arbitrary and is unimportant, we can
normalize the boundary condition vectors B*, B, and B”
so that the first element of B, p, ;, is zero. This effec-
tively eliminates one nonzero parameter, reducing the
number of nonzero parameters in B*, BY, and B from 4N
— 1to 4N — 2.

Note also that the last element of B” is the sum of two
boundary values py v+ and py 11 »; hence we do not need
to separately identify these values, and so we need only
identify the sum.

Substituting (27) and (28) into (34) and (35), we obtain

U=4[GK"(B" +B" + C) + (GK™' + 4I)B"]

+ 1HK™'D (38)

V=LHK"(B"+ B“+ C) + (HK™' — 41)B"]

- 1GK'D. (39)

To write (38) and (39) as a single equation, observe that
they have the general form:

U= ,A(B" + C) + |AB" + ,AB" + ;AD (40)

V =3A(B" + C) + ;AB" + 4,AB" — ,AD (41)
where the ;4 matrices are defined as

4 = 1GK™! (42)

24 = HGK™" + 41] (43)

34 = LHK™! (44)

1A = HHK™ - 41]. (45)

Let X be a 4N — 2 element vector of the nonzero ele-
ments of B', B*, and B, where the nth element X, of X
18

BY., l<n<N

N =n<2N
Bluvewy 2N =n <3N

B, _uvinie1 3N <n<4N - 2.

E‘(‘n—N)NH (46)

Define the N 2 element vector W as the concatenation of
Uand V; i.e.,

(47)

Then the wind field model ((40) and (41)) can be ex-
pressed as the single equation:

W = FX + R°C + R‘D (48)
where F is a 2N* X (4N — 2) matrix and R° and R are
2N? x N? matrices. F, R, and R? are composed of col-
umns of the A4 matrices in (42) through (45).

For convenience in defining F, we partition F into four
rectangular submatrices,

F = [F\|F,|F;|Fy] (49)
where the F; matrices are defined as
i . e A
Fl — IA2 1A3 1 N:| (50)
Ladr 443 -0 4AN
A Ay _
Fz — |:2Al 24N+ 24IN N+1:| (51)
3A1 3Ays 3An N+
F; — 1IN 142N 1 N2:| (52)
L34y 34oy 3AN2
2 Ay2_
F4: lANz—N-#] lAN N+2 141N2 lj| (53)
L3dAne—n+1 34n2-n+2 3AN2 -
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where ;A; is the ith column of the jth A matrix in (42)
through (45). The matrices F, and F, are 2N* X (N —
1), while F, and F; are 2N? x N. The matrix R is defined

as
A
R == 54
L/‘J (54)
whereas the matrix R is defined as
A
RY=|2=|
[-,A} (55)

Equation (48) provides a single matrix-vector equation
relatmg the wind field velocity components contained in
the 2N? element vector W to the 4N — 2 element bound-
ary condition vector X and the N> element vorticity and
divergence field vectors C and D, respectively.

Note that (48) can be expressed as

W=Ww + w + W (56)
where
& FX (57)
W< & RC (58)
Ww¢ & RD. (59)

The wind field W can therefore be expressed as the sum
of a field W? which 1 depends only on the boundary con-
ditions in X, a field W* which depends only on the vortic-
ity field in C, and a field W¢ which depends only on the
divergence field in D. Note that if we set D to be zero,
we restrict the model to strictly geostrophic winds.

From our fourth modeling assumption we assume that
the vorticity and divergence fields can be parameterized
(or modeled) by a small number of unknown but deter-
ministic parameters that are the coefficients of the bivar-
iate polynomials in (9) and (10). Using this parameter-
ization, the wind field model can then be formulated in
terms of the boundary conditions on the p field and the
parameters of the vorticity and divergence field model.
The number of parameters in the vorticity and divergence
field models are Nc = (M + 1)(M¢ + 2)/2 and Np =
(Mp + 1)(Mp + 2)/2, respectively.

Using this polynomial parameterization for the vorticity
and divergence fields, (48) can be written as

Mc Mc

W =FX +R° Z} Z

n=0
m+n<MC

Con,n Qm,n

Mp Mp
d
+ R Z Z dm.n Qm,n
m=0 n=0
m+n<Mp
Mc Mc

= FX + ZZJO 2.

Cm.nR('Qm.n

m+n<Mc
Mp Mp
d
+ Z Z dlﬂ "IR Qm.n
m=0 n=0

m+n<Mp

(60)

where the kth element ,g,, , of the N? element vector

Qnmnis
k9m,n = LkJ " + Fk~| ! (61)

in which [k] £int[(k - 1)/N]+ 1and [k] £ mod
(k — 1, N) + 1. The constant vorticity or divergence
case corresponds to M = 0 or Mp = 0, respectively. The
case when the vorticity or divergence is assumed to be
identically zero will be denoted by M = ~1 or M, =
—1, respectively.

A simple special case occurs for M- = M;, = 1; then,

§ij = Co0 T crol + coJ (62)
b j = doo + dioi + doij (63)
so that (48) can be written as
W =FX + cooR* + ¢, RS + o RS + dy oR?
+d; oRY + ¢ R} (64)

where R¢, R’ R{, RS, RY, and R are 2N? vectors with
elements Rk, R‘I RS, RS Rd and Rd defined as

Xk By B

N N
R{ = 1’§1 j§1 rk,j+(i—l)N (65)
N N
Rﬁ = I,; j;l rﬁ,ﬁ(i-l)N (66)
N N
R;k = i;} ij; Tij+i-1N (67)
N N
R§k=/§IJi§ Fij+ti- DN (68)
N N
R{ = E:l ij; Fejeii-ON (69)
N N
RS, :j;ljigl ri,/w‘—(i—l)N (70)
where r; ; and r,fyj are the elements of R and R, respec-

tively.
To express (64) in a simple form, we define a new 4N
+ 4 parameter vector X, by augmenting X with €0.0> C1.0»

Co.1» do.0» d1.0, and dy 43 i.e.,
%
€o.0

C

ho (71)
Co.1
dﬂ‘()
di g

do. 1
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and let the 2N? X (4N + 4) matrix F, be the matrix cre-
ated by column-augmenting the matrix F with R, R, , etc.;
i.e.,

F, = [F|R<|R¢|Rs|RY|RY|RY). (72)
Equation (64) can then be written as
W=FX. (73)

It can be shown that the columns of F are linearly in-
dependent [16]; hence F is full rank. It follows from the
definitions of R and R that the columns of R and R?
are linearly independent. We note that R, R, R¢, RS,
R¢, and E‘; are linearly independent of each other (for N
> 3) and, further, that these vectors are independent of
the columns of F. It follows that the columns of F, are
linearly independent so that F, is full rank; hence there is
a unique relationship between a given W and the param-
eters X,. Given W, a least-squares estimate of X, is

X =F W (74)
where F| is the generalized inverse of F,. Since the sys-
tem of equations is overdetermined, F, = (FIF,) 'FI.

The extension of this approach of augmenting the pa-
rameters of the vorticity and divergence field models to
the boundary conditions for higher-order polynomial or-
ders is straightforward [16].

V. PARAMETERIZING THE BOUNDARY CONDITIONS

For a given choice of M, and M), the final wind field
model has the form of (73); the wind field is a simple
linear function of the boundary conditions for p and the
parameters of the vorticity and divergence fields. This
model is referred to as the normal boundary (NB) wind
field model. We now consider a model option which re-
duces the number of unknowns in the model parameter
vector.

Early in the testing of this wind field model it became
apparent that, since the geostrophic pressure field sam-
pled at the scatterometer resolution tends to be relatively
smooth, the number of unknown boundary values can be
reduced, at a cost of accuracy, by parameterizing the
geostrophic pressure field around the region’s boundary.
While not a required part of our wind field model, mini-
mizing the number of unknown parameters in the model
significantly reduces the CPU time required to determine
the optimum model parameters when our model is applied
to wind field estimation from wind scatterometer mea-
surements.

Since the boundary is closed, the pressure field along
the boundary will be periodic. We can parameterize the
pressure p as a one-dimensional function along the bound-
ary of the region £. We write the pressure field around
the boundary as p(/), where [ is related to the discreti-
zation grid indexes i and j clockwise around the boundary,

according to

J» i=0,0=<j=<N+1,

i+ N+ 1, J=N+1,0<i=N+1,
N 2N +2 —j, i=N+1,0=<j=<N+1,

AN+4 -4, j=00=<i<N+1

(75)

This formulation provides a one-to-one mapping from [ to
the region’s boundary. Observe that / runs from 0 to 4N
+ 4.

Since p(l) is relatively ‘‘smooth’’ and must be peri-
odic, a low-order Fourier series representation is appro-
priate for it; i.e.,

Mi/2

. klm
p(l) = s + IZ‘;] {skcosz(N Y

kix J
2(N +1)

where M, is the order of the pressure boundary condition
model. We have examined other parameterizations [16].
We have already noted that an arbitrary constant can be
added to the pressure field without affecting the model
formulation so that we can ignore the sy term. This re-
quires that we modify the definition of F| slightly to in-
corporate the boundary value p, ;. Let F| be the 2N* X
N rectangular matrix defined as

(76)

+ s} sin

A A
F{ — |:1A1 1A2 1 N} - l:l 1 F1:| (77)
44y 44y 4 Ay a4y
Let the M, element vector Y be defined as
s
S
$3
Y& | s (78)
SICVII/Z
SISVI//2

Equations (40) and (41) can be then be written as
W =&Y + R°C + RD (79)

where & is a 2N? X M, rectangular matrix created from
the F; matrices and Fi. Let f; ; be the (i, j )th element of
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F and (Fy) ; ;be the (i, j )th element of the F) matrix; then

[ El (Fi),, cos jk/(2N + 2)x

+ El (Fy),, c0sj(2 = k)/(2N + 2)7
+ é]l (F3),  cosj(l + k)/(2N + 2)w
+ g (Fy); , c0sj(3 — k)/(2N + 2)m,

k

. for j odd (80)
El (F{),, sin jk/(2N + 2)7

+ 2 (R, sinj(2 = K)/(2N + 2)x
N
+ B (R, sinj(L+ 0)/CN + 2)7
N
+ kgl (F4)i,k sin j(3 — k)/(ZN +2)m,
\ for j even.

The final parameterized boundary condition (PBC) wind
field model is created by augmenting Y with the parame-
ters of the vorticity and divergence field model, as was
previously done for the NB model.

VI. EVALUATING THE WIND FIELD MODEL

Both the NB and PBC wind field model options have
the general form

W= FX (81)
where W contains the components of the sampled wind
field over the region £, F is a known constant matrix, and
X is the model parameter vector. We now consider how
well these models can represent realistic wind fields for
different orders of the vorticity and divergence field
models and field size N.

To evaluate the modeling error: (i) a least-squares fit of
the model parameters to a real wind field was obtained;
(ii) the resulting ‘‘model’” wind field was computed from
the model parameters; and (iii) the rms difference between
the true field and model field was computed.

The sampled “‘true’” wind field over £ is denoted by
W,. The least-squares fit X of the model parameters to W,

1S
X=F'w (82)

where F* = (FTF)7'FT is the pseudoinverse of F. The
wind field computed from the model parameter vector,
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Fig. 3. An example of a wind field uniformly sampled, with & = 25 km

overa 300 X 300 km region. A vector length equal to the sample spacing
corresponds to 15 m/s.
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Fig. 4. The ‘‘model’’ wind field resulting from fitting the NB model with
M¢ = Mp = 4 and N = 12 to the wind field shown in Fig. 3. Plotting

conventions and scale are the same as in Fig. 3. The model fit error is
given in Table II (see text).

denoted W, is

W = FX. (83)

The vector error between W, and W is then
W, -~ W= (- FF)W, = (I -F(F'F) FIW,.
(84)

To illustrate the model performance, consider Figs. 3
and 4. A simulated (described below) mesoscale wind
field, sampled at 25 km with N = 12, is shown in Fig. 3.
A vector length equal to the distance between samples
corresponds to a wind speed of 15 m/s. The model pa-
rameter vector X was computed using (82). The model
wind field W was then computed using (83) and is plotted
in Fig. 4. For this example, the NB model was used with
M¢ = Mp = 2. The rms differences between W, and W
are tabulated in Table II. In this and succeeding tables,
the rms vector error is defined as the square root of the
mean-squared magnitude of the vector difference between
the true field and estimated field. The value shown is nor-
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Fig. 5. An example of the mesoscale wind fields used in evaluating the modet accuracy. The field was uniformly sampled with
h = 80 km. A vector length equal to the sample spacing corresponds to 15 m/s.

TABLE 11
RMS DIFFERENCE BETWEEN THE TRUE WIND FIELD IN FIG. 3 AND THE
FieLp IN FIG. 4

Normalized Normalized
Vector Direction (deg) Speed
0.09 429 006

malized by the rms vector magnitude of the true wind
field. Similarly, the rms wind speed error has been nor-
malized by the rms wind speed of the true wind field.
Note the close agreement between the true and model wind
fields. We note that for small values of M. and M), the
model field will be a ‘“smoothed’’ version of the true field.
The amount of smoothing can be controlled by selection
of the values of M and Mj,.
To evaluate our model formulation we have used sim-
ulated mesoscale wind fields, since little conventional
mesoscale wind field data over the ocean are available.
The test wind fields are the standard fields used to eval-
uate NSCAT performance [24]. They were generated by
state-of-the-art numerical weather prediction models at
1.875° resolution. The surface wind fields were interpo-
lated to 10 km and nondivergent small-scale variability
with a ak™? spectrum. For a given 2000 X 2000 km re-
gion, the value of a was selected to be consistent with the
spectrum within the region (see [8]). The wind fields were
selected to span a wide range of meteorological condi-
tions, including fronts [24]. An example of a portion of
one of the test fields is shown in Fig. 5. Regions of high
vorticity and nonzero divergence are readily observable.
The sampling interval is 80 km, with a vector length cor-
responding to the sampling distance equivalent to 15 m/s.
To evaluate the modeling error for a wind field model
of size N, each wind field was segmented into N X N
regions. For each region segment the model parameters
were computed using the approach described above, and
the model wind field was computed from the model pa-
rameters. The rms of the error between the true and model

fields was computed over all possible regions within the
original true wind field. The results for various model op-
tions are described below.

As a general rule for fixed N, as M and M), are in-
creased the modeling error is reduced. For given values
of M and Mp, as N is increased the modeling error in-
creases. Since the number of parameters is a function of
M, Mp, and N, there is room for tradeoff between the
number of model parameters and accuracy of the wind
field model. We will be primarily interested in values of
N such as 8 or 12, which evenly divide the number of
scatterometer measurements across the swath.

A. NB Model Error

Let us first consider the performance of the NB model.
For the NB model the number of unknowns N, in each N

X N region segment is related to N, M, and Mp, by the
formula,

N, =4N — 2 + g(Mc) + g(Mp) (85)
where
0, M<0
g(M) = (86)
(M +1)(M+2)2 M=0.
M- = —1 is used to denote the case when the vorticity

field is identically zero. Similarly, Mp denotes the case
when the divergence is identically zero, which would re-
sult in a strictly geostrophic model.

Table III shows rms modeling error versus N for poly-
nomial vorticity and divergence models, with M = M)
= 2. With the exception of a peak at N = 10, the mod-
eling error increases as N increases. Table IV illustrates
the effects of varying M and M, for N = 8. Table V is
similar to Table IV, but for N = 12. As M. and My, in-
crease, the modeling error is reduced. To minimize the
number of unknowns in the model, we desire to keep M¢
and Mp small. While other values of M¢ and My, can be
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TABLE 111
WIND-FIELD-MODEL ERROR FOR THE NB MODEL, WITH M = M, = 2, As
A FUNCTION OF N FOR SIMULATED MESOSCALE WIND FIELDS

N | Number of Unknowns Normalized RMS Error

in N x N Region Vector J Direction (deg) | Speed
4 20 0.024 1.06 0.011
6 28 0.080 3.11 0.046
8 36 0.084 3.69 0.050
10 4 0.104 4.92 0.065
12 54 0.083 4.27 0.052
14 66 0.082 4.48 0.054
16 74 0.084 5.04 0.057

TABLE IV

NB-MoDEL ERROR FOR N = 8, VERSUS M. AND M,

Field Model | Unknowns Normalized RMS Error
Mc | Mp N, Vector | Direction (deg) ’ Speed
-1 -1 30 0.191 8.31 0.115
-1 0 31 0.171 7.22 I 0.099
-1 1 33 0.165 6.97 0.095
-1 2 36 0.163 6.95 0.093
-1 3 40 0.158 6.74 0.091
-1 4 45 0.144 6.17 0.084
0 -1 31 0.133 6.01 0.084
0 0 32 0.102 4.65 0.063
0 1 34 0.096 4.36 0.059
0 2 37 0.095 4.30 0.058
0 3 41 0.095 4.27 0.058
0 4 46 0.094 4.21 0.057
1 -1 33 0.129 5.79 0.080
1 o} 34 0.097 4.35 0.058
1 1 36 0.090 4.01 0.054
1 2 39 0.090 3.96 0.053
1 3 43 0.089 3.92 0.053
1 4 48 0.089 3.91 0.053
2 -1 36 0.125 5.62 " 0.077
2 0 37 0.092 4.09 1 0.055
2 1 39 0.085 3.72 0.050
2 2 42 0.084 3.69 0.050
2 3 46 0.084 3.68 0.050
2 4 51 0.084 3.67 { 0.050
3 -1 40 0.125 5.60 ‘ 0.077
3 0 41 0.091 4.06 0.055
3 1 43 0.084 3.70 ‘ 0.050
3 2 46 0.084 3.66 0.049
3 3 50 0.084 3.65 ‘ 0.049
3 4 55 0.084 3.64 0.049
4 -1 45 0.118 5.30 0.073
4 0 46 0.082 3.68 0.049
4 1 48 0.074 3.25 0.044
4 2 51 0.074 3.20 0.043
4 3 55 0.074 3.20 0.043
4 4 60 0.073 3.20 | 0.043

chosen, our desired accuracy requirements (see Section
II) will be met for N = 8, with M- = M, = 0; i.e., for
a constant vorticity and divergence model over the region
&£, whereas for N = 12, M = M; = 1 will meet the
desired requirements.

B. PBC Model Error

The PBC model has the advantage of using a smaller
number of unknowns than the NB model, but at the ex-
pense of a somewhat higher modeling error. For the PBC
model the number of unknowns N, in each N X N region
is related to M, M, and M, by the formula,

N, =M + g(Mc) + g(Mp). (87)

Next we contrast the performance of the previous NB
model results with those obtained for the PBC model. Ta-
ble VI illustrates the effect of varying M, for N = 8 and

TABLE V

NB-MoDEL ERROR FOR N = 12, VERSUS Mo AND M,

Field Model | Unknowns Normalized RMS Error
Mc | Mp N, Vector | Direction (deg) | Speed
-1 -1 46 0.234 11.21 0.148
-1 0 47 0.208 9.76 0.127
-1 1 49 0.199 9.23 0.120
-1 2 52 0.197 9.12 0.118
-1 3 56 0.196 9.07 0.117
-1 4 61 0.193 9.05 0.116
0 -1 47 0.163 8.03 0.108
0 ] 48 0.123 6.26 0.082
0 1 50 0.109 5.63 0.073
0 2 53 0.106 5.46 0.070
0 3 57 0.105 5.44 0.069
0 4 62 0.107 5.55 0.071
1 -1 49 0.152 7.56 0.098
1 0 50 0.108 5.60 0.070
1 1 52 0.092 4.77 0.059
1 2 55 0.088 4.56 0.056
1 3 59 0.087 4.52 0.056
! 4 64 0.087 4.53 0.056
2 -1 52 0.149 7.44 0.096
2 0 53 0.104 5.43 0.067
2 1 55 0.087 4.52 0.055
2 2 58 0.083 4.27 0.052
2 3 62 0.083 4.23 0.051
2 4 67 0.083 4.24 0.052
3 -1 56 0.149 7.42 0.095
3 0 57 0.103 5.40 0.066
3 1 59 0.086 4.49 0.055
3 2 62 0.083 4.23 0.051
3 3 66 0.082 4.19 0.051
3 4 71 0.086 4.54 0.054
4 -1 61 0.147 7.34 0.094
4 0 62 0.101 5.26 0.065
4 1 64 0.085 4.46 0.054
4 2 67 0.082 4.30 0.052
4 3 71 0.080 4.13 0.050
4 4 76 0.080 4.10 0.050

TABLE VI

PBC-MODEL ERROR FOR N = 8 AND My = M, = 2, VERSUS M,

M, | Unknowns Normalized RMS Error

N, Vector | Direction (deg) | Speed
2 14 0.237 10.98 0.153
4 16 0.160 7.48 0.111
6 18 0.116 5.11 0.076
8 20 0.106 4.80 0.068
10 22 0.097 4.40 0.059
12 24 0.096 4.32 0.058

TABLE VII

PBC-MoDEL ERROR, WITH M; = 8 AND M- = M, = 2, As A FUNCTION OF
N FOR SIMULATED MESOSCALE WIND FIELDS

N | Number of Unknowns Normalized RMS Error

in N x N Region Vector i Direction (deg) ‘ Speed
4 20 0.057 2.14 0.032
6 20 0.099 4.12 0.060
8 20 0.106 4.80 0.068
10 20 0.107 5.02 0.072
12 20 0.110 5.64 0.075
14 20 0.112 5.91 0.078
16 20 0.116 6.56 0.082

Mc = Mp = 2. Table VII presents the rms errors for M,
= 8 and Mc = Mp = 2 versus N. Table VII should be
compared to Table III; note that the errors are only slightly
larger for the PBC case as compared to the NB case. Ta-
ble VIII shows the effects of varying M and M,, for N =
8 and M; = 8, whereas Table IX presents similar results
for N = 12. Table VIII should be compared with Table
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TABLE VIII
PBC-MoDEL ERROR FOR N = 8 AND M, = 8. VERSUS M. AND M/,

Field Model | Unknowns Normalized RMS Error
Me | Mp N Vector | Direction (deg) | Speed
-1 -1 8 0.203 8.965 0.126
-1 0 9 0.185 7.964 0.112
-1 1 11 0.178 7.716 0.108
-1 2 14 0.177 7.657 0.106
-1 3 18 0.173 7.486 0.104
-1 4 23 0.162 6.998 0.098
0 -1 9 0.150 6.856 0.097
0 0 10 0.123 5.677 0.080
0 1 12 0.117 5.403 0.076
0 2 15 0.116 5.345 0.075
0 3 19 0.115 5.286 0.075
0 4 24 0.112 5.081 0.071
1 -1 11 0.146 6.640 0.094
t 0 12 0.118 5.426 0.076
1 1 14 0.112 5.113 0.072
1 2 17 0.111 5.049 0.071
1 3 21 0.110 5.004 0.071
1 4 26 0.106 4.783 0.067
2 -1 14 0.141 6.443 0.091
2 0 15 0.113 5.177 0.072
2 1 17 0.107 4.866 0.069
2 2 20 0.106 4.798 0.068
2 3 24 0.105 4.779 0.067
2 4 29 0.101 4.528 0.063
3 -1 18 0.140 6.447 0.089
3 0 19 0.111 5.186 0.070
3 1 21 0.106 4.880 0.066
3 2 24 0.105 4.832 0.066
3 3 28 0.104 4.800 0.065
3 4 33 0.099 4.496 0.061
4 -1 23 0.134 6.182 0.085
4 0 24 0.104 4.857 0.065
4 1 26 0.098 4.527 0.061
4 2 29 0.097 4.485 0.060
4 3 33 0.096 4.433 0.060
4 4 38 0.091 4.157 0.056

V, whereas Table IX should be compared with Table VI.
Observe that for N = 8, setting M; = 8 and Mo = Mp =
1 permits us to meet our desired model accuracy require-
ments. For N = 12 and M; = 8 and M., M = 2, the
desired accuracy requirements are met. Greater accuracy
is achieved for larger M; and/or larger M- and M, .

VII. CONCLUSIONS

In this paper we have developed a model for near-sur-
face mesoscale wind fields which is suitable for use in the
model-based estimation of wind fields from wind scatter-
ometer measurements. The model can accurately describe
near-surface mesoscale wind fields, is based only on scat-
terometer data (i.e., no other instrument or in situ data is
required), is computationally tractable, and lends itself to
a model parameter estimation formulation. The modeling
error has been evaluated by means of simulation. We have
found that a parameterized boundary condition model with
N=8 M =8 andM; =M, =10rN =12, M, = 8§,
and M- = M, = 2 provides the desired model accuracy
while minimizing the number of unknowns. While we
have developed our wind field model expressly for wind
field estimation from scatterometer measurements, it is our
hope that these results may prove helpful in other research
areas.

A companion paper (Part II [26]) describes the appli-
cation of our model to wind field estimation from scatter-
ometer measurements.

TABLE IX
PBC-MODEL ERROR FOR N = 12 AND M, = 8, VERSUS M AND M,

Field Model | Unknowns Normalized RMS Error
Mc | Mp N, Vector | Direction (deg) | Speed
-1 -1 8 0.247 11.84 0.160
-1 0 9 0.222 10.51 0.141
-1 1 11 0.213 9.98 0.133
-1 2 14 0.211 9.85 0.131
-1 3 18 0.209 9.78 0.131
-1 4 23 0.206 9.63 0.128
[0} -1 9 0.181 8.98 0.121
0 0 10 0.145 7.39 0.098
0 1 12 0.132 6.77 0.090
0 2 15 0.129 6.62 0.088
0 3 19 0.128 6.57 0.088
0 4 24 0.125 6.44 0.085
1 -1 11 0.170 8.43 0.114
1 0 12 0.132 6.73 0.089
1 1 14 0.118 6.03 0.080
1 2 17 0.114 5.86 0.078
1 3 21 0.113 5.80 0.078
1 4 26 0.110 5.63 0.075
2 -1 14 0.167 8.28 0.111
2 0 15 0.128 6.53 0.086
2 1 17 0.113 5.81 0.077
2 2 20 0.110 5.64 0.075
2 3 24 0.109 5.60 0.075
2 4 29 0.106 5.51 0.072
3 -1 18 0.166 8.30 0.110
3 0 19 0.127 6.56 0.085
3 1 21 0.112 5.81 0.075
3 2 24 0.109 5.65 0.073
3 3 28 0.108 5.59 0.073
3 4 33 0.104 5.39 0.070
4 -1 23 0.163 8.21 0.107
4 0 24 0.124 6.43 0.082
4 1 26 0.109 5.66 0.072
4 2 29 0.105 5.51 0.070
4 3 33 0.104 5.40 0.070
4 4 38 0.101 5.26 0.067
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