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Radar Backscatter Measurement Accuracies Using 
Digital Doppler Processors in Spacebome 

Scatterometers 
CHONG-YUNG CHI, MEMBER, IEEE, DAVID G. LONG, AND FUK-KWOK LI, MEMBER, IEEE 

Abstract-The normalized standard deviation, Kp, of radar back­
scatter measurements using digital Doppler processors in spaceborne 
scatterometers is derived. The KP expression for analog Doppler filter 
processors, such as that used in the Seasat scatterometer [7) is shown 
to be a special case of the derived KP expression. A connection to 
Welch's power spectrum estimation results [6) is also made. Tradeoff 
studies in digital Biter design such as hardware complexity, computa­
tional speed, and system performance can be performed based on this 
KP expression. We briefly discuss a current application in the design of 
the NASA scatterometer (NSCAT) to be flown in 1990. This derivation 
should be useful for system design and analysis of other radar remote­
sensing instruments. 

I. INTRODUCTION 

ASCATTEROMETER is a radar system that measures 
the normalized scattering coefficient u0 of an illumi­

nated surface by measuring the return signal power of a 
radar backscatter signal [1]. Scatterometers have been 
flown on the spaceborne platforms Skylab and Seasat. The 
Seasat scatterometer (SASS) demonstrated the ability to 
infer wind speed and direction over the ocean from u0 
measurements [2], (3). Using the radar equation and the 
measured return signal power Pro u0 can be computed 
using the well-known radar equation 

(41r)3R4Pr 
uo = P,G2>,.2AL (1) 

where 

P, is the transmitted signal power; 
G is the antenna gain; 
~ is the wavelength of the signal; 
A is the Doppler cell area; 
R is the slant range to the illuminated Doppler cell; 

and 
L _!~ the system loss. 

SASS used four dual-polarized (vertical and horizontal 
polarizations) fan-beam antennas pointed at 45° and 135° 
relative to the spacecraft flight direction to produce an X­
shaped illumination pattern on the Earth. In this way a 
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Fig. I. Signal processing system for a scatterometer using analog filters. 

given surface location was first viewed by a forward-look­
ing antenna, and then viewed by an aft-looking antenna 
some time later. A train of microwave pulses was trans­
mitted to the Earth's surface. The reflected signal for each 
pulse was Doppler shifted due to relative motion of the 
spaceborne scatterometer with respect to the Earth's sur­
face. Signals from different locations in the antenna illu­
mination pattern will hav~ different Doppler shifts, and, 
by separating the return signal in the Doppler spectral do­
main, the desired along-beam resolution can be achieved. 
We will refer to each of the Doppler-shifted resolution 
cells as a "u 0 cell. " 

SASS utilized analog devices for signal power esti­
mates. These consisted of bandpass filters, square-law de­
tectors, and gated integrators (see Fig. 1). The fixed fre­
quency bands used in the bandpass filters caused radar 
system performance degradation in several areas. The 
Doppler shifts induced by the Earth's rotation caused the 
locations of the u0 cells of the forward-looking antenna 
beams to shift relative to those of the aft looking beams. 
This led to a loss in swath coverage as well as misregis­
tration of the u0 cells. The misregistration could produce 
errors in the inferred wind vectors when wind gradients 
are present. A solution to these problems is to use a digital 
signal processor in which the frequency bands of the u0 
cells can be adjusted to compensate for the Earth's rota­
tion. 

Such a digital processor is planned for use on the NASA 
scatterometer (NSCAT) to be flown in 1990 [4], [5]. The 
fast Fourier transform (FFT)-based digital processor al­
lows the Doppler frequencies of u0 cells to be adjusted in 
order to maintain nearly constant cross-track distances 
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Fig. 2. Signal processing system for a scatterometer using FFT-based dig­
ital processing. 

from the spacecraft ground track for the c,0 cells. An ad­
ditional advantage of the FFT-based digital processing 
scheme is that the Doppler center frequency and band­
width of the c,0 cells can be readily modified to compen­
sate for slight variations in orbital parameters due to 
launch errors or in-orbit maneuvers. 

A schematic diagram of the NSCA T digital processing 
technique is shown in Fig. 2. The scatterometer return 
signal is passed through the top path to estimate the power 
C1 of the signal plus noise. A separate measurement is 
made using the bottom path to estimate the noise power, 
C2 alone. Both of these measurements are telemetered to 
ground for further processing. In the ground data pro­
cessing, an unbiased estimate of the backscatter power Pr 
is obtained by a linear combination of C1 and C2. 

Each path in Fig. 2 consists of the following on-board 
instrument functions: a) computation of the FFT, b) ap­
plication of a window by convolution, c) squaring for 
power detectiorr, and d) computation of the signal power 
within a c,0 cell by summing the result of c) over the fre­
quency bins corresponding to the range of Doppler fre­
quencies of that c,0 cell. In effect, a), b), and c) provide 
Welch's power spectrum estimates (6) of the scatterom­
eter return signal, and d) acts as a bandpass filter. During 
ground processing the unbiased estimate of Pr is then used 
to determine the radar backscatter cross section u0 . 

Data windowing is used in step b) !o reduce spectral 
leakage. This reduces any bias in the estimated signal 
power caused by "interference" between c,0 cells. This 
interference can be severe in situations where there are 
large-variations in the power spectrum of the return sig­
nal, such as in the case of a strong W!nd gradient over the 
ocean. Although the Variance of Welch's spectrum esti­
mate has little dependence on the window itself, the var­
iance of the power estimate oyer a frequency band may 
increase due to correlation between frequency bins caused 
by w'indowing. Thus, windowing may adversely affect the 
accuracy of the signal power estimate. In order to mini­
mize this degradation in the power estimate accuracy, 
temporal-domain overlapped processing of the FFT data 
segments is used in step c). 

A commonly adopted parameter for evaluating the per­
formance of spaceborne scatterometers is the so-called KP 

parameter (7). It is defined to be the normalized standard 
deviation of the measured u0 , u0 , i.e. 

{Var [u0]} 
112 

KP=-"-----
O'o 

(2) 

where Var [u0] is the variance of u0 . The smaller the value 
of Kp, the better the estimate of c,0 is. A general goal in 
scatterometer design is to minimize KP. 

The K equation for an analog signal power estimator, 
such as fhat used on SASS, was derived by Fisher (7). In 
this paper, we derive the KP equation for the digital signal 
processor shown in Fig. 2. The derived expression for Kp, 
which is more complicated than that for the analog case, 
is being used to make processor design and performance 
tradeoffs for NSCA T. We feel that this derivation should 
be useful for system design and analysis of other radar 
remote sensing instruments. 

In Section II, we briefly review Welch's power spec­
trum estimation. The expression for KP is then derived in 
detail in Section III. Two illustrative examples are de­
scribed in Section IV. Finally, we briefly discuss the util­
ity of this equation in scatterometer system design in Sec­
tion V. 

II. MEAN AND COVARIANCE OF WELCH'S POWER 
SPECTRUM ESTIMATION FOR STATIONARY 

GAUSSIAN PROCESSES 

In subsequent analysis, we will frequently use the mean 
and covariance of Welch's power spectral estimation for 
stationary Gaussian processes. The expressions for mean 
and variance can be found in (6). The covariance, how­
ever, is not commonly found in the literature. In this sec­
tion, we briefly describe the expression for the covari­
ance. Details of the derivation are shown in Appendix I. 

Let x(n), n = 0, 1, 2, • • • , L - I be the given real 
data set sampled from a zero-mean stationary Gaussian 
random process with power spectral density (psd) Px(w). 
Segments of these sampled data, possibly overlapping, of 
length M with starting points of the segments D units apart 
are constructed. Assuming that we have K such segments 
x;(n), i = I, 2, • • • , K that cover the entire record. Then 
X;(n) is given by 

[

x(n. + (i - l) D), 
x{n) = 

I 0, 

OsnsM-1 

otherwise 
(3) 

with (K - 1) D + M = L. The modified periodogram for 
each segment is defined as [6], (8) 

I

M-1 

1

2 

J;(w) = MIU; n~O X;(n) 'l',{n) e-jwn 

I 12 = MU; IX;(w) * r;(w) (4) 

where X;(w) and r;(w) are the Fourier transform of x;(n) 
and the data window 'Y;(n), respectively, and 

M-1 

1 " 2 U; = - Li 'Y;(n). 
M n=0 

(5) 
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The Welch's power spectrum estimate, J(w), is defined as 
[6], [8] 

s(t) is the returned signal, T1 and Ts are the starting time 
and the pulse length of the received signal, respectively, 
and v(t) is noise. We assume that the scatterometer signal 1 K 

J(w) = -K ~ l;(w). 
;-1 

(6) from the Earth's surface can be modeled as a stationary 
bandlimited Gaussian process (see [l]). 

Let us assume that the bandwidths of the windows 'Y;(n) Ps(f> = o, . for I/I > //2 (15) 
and 'Yii(n) are narrow compared to the variations of the 
power spectrum P:tCw) where where.fs is the Nyquist sampling frequency. The noise v(t) 

is assumed to be a stationary Gaussian process with zero 
-yu(n) = -y;(n) 'Y1{n + (i - j) D). (7) mean and power spectral density 

Finally, we assume that 

1rij{W1 - "'2>12 >> 1ri,{W1 + "'2>12, 

for all w i, "'2 e ( w0 , wb). (8) 

(Note that the value of Px(w) outside (w0 , wb) is not needed 
in the following discussion.) 

Assuming that Px(w) is constant over the frequency band 
(w0 , wb), i.e. 

Px(w) = P, for all we (w0, wb) 

then one can easily show that [6], [8] 

E[J(w)] = E[J;(w)] 

1 1 , .. 
= MU; 2-,; L .. Px(8) 1r;(w - 8)1

2 
dB .. 

(9) 

r .. 1r,{w - 8)1
2 d8 = p Vw E (w0 , wb)-

(10) 
The autocovariance function of J(w), as derived in Ap­
pendix I, is given by 

Cov {J(w1), 1("'2)} 

1 p2 K K ( 1 ) 
== K2 M2 i~I j~I U;llj 1rij{w1 - "'2>12 

Vwi, "'2 E (w0, wb), 

III. DERIVATION OF Kp 
From (1) and (2), KP can be expressed as 

K = {Var [.P,]} 112 

P P, 

(11) 

(12) 

where P, is the output of the signal power estimator in 
Fig. 2 and Var [.P,] is its variance. 

From Fig. 2, one can see that the scatterometer re­
ceived signal x(t) can be modeled as 

Pr(/)= b, for I/I < 1,12 

i.e., P,(/) is constant over all the frequency range. Fur­
thermore, we assume that 

for Ji S / S Ji, = Ji + Bs (17) 

where P, is the power of s(t) over the frequency range (Ji, 
fh) and Bs is the bandwidth used for a given o0 cell. Thus, 
the psd's for s(n) and v(n) are 

b 
P,(w) = T' 0 s w < 2-,; 

where wh = 21rfh T, w, = 21rfi T and T = 1/ fs. 

(18) 

(19) 

The derivation of the KP expression for the system 
shown in Fig. 2 is performed in three steps. First, the 
mean and variance of the output C1 of the top path in Fig. 
2 are derived. Second, the mean and variance of the out­
put C2 of the bottom path in Fig. 2 are derived. Finally, 
the unbiased estimate P, of P,, obtained by a linear com­
bination of C1 and C2, and its normalized standard devia­
tion, Kp, are derived. These steps are shown in the fol­
lowing subsections. 

We assume that the number of data segments, the num­
ber of data points in each segment and the window func­
tion are Ki, M, and ws(n) for the top path and K2, N, and 
wN(n) for the bottom path in Fig. 2. We also assume that 
D = D1 and D = D2 for the top and bottom paths, re­
spectively. First, we concentrate on the mean and vari­
ance of C1• 

A. Mean and Variance of C1 

Welch's spectrum estimate for the top (signal plus 
noise) path in Fig. 2 that contains K1 data segment over­
lapping M-D points is given by 

(20) 

x(t) = s(t) rect (t - T1) + v(t) (13) where 

where 

rect (t) = [
l, 

0, 

O<t<Ts 

otherwise 
(14) . 

With 

(21) 
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I M-1 

U,, = M I; w;(n). 
11=0 

We can express x;(n) ws(n) as (see (13)) 

X;(n) ws(n) = Xs;(n) + X,;(n) 

where 

where 
(22) 

I K1 

u: = K I; U;, 
I i=I 

(35) 

(23) We note that E[/s,(w)]. = 0 because E[Xs1(w) X:(w)] = 
E[Xsi(w)] E[X:(w)] = 0, and similarly, E[X!(w) X"'(w)] = 
0. 

x,,(n) = v;(n) ws(n) = v(n + (i - 1) D1) ws(n) (24) Since 

Xs;(n) = s(n + (i -, 1) D1) 'Y;(n) 

with •• 

(25) ki, 

C1 = I: ls.Ck) 
lc=ki 

(36) 

[

rect (nT + (i - 1) D 1T - T1) ws(n), 

-y;(n) = 0 s n s M - l 

where k1 and kh are the smallest and largest integers 
in (ftMT, /,,MT), respectively, and ls.Ck) = 

(26) ls.Cw = 2rk/M), the mean value of C1 is 
0, otherwise. 

(27) 

where 

ls;(w) = (~u) c~~ Xs;(n) e-iw{ = (~u) IXs;(w)l
2 

(28) 

= M (J,, - ft) (.CJ;~ + '!_) 
\ Is Us BsT T 

= TaBs (CJ; Pr + b) 
T Us Bs 

(37) 

where ks = (kh - k, + 1) = TaBs and T0 = MT. Notice 
that T0 Bs is not necessarily an integer. Therefore, there 
must be a roundoff error between T0 Bs and ks. In this pa­
per, we neglect this minor issue. 

From (30), we also have 

Cov {Js,(w1), ls,(Wi)} = Cov {ls(w1), lsCw2)} 

+ Cov {l,(w 1), l.(Wi)} 

From (20) and (27) we get 

ls~(w) = ls(w) + l.(w) + ls.(w) 

where 

because ls(w), l,(w), and lu(w) are mutually uncorrelated. 
(30) From (11), the first and second terms of (38) can be writ­

ten as 

(31) 

I K1 

lv(w) = K I: l,.(w) 
I i=I ' 

(32) 

(33) 

From (10), (18), (19), (30); (31), (32), and (33) we 
have 

l Ki ( Pr) 1 Ki (b) 
E[Js,(w)J "" UsKt i~I U; Bs T + Ki i~I T 

u: (Pr) b 
= Us BsT + T' 

Cov {ls(w1), lsCWi)} = (Kt: ~oBsy 

and 

Ki Ki 

• E E 1rij(w1 - Wi)l2 
i•lj•I 

Cov {l,(w 1), J.(Wi)} = (K, isTJ 

2 

Ki Ki 

• E E I Ws(i - j, w, - Wi>i2 
i-tj•I 

w,, w2 e (w1, w,.) (40) 

where Ws(q, w) is the Fourier transform of 

ws(q, n) = w.,(n) w.,(n + qD1). (41) 

The third term of (38) is given by (see Appendix III) 
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Ki Ki 

.~ -~ {ru(w1 - w2) w:(i - i, w1 - <112) 
1= I J"" I 

+ rt(w1 - <112) Ws(i - j, W1 - <112)}. (42) where 

Substituting (39), (40), and (42) into (38) gives 

Cov {Js,(w1), ls,(w2)} = (K :~ B)2 

I s G s 

where 

P, 
SNR = B b' 

s 

Therefore, from (36) and (43) we see that 

Var [C,] = E[ c~k, ls,(k) - E[Js,(k)]Y] 

lei, kh 

= ~ ~ Cov {Js,(k1), ls,(k2)} 
ki =kl ki=ki 

. 

p2 lei, lei, Ki Ki 

= 2' 2 ~ ~ ~ ~ 
(UsKi) (TGBs) ki•kiki=kii=lj•I 

(43) 

(44) 

' lru(k1 - k2) + S~R Ws(i - j, k, - k2)r 

p2 k.r Ki K1 

= r 1: 1: 1: 
(UsKi)2 TGBs ~"" -k., i• I j-= I 

• lru(k) + S~R Ws(i - j, k)r (1 - 1~1) 

(45) 

where ru(k) = rjj(w = 27rk/M) and Ws(i, k) = Ws(i, w = 
27fk/M). 

B. Mean and Variance of C2 

For the bottom path of Fig. 2, only noise is present. 
The mean and variance of C2 can be directly obtained from 
(37), (44), and (45) by letting P, -+ 0, and setting K1 = 
K2, Ws(q, k) = WN(q, k), M = N and Bs = BN, i.e. 

(46) 

(48) 

WN(q, w) is the Fourier transform of 

wN(q, n) = wN(n) wN(n + qD2). (49) 

WN(q, k) = WN{q, w = 21rk/N), TN = NT, k, = kl. - k; 
+ 1 = TNBN, and kl and kf. are the smallest and largest 
integers in <fl NT, ff.NT). 

C. K, of an Unbiased_Estimate of P, 

From (37) and (46) one can form an unbiased estimate 
for P, as 

(50) 

Note that T6 = MTand TN= NT denote the time interval 
of one data segment for the top and the bottom signal path 
in Fig. 2, respectively. 

Finally, we have 

Var [P,] = (;;J2 

[var (C,) + (;:::Y Var (C2)J-

<51) 

Combining (45), (47), and (51), and substituting into (12) 
leads to the expression for K, as follows: 

K, =-
1
-(-

1 )L!_[ t t t 
P .JTGBs MU: lK~ k• -k., i-= I j-= I 

I 
1 • • 1

2 

( lkl)] • r;i{k) + SNR W,(1 - J, k) 1 - ks 

The resulting K, equation appears to be complicated. 
However, we will consider two particular examples in the 
next section. One of these examples shows that t)lis 
expression reduces to the well-known analog K, equation. 
The other example shows that this expression reduces to 
the normalized st~ndard deviation of Welch's power spec­
trum estimate when k, = 1 and SNR = oo. 
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IV. EXAMPLES OF EVALUATING THE DIGITAL Kp 
EQUATION 

. The first example is for K 1 = K2 = 1, (Ta/Ts) << ks 
< M/2, ws(n), and wN(n) are rectangular windows. This 
case should correspond to the analog filter processor. For 
this example, Us= UN= 1, U: = T/Ta, Ws(0, 0) = M, 
WN(0, 0) = N, r 11(0) = MT/Ta, and 

M-1 I 12 M- I 2 
~ ru(k) = ~ 'Yu(n) = Ts 

k=O M 2 
' n=O M Ta· 

The Kp is then 

1 Ta [M~t 2 1 2 
KP = JTaBs MTS k':'o 1ru(k)I + SNR2 IWs(O, 0)1 

2 
+ SNR ru(0) Ws(0, 0) 

( T. B ) (M)2 1 ]"2 

+ T:B: N SNR2 IWN(O, 0)12 

(53) 

Equation (53) is exactly the analog filter expression de­
rived in (7) (also,see (3)). This example provides a con­
nection of the KP equations for analog and digital signal 
processors. 

As a second example, we examine the KP equation for 
Ta = Ts = TN, D 1 = D2, Bs = B,., K1 = K2 = K. Thus, 
M = N and Us = UN = U: and r;ik) = Ws(i - j, k) = 
WN(i - j, k). Equation (52) then reduces to 

1 1 1 ( 2 2 )'
12 

KP = J'f. MUS ✓K 1 + SNR +. SNR2 
s 

1 1 
KP = MUS ✓K IWs<O, 0)1 

which was also shown by Welch [6]. 

1 
= ✓K (55) 

Second, let us consider the 50-percent overlapping case 
(D = M/2). In this case, Ws(q, k) = 0 forq > 1. Equation 
(54) can be expressed as 

1 l [ 2 
Kp = MUS ✓K IWs<0, 0)I + 2 

. (1 -½) IWs(l,0)12
]'

12

• (56) 

Following an example in Welch's paper, we examine the 
case with the following window function: 

( )

2 
M - l 

w,(n) - I - n ~ , 

0snsM-1. (57) 

For this case 

Therefore .. 

1 1 (11 2 )'
12 

Kp = MUS ✓K 9 - 9K IWs<O, 0)1 

1 1 (11)'
12 

(11)'
12 

1 ==-- - IW(0 0)1 = - -
MUS ✓K 9 s ' 9 .fK 

(58) 

which is the same as the results shown in [6]. As previ­
ously stated, Welch's power spectrum estimation results 
are special cases of the derived KP equation. 

Case II. Assume that ws(n) is a generalized Hamming 
window given by • 

ws(n) = a - (1 - a) cos (2-:,n), 

0 s n s M - l. (59) 

Note that it is a rectangular window (i.e., no weight) for 
(54) a = 1, and a Hamming window for a = 0.5. Ws(0, k) 

can be easily shown to be 

We will discuss two special cases for this example. 
Case I. Assume that ks = l and SNR = oo. The re­

sulting KP should correspond to the normalized standard 
deviation of Welch's power spectrum estimate. First, let 
us consider the nonoverlapping case where Ws(q, k) = 0 
for q * 0. The KP equation (54) can be further reduced 
to 

Ws(0, k) = 

k=0 

-a(l - a)M, k = l, M - l (60) 

;\(l - a)2M, k = 2, M - 2 

0, otherwise 
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a 

Fig. 3. Kp(a.)!Kp(I) for a generalized Hamming window for one data seg­
ment. 

and Us = Ws(0, 0)/M = ci + ½0 - a) 2
. First, let us 

consider the case K = 1 and 2 << ks < M/2. For this 
special case, (54) can be reduced to 

1 1 ( 2 2 )
1
'
2 

KP= ../ks MUS l + SNR + SNR2 

rM-1 11/2 

"lk~O 1Ws<O,k)l
2j 

1 (ci + 3a 2(1 - o!)2 + i{l - a)4)" 2 

= ../ks a2 + ½O - a)2 

(61) 

The ratio of Kp(a) to Kp(l) versus a is plotted in Fig. 
3. This verifies that, indeed, as mentioned in the intro­
duction, the use of windows increases KP and therefore 
degrades system performance. 

Next, we consider the overlapping case with SNR = 1, 
M = 256, and L = 1024. We directly compute KP using 
(54) for K = 4 with nonoverlapping, K = 5 with 25-per­
cent overlapping, K = 7 with 50-percent overlapping, K 
= 13 with 75-percent overlapping data segment, and K 
= 25 with 87 .5-percent overlapping data segment. The 
resulting Kp's (as function of a) are shown in Fig. 4(a)­
(d) for ks = 1, 2, 4, and 64, respectively. Note that the 
u0 cells associated with ks = 1, 2, and 4 are much smaller 
than the u0 cell associated with ks = 64 because Bs = ksf/ 
M. From Fig. 4(a) we see that KP does not depend on the 
window for the nonoverlapping case when ks = l. Data 
segment overlapping improves KP. The amount of im­
provement depends on the window chosen. Notice that 
when ks = 1 the correlation between frequency bins due 
to windowing and data segment overlapping does not ap­
pear in the Kp equation. When ks > 1, the correlation 
between frequency bins due to windowing and data seg-

ment overlapping may actually degrade KP (see Fig. 4(b)­
(d). 

Finally, we consider KP versus the percentage in data 
segment overlap for SNR = 1, M = 256, L = 8192, ks 
= 4, and a= 0.5 (Hamming window). The result is shown 
in Fig. 5. From this figure we see that KP decreases as the 
amount of overlap increases and approaches an asymptote 
for overlap greater than 50 percent. In other words, little 
improvement in KP is obtained when the amount of over­
lapping is more than 50 percent. 

We note that a generalized Hamming window·'Ts very 
narrow in the frequency domain because only three values 
are nonzero for 0 s k s M - 1. The hardware required 
to implement the generalized Hamming window can be 
quite simple because it only involves three frequency bins 
for convolution in the frequency domain. 

V. DISCUSSION 

A digitial Doppler processor is planned for on-board 
digital signal processing for NSCAT. In this paper, we 
have derived an expression for the normalized standard 
deviation of backscatter power measurements KP for such 
a digital signal processor. The effects of two digital signal 
processing techniques, namely windowing and data seg­
ment overlap processing, are treated. Windowing must be 
invoked in cases where spectral leakage is to be mini­
mized in order to avoid intei-~u0 cell interference. When 
windowing is used, overlap processing may then be con­
sidered to minimize the system performance degradation 
due to the windowing. Although the resulting expression 
for KP is quite complex, we have demonstrated that it re­
duces to the well-known KP expression for analog signal 
processors and that Welch's power spectrum estimation 
results [6] are special cases of the derived KP expression. 

In the NSCAT baseline design, a Hamming window and 
50-percent overlap processing will be used. The Hanning 
window, applied through convolution in frequency do­
main, was chosen because it minimizes spectral leakage 
and is simple to implement. In fact, since the window 
weights are ½ and ¼, only bit shifting, addition and sub­
traction are required without any multiplication. This 
lessens the computation load iri a spacebome processor. 
Based on KP values versus computational load, a 50-per­
cent overlap was chosen for the baseline design (see Fig. 
5). There are on-going efforts to refine this baseline de­
sign using the KP expression. 

In addition to utilizing a digital signal processor to im­
prove system performance, NSCAT also plans to use six 
antennas in contrast to the four antennas on SASS. Each 
side of the subsatellite track will be illuminated by three 
antennas. They will provide three different azimuthal ob­
servations of u0 from the ocean for wind vector estima­
tion. This will simplify data interpretation by reducing the 
number of ambiguities in the estimated wind direction (see 
[3] and (91). 

Details of the NSCA T design, as well as further trade­
offs in the digital Doppler processors will be reported in 
future papers. 
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Fig. 4-: Kp(a) for a generalized Hamming window and overlapping and 
nonoverlapping segments for (a) k, = I, (b) k, = 2, (c) k, = 4, and (d) 
k, = 64, respectively. 

APPENDIX I 
PROOF OF EQUATION (1 l) 

From (4) we have 

~{J;(w;) J,(Wi)} 

= (M1u) (M~) 

E [x;(k) x;(l) x,(m) x,(n)] 

= E[x;(k) x;(l)] E[x,(m) x,(n)] 

+ E[x;(k) x,(m)] E[x;(l) x,(n)] 

+ E[x;(k) x,(n)] E[x;(l) x,(m)] 

= cf,,c(l - k) cf,,c(n - m) 

1.0 

+ q,x(k - m + qD) q,x(l - n + qD) 

433 

• E [L L L kx;(k) X;(l) x,(m) x,(n) 
k I m n 

+ <J,x(k - n + qD) <J,x(l - m + qD) (A2) 
• "(;(k) "(;(I) -y,(m) -y,(n) 

where 'Px(k) is the correlation function of x(n), and 

• exp (j[w 1(k - /) + Wi(m - n)]) J- (Al) 

Thus For a zero-mean stationary Gaussian process x(n), it is 
well known that 

q = i - r. (A3) 

(A4) 
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Fig. 5. KP versus overlapping fork, = 4 and a = 0.5. 

where 

i 

• <f,;x(l - k) <f,;x(n - m) 'Y;(k) -y,{/) -y,(m) -y,(n) 

• exp (j[w1(k - /) + W2(m - nm] (A5) 

Q2 = (,:u) (,:u) f o/ ; ; 
• { <f,;x(k - m + qD) 

• <f,x(l - n + qD) 'Y;(k) -y,{l) -y,(m) -y,(n) 

• exp (j[w 1(k - /) + Wi(m - n)])} (A6) 

and 

• { <f,;x(k - n + qD) <f,x(l - m + qD) 

• -y,{k) -y;(l) -y,(m) -y,(n) 

• exp (j[w 1(k - l) + w2(m - n)])}. (A7) 

We now derive Qi, Q2, and Q3 . Because the power den­
sity spectrum P;x(w) of x(n) is the Fourier transform of 
<f,x(n), Q1 can be expressed in frequency domain 

Qi = (,:u) (,:u) f o/ ; ; 
• [ ( 2~)

2 

i: .. Pi61) exp [j61(l - k)] d61 

· r .. Pi62) exp [j6 2(n - m)] 

• d62 'Y;(k) 'Y;(l) -y,(m) -y,(n) 

• exp (j[w 1(k - /) + w2(m - n)])] 

= (~u) (;u) [ (;11rY r .. r .. Pi61) Px(62) 

· I: I: I: I: -y,{k) -y;(l) -y,(m) -y,(n) 
k I m n 

• exp [ -j(w 1 - 61)(1 - k)] 

• exp [-j~w 2 - 62)(n - m)] d61 d62] 

= (;u) (M~) (2~Y 
. r .. r .. Px(6J Px(82) 1r;~W1 - 61)12 

• Ir ,(w2 - 62)12 d81 d62 

= E[J;(w1)] E[J,(w2)]. 

Therefore 

Cov {J;(w1), J,(w2)} = Q2 + Q3. 

From (A6) we have 

• [ [,. [,. Pi81) Pi62) f o/ ; ; 
• -y,{k) -y,{l) -y,(m) -y,(n) • exp (j[6 1(k - m) 

+ 62(1 - n) + w1(k - l) + w2(m - n)]) 

• exp [j(8 1 + 82) qD] d81 d82] 

• r7'(61 + w1) r7'c02 - w1) r ,<61 - w2) 

• r,(62 + Wi) • exp [j(61 _+ 62) qD] d61 d82] 

(AS) 

(A9) 

= (,:u) (M~) (i~)2 [ [,. Px<61) r:'(61 + w1) 

• r ,(61 - w2) exp [j6 1qD] d6 1J 

• [ [,. Pi62) r:'<62 - w,> r ,<02 + w2) 

• exp [j6 2qD] d62 ]-
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= (;u) (;u)P2 
[2~ [ ... r:co. + w1> 

• r ,.(8, - W2) exp [i81qD] do,} 

• [ 2~ [ ... r:co2 - w1> r ,.co2 + wv 

• e~p [j8 2qD] d82} , 

= (;u) (;u)P2 
1r;,.(w, + w2>!2, 

(since (Bl)) for wr, Wi e (w0 , wb). (AlO) 

Similarly, we can show 

• r ,.(8, + W2) exp [jB.qD] de,} 

· [ r ... ri(82 - w,) r ,.(82 - Wi) exp [j82qD] d82j 

= (;u) (,)u)P2 
1r;,.(w, - Wi)l

2
, 

(All) 

Thus 

Cov {J;(w 1), J,.(w)} 

= (~u) (w~)P2 

• { 1r;r(w, + Wi)l2 + 1r;,.(W1 - Wi)l2} 

= (~u) (i)u)P2 
1r;,.(w, - w2)l

2
• (Al2) 

(Al3) 

APPENOIX II 
AN INTEGRAL E.9uA TION 

In this appendix, we prove the following identity equa­
tion: 

1 r ... 
2..- J _,.. r1(6 - W1) r r((J + aj exp [j6qD] d(J 

(Bl) 

where r ;(w), r;r(w), and r;r(w) are the Fourier transforms 
of ')';(n), -y,.(n), and ')';,.(n) (see (7)), respectively, and q = 
i - r. 

Proof: 

1 r ... 
2r L ... r:(8 - W1) rr(B + Wi) exp [j8qD] d8 

= -21 r... r,{w1 - 8) r ,1.8 + W2) exp [j8qD] d8 
r L ... 
1 1 ... = -

2 
r;(w1 + Wi - y) r,.(y) 

r -..-

• exp [j(y - Wi)qD] dy 

= 2~ [ r ... r;(W1 + "'2 - y) r r(Y) 

• exp [jyqD] dy} exp [ -jw 2qD] 

= r;(w) * (r ,.(w) exp [jwqD])l.,=w, +"'2 exp [-jw2qD] 

= r;,.(w1 + Wi) exp [-jw 2qD]. 

APPENDIX III 
PROOF OF EQUATION (42) 

Proof: From (33) we have 

Cov {/5v(w,), ls,(Wi)} 

( 

l )2 K1 K1 

= MflsKi i~t r~t 2 Re {E[Xs;(w,) Xs,(Wi)] 

l· 

• E[X!(w 1) X!(w2)] + E[Xs;(w1) X;,(wi)] 

(Cl) 

To further simplify (Cl), we need to derive 
E[Xs;(w1) X!(w 2)] as follows: 

E[Xs;(w,) X!(Wi)] = Er Mi' Mi' s(n + (i - l)D,) l m•O n•O 

• -y;(n) s(m + (r - l)D 1) -y,.(m) 

• exp [-j( .. ,n - ..,..)]] 

M-1 M-1 

= L L q,,(n - m + (i - r)D 1) 
m=O n=O 

• -y,{n) -y,.(m) exp [ -j(w 2n - Wim)] 

M-1 M-1 ( 1 ) 1..-
= L L - P(8) 

m•O n•O 2r -..- ' 

• exp [j(n - m + (i - r)D)8] 

• exp [ -j(w 1n - Wim)] ')';(n) -y,.(m) d8 
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· r r(fJ - Wi) exp [j(i - r)D18] dfJ 

= :, ~ (2~) rr rt(fJ - W1) 

. r r((J - W2) exp [j(i - r)D18J d(J 

p 
= B ~r;r<w1 - w2) exp [jw2(i - r)Di], 

s 

(from (Bl)) for wi, w2 e (w1, wh)­

(C2) 

Similarly, one can easily show that 

and 

Pr 
E[Xs;(W1) Xs,(W2)J = B T r;,(W1 + W2) 

s 

exp [-jw 2(i - r)D1] 

W1' "'2 E (w,, wh) (C3) 

E[X:(w1) X:,.(w2)] = (t) w:(i - r, w, + W2) 

-~ 
exp [jw2(i - r)D1] 

wi, "'2 e (w1, wh), (C4) 

E[X:(w1) x.,(w2)] = (;) w:(i - r, w, - W2) 

exp [ -jw 2(i - r)D1] 

Wt, "'2 E (w,, wh). (C5) 

Substituting (C2) through (C5) into (Cl) gives 

Cov Vs,(w1), ls,(w2)} 

Ki Ki 

I: I: Re {r;,(w, - W2) w:c; - r, w, - "'2) 
i• I r-1 

• Re {r;,(w, - W2) W;(i - r, W1 - "'2)} (C6) 

which implies (42). 
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