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1 Introduction

Abstract. A scientific effort is currently underway to assess tropical for-
est degradation and its potential impact on Earth’s climate. Because of
the large continental regions involved, Advanced Very High Resolution
Radiometer (AVHRR) imagery and its derivative vegetation index prod-
ucts with resolutions between 1 and 12 km are typically used to inventory
the Earth's equatorial vegetation. Archival AVHRR imagery is also used
to obtain a temporal baseline of historical forest extent. Recently how-
ever, 50-km Seasat-A Scatterometer (SASS) Ku-band imagery (acquired
in 1978) has been reconstructed to ~ 4-km resolution, making it a sup-
plement to AVHRR imagery for historical vegetation assessment. in or-
der to test the utility of reconstructed Ku-band scatterometer imagery for
this purpose, seasonal AVHRR vegetation-index and SASS images of
identical resolutions were constructed. Using the imagery, discrimination
experiments involving 18 vegetation categories were conducted for a
central South America study area. The results of these experiments in-
dicate that AVHRR vegetation-index images are slightly superior to re-
constructed SASS images for differentiating between equatorial vege-
tation classes when used alone. However, combining the scatterometer
imagery with the vegetation-index images provides discrimination su-
perior to any other combination of the data sets. Using the two data sets
together, 90.3% of the test data could be correctly classified into broad

‘classes of equatorial forest, degraded woodiand/forest, woodland/

savanna, and caatinga.

Subject terms: optical remote sensing; image processing; Seasat-A scatterometer;
advanced very high resolution radiometer; NDVI; enhanced resolution image
reconstruction.
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ing data from NOAA-7 and other follow-on missions, is an
extensive data set covering the period from May 1982 to the

Currently there is an extended international effort to inven-
tory and monitor the earth’s global rain forests.! Because of
persistent cloud cover in the equatorial regions where these
forests are found, active microwave sensors, which can pen-
etrate clouds, are preferable to visible and near-infrared
spaceborne sensors. Nevertheless, Advanced Very High Res-
olution Radiometer (AVHRR) imagery and its derivative
vegetation indices are frequently utilized for inexpensive
medium- or low-resolution monitoring where comprehensive
high-resolution imaging with Landsat-class satellites would
be cost-prohibitive.

AVHRR imagery is also available for historical inventory.
Data collected as early as 1978 are available from National
Oceanic and Atmospheric Administration (NOAA) Tiros-N
archives. The popular NOAA vegetation-index product, us-
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present. It is currently used for a variety of research tasks
related to global change and climate.

Despite its availability and low cost, the utility of
AVHRR'’s passive-sensor data is limited by the heavy con-
vective cloud cover typical of equatorial regions. Clearly an
active microwave instrument with 1- to 16-km resolution
would be a desirable alternative data source to AVHRR under
these conditions, but no active microwave device designed .
to provide global land coverage at this resolution has ever

- flown, and none are currently planned for the future.

Although their native spatial resolution is coarse (=25 to
50 km), satellite scatterometers may nonetheless become an
inexpensive alternative to AVHRR for equatorial forest mon-
itoring. Satellite scatterometers are active microwave radar
instruments designed to measure the radar backscatter of the
ocean’s surface under all-weather conditions. Between June
and October of 1978, the Seasat-A Satellite Scatterometer
(SASS) was able to obtain nearly global coverage at a spatial
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unit-cell resolution of 50 km until a catastrophic hardware
failure terminated data acquisition. The primary mission for
SASS was to determine the ocean surface wind direction and
velocity, not to acquire imagery for continental applications.
This is not surprising, because most land imaging problems
require minimum spatial resolutions approaching AVHRR
global area coverage (4 km). In 1993, Long et al. introduced
a method for reconstructing SASS imagery to 5-km resolu-
tion.? It was determined that this enhanced-resolution scat-
terometer data could be used for discriminating between
broad equatorial vegetation types.® Given the success of these
experiments, Long and Hardin proposed that future scatter-
ometers be modified to perform a dual role as active micro-
wave instruments equivalent to AVHRR in global coverage
and spatial resolution. The use of reconstructed SASS im-
agery for historical rain-forest mapping was also suggested
as a possible application of the technology.*

While these early successes with reconstructed scattero-
metry are encouraging, no one has empirically compared
reconstructed SASS imagery with traditional AVHRR im-
agery for classifying equatorial vegetation into mappable
classes. This is the motivation for the research reported here.
This paper summarizes our experiments to compare AVHRR
vegetation-index products with reconstructed SASS imagery
for discriminating between 18 tropical vegetation classes.
Analyzing seasonal SASS and AVHRR data sets, we deter-
mined that tropical vegetation discrimination with AVHRR
vegetation-index images was slightly superior to classifica-
tion using reconstructed SASS imagery. However, this was
true only when the AVHRR and SASS data sets were em-
ployed separately. We also found that the accuracy produced
by integrating the AVHRR and SASS data was distinctly
superior to accuracies available by using only AVHRR im-
agery. In conclusion, we suggest combining historical
AVHRR data with reconstructed SASS data for establishing
a historical rain-forest baseline. Noting the planned launch
of the NASA scatterometer (NSCAT) in 1996, we suggest
that reconstructed NSCAT imagery, when combined with
future AVHRR data, will provide an important integrated
data set for the study of global change.

2 SASS Image Reconstruction

Spaceborne scatterometers transmit microwave pulses to the
ocean surface and measure backscattered power received at
. the instrument, allowing estimation of the normalized radar
cross section (¢ °) of the surface. From each illuminated lo-
cation on the earth, the total power received by a radar is the
sum of the power backscattered by the target, noise from the
frequency-specific natural emissivity of the earth-atmosphere
system, and noise from the instrument itself. Once the noise
is subtracted from the total received power, ¢° can then be
calculated using the basic radar equation.®

SASS was designed to make nominally 50-km-resolution
measurements of the normalized Ku-band radar backscatter
coefficient at two azimuth angles over two 500-km-wide
swaths separated by a 400-km nadir gap. From measurements
of 0° over the ocean, the near-surface wind vector was in-
ferred using a geophysical model function relating o° and
the wind vector.’

Although it was primarily designed for oceanic wind stud-
ies, data from SASS were also collected over global regions

of ice and land during the flight of Seasat-A between June
27 and October 10, 1978. Although the intrinsic resolution
of SASS was approximately 50 km, Long et al. developed a
method to algebraically reconstruct medium-scale imagery
with pixel resolutions between 4 and 12 km over land from
these lower-resolution scatterometer measurements acquired
at a variety of incidence and azimuth angles.? Assuming no
azimuthal modulation over the narrow incidence-angle range
between 23 and 55 deg, the incidence-angle dependence of
o° used by Long et al. can be described by

10 log,,°(8) = A + B(8— 40 deg) , (1)

where A and B are independent of the observation incidence
angle 6 and dependent only on the observed surface char-
acteristic.>” In this model, A is the value of ¢° at an incidence
angle of 40 deg; A can thus be considered the ‘‘incidence-
angle-normalized”” o°. Because of the diversity of incidence
angles used in acquiring SASS measurements, the coeffi-
cients A and B of this model are more useful in application
than the direct 6° measurements.>* In practical terms, al-
though images of A and B are produced in the reconstruction
process, only the A image has been used for traditional image
classification.*

The key to achieving high resolution by signal processing
is the spatial overlap in the original SASS ¢° measurements.
However, the SASS ¢° measurements made during a single
orbit did not have sufficient overlap to attempt the resolution
enhancement scheme. Due to precession in the spacecraft
orbit, a point on the earth’s surface was observed by the same
beam with slightly different azimuth and incidence angles
about once every three days. Data were also acquired by the
instrument on both ascending and descending orbital nodes.
The resulting set of criss-crossing measurement swaths over
several days provides ample overlap to facilitate accurate
estimation of A over equatorial regions. It must be kept in
mind that the reconstructed A image represents the entire
data-acquisition time span (days to months) rather than a
single time ‘‘snapshot.’’ In broad terms, A constitutes a
weighted temporal average of the original ¢° measurements.?

The ultimate resolution obtainable with the reconstruction
technique depends on the original measurement-cell overlap
and the measurement noise. Arbitrarily reducing the size of
resolution elements does not increase the effective resolution
of the resulting A image, since the noise in the image increases
as the resolution-element size is decreased. To minimize the
estimate noise for a given resolution-element size, the number
of measurement cells should be maximized. This however
increases the imaging time interval necessary to gather the
measurements. Depending on the season and region, using
long imaging intervals is questionable, since the target may
change over time. In practice, selecting the enhanced reso-
lution element size involves a trade-off between the required
imaging time interval and the acceptable image estimate noise
level.

Hardin and Long have discussed the criteria that a target
must satisfy to obtain an enhanced-resolution reconstructed
A image suitable for land-cover analysis.* These may be sum-
marized as follows:

1. The dependence of o° on time of day, azimuth angle,
and topography is negligable.
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2. The coefficients A and B remain constant for the data
acquisition period.

3. Over the range of incidence angles used for the recon-
struction, the linear model describes the incidence-
angle dependence of ¢° for the target.

4. Heavy continuous rainfall does not persist for the data
acquisition period.

Hardin and Long discuss at length how these criteria are
satisfied in the South America study area.* However, since
cloud cover and its associated heavy rainfall have always
been a potential problem in utilizing AVHRR over equatorial
regions, the last criterion deserves elaboration.

It is common knowledge that rainfall can attentuate back-
scatter at Ku-band frequencies. In a preliminary analysis of
Amazon region SASS data, Birrer et al. corrected for this
attenuation by using geostationary satellite imagery to re-
move all SASS measurements that showed significant cloud
cover. The procedure was deemed unnecessary and aban-
doned, because ‘‘few measurements should have been cor-
rupted’’ by the dry-season acquisition.’

3 AVHRR and the Global Vegetation Index
Products

The AVHRR instruments that flew on polar orbiters
NOAA-7, NOAA-9, and NOAA-11 were five-channel ra-
diometers capable of continuously scanning the earth with
1-km ground resolution. While these 1-km data are available
for limited portions of the Earth, AVHRR global area cov-
erage (GAC) data are resampled on board the satellite to 4-km
resolution and stored for later transmission to Earth receiving
stations. The five channels used by the instrument cover the
following spectral ranges:

0.58 to 0.68 wm
0.725 to 1.10 um
3.55t0 3.93 um
10.30 to 12.50 um
11.50 to 12.50 pm.

whk WL =

Early work by Tarpley et al. and others demonstrates that
vegetation indices derived from NOAA polar orbiter sensors
such as AVHRR are extremely useful for monitoring vege-
tation on a continental scale.® Several vegetation indices used
with AVHRR are reported in the literature. One of the sim-
plest, designated in this research as IR/R, is defined as

IR/R = Channel 2/Channel 1 .

In contrast, the normalized difference vegetation index
(NDVI), derived from AVHRR channels, is defined as

NDVI = Channel 2 — Channel 1/Channel 2 + Channel 1.

For most applications, NDV1 is preferred to IR/R because it
helps mitigate the effects of viewing aspect, terrain slope,
and changes in illumination.’

The AVHRR global vegetation index (GVI) product, pro-
duced by NOAA, is an extensive collection of daily, weekly,
and biweekly vegetation-index images available in a variety
of map projections. These images are composites derived
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from daily AVHRR GAC data. Like reconstructed SASS
data, GVI imagery is a composite of several original images
acquired over time. As described by Ohring et al., an indi-
vidual pixel on the weekly image composite is produced by
scanning the corresponding pixel on the daily images for
‘‘greenest’’ or most *‘cloud-free’” value. The greenest pixel
for any week is the pixel having the greatest channel 2—chan-
nel 1 difference. Once this pixel value is determined, it is
then assigned to that pixel location in the weekly image com-
posite. When performed for all the image pixels, it is thought
that this assignment method significantly lowers the effect
of cloud cover.'® In order to offer users maximum flexibility,
the GVI product created before April 1985 consisted of
AVHRR channel 2, channel 1, NDVI, and the channel 2-
channel 1 difference images.

A processing overview of the first- and second-generation
GVI products is described by Kidwell.> NOAA is now com-
pleting its third-generation products. The first-generation
products used in this study were experimental, and have a
few inherent limitations. First, the imagery is cast in two
hemispheric polar stereographic projections with the reso-
lution changing from 13 km at the equator to 26 km at the
poles. This projection is inconvenient for equatorial studies,
since the area of interest is split between the two hemispheres
in the projection. This is a nuisance to visualization, inter-
pretation, and registration. Secondly, the processing meth-
odology to combine the daily data into weekly data changed
three times over the study period used in 1982. The reader
is invited to review Kidwell’s discussion of these processing
changes.® In this research, these processing differences are
effectively noise. Other limitations in the GVI products, along
with suggestions for their correction, are summarized in Ta-
tesishi and Kajiwara'' and Kaufman et al.'?

4 Comparison Methodology

41 The SASS Imagery

The reconstructed SASS A image used in the comparison was
composited from data collected over central South America
from July 1 to October 10, 1978. While SASS was capable
of making both vertically and horizontally polarized mea-
surements of the radar backscatter, only vertically polarized
data were used in this study. Additionally, orbits for which
the spacecraft attitude determination was in error were ex-
cluded.'® Only ¢° values in the incidence-angle range from
23 to 55 deg with noise below a certain predetermined level
were used as data for the reconstruction. The final SASS A
image was cast on a latitude-longitude projection with a grid
cell resolution of approximately 5 km. The image is shown
in Fig. 1.

4.2 The GVI Imagery

As mentioned above, the SASS A image is a seasonal com-
posite using data acquired between July 1 and October 10,
1978. In order to fairly compare the SASS A and GVI prod-
ucts, GVI composites were constructed for the same seasonal
period, albeit in 1982. This was the earliest GVI imagery
available. Nineteen GVI image data sets corresponding to
the weeks between Monday, May 31, and Sunday, October
10, 1982, were averaged on a pixel-by-pixel basis to produce
the required seasonal GVI composites—one composite rep-
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Fig. 1 The reconstructed SASS A image of the South America study
area.

resenting seasonal NDVI, and the other representing the sea-
sonal IR/R ratio. These composites, originally cast on a polar
stereographic projection, were recast to the same latitude-
longitude graticule as the SASS image to achieve precise
registration of the three data sets. This was performed by in-
house computer routines that interconvert satellite imagery
between polar stereographic and latitude-longitude projec-
tions using exact forward and inverse projection formulas.
No operator intervention was required. Since the pixel size
of the GVI data set in this region (approximately 14 km)
was much coarser than the SASS data set, nearest-neighbor
interpolation was utilized to fill the 5-km pixels in the final
GVI images. The NDVI image is shown in Fig. 2. The IR/R
image is similar in appearance. Relationships between fea-
tures in Figs. 1 and 2 are obvious.

4.3 Classification Process

The goal of the classification process was to determine
whether SASS A imagery was superior to NDVI and IR/R
for discriminating between tropical vegetation classes within
the study area (see Fig. 3). Using the 1 : 5,000,000-scale
Vegetation Map of South America,'* several polygons were
delimited for 18 equatorial and subtropical vegetation for-
mations. Realizing the limitations of the map source material,
the inexact nature of cartographic classification, unavoidable
generalizations, and the difficulties in drawing exact bound-
aries for vegetation classes that likely blend in transition
zones, the polygons were delimited only for the larger
mapped areas of vegetation. Once these polygons were dig-
itized, the corresponding pixels were extracted from the
SASS A, IR/R, and NDVI images and saved for further
-analysis.

The analysis consisted of two parts. In the first part, the
objective was to explore the relationship between the veg-
etation index and A values for each vegetation formation.
Since the backscatter response of tropical vegetation at
Ku-band frequencies and continental scales is badly known,
it was hoped that this examination would provide insight into
scattering mechanisms.

In the second part, exploratory discrimination analysis was
performed to determine which combination of the three data
sets (A, NDVI, IR/R) would be superior for classifying the
vegetation formations. Since seven combinations were pos-
sible, seven discrimination experiments were conducted:

Fig. 2 The seasonal NDVI image of the South America study area.
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Fig. 3 The study area.

Discrimination using IR/R alone

. Discrimination using NDVI alone

. Discrimination using A alone

- Discrimination using IR/R and NDVI together

. Discrimination using A and IR/R together

. Discrimination using A and NDVI together

7. Discrimination using A, IR/R, and NDVI together.
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In the discrimination test results reported below, only one-
half of the pixels for each of the 18 formations were used
for training the classifier, while the remaining half were re-
served for testing the accuracy of the discrimination. The
formula used for determining the discriminant-function dis-
tance between test pixel x and vegetation group 4 was

F,=Cl'x+6,+Inp, ,

where

1
Ci=p;S”' and 6,= -3 (g S™'my) .

OPTICAL ENGINEERING / November 1995 / Vol. 34 No. 11 / 3149



HARDIN and LONG

The reader will recognize this as Fisher’s linear discriminant
function. Using the seventh discrimination experiment enum-
erated above as an example, ., is the vector of means on A,
NDVI, and IR/R for vegetation group 4. The matrix S™! is
the inverse of the pooled covariance matrix for all the veg-
etation groups, and the vector x represents the values of A,
NDVI, and IR/R for test pixel x. The variable p,, is the prior
probability for class . When employing this function, the
distance F,;, was calculated between the unlabeled test pixel
and each vegetation group. The pixel was then assigned the
vegetation label of the group that generated the smallest F
value. In order to remain conservative in our methodology,
the prior probabilities for each vegetation class (p,) were
assumed equal.

The fundamental approach used in the exploratory dis-
criminant analysis was to continually regroup the original 18
categories into a much smaller set until the classification
accuracy produced by the discriminant functions reached an
acceptable level. An effort was made to maintain logically
consistent groupings. For example, while woodland cate-
gories could be combined with forest categories, forest and
grassland categories were not joined.

In simple terms, the quality of the discriminations was
assessed by counting the number of test pixels placed in the
correct vegetation class by the discriminant function. A sim-
ple percentage of agreement was then calculated. Cohen’s
kappa (k) was calculated for each classification. The statistic
k is a metric that, unlike a simple percentage, allows for the
classification accuracy that could be expected by the oper-
ation of chance alone. (The reader unfamiliar with k may
wish to review Congalton, Oderwald, and Mead'” for a dis-
cussion of its calculation and merits.) In comparing classi-
fications, k is a more conservative, useful measure of dis-
criminating power than the simple percentage, particularly
in experiments producing low classification accuracies and/or
involving very few classes. A k of 0.0 indicates that there is
no discrimination between the classes, while a k of 1.0 in-

Table 1 Descriptive statistics for the 18 vegetation classes in the
study area. Horizontal lines delimit classes combined in the four-
group discrimination experiment; n=number of pixels; s=standard
deviation.

Class Name n A sa NDVI swov  IRR  smm
Extremely moist forest (Em) 476 -7.205 0.190 0.283 0.033 1.794 0.122
Ombrophilous submontane forest (Os) 585  -7472 0944 0280 0.034 1820 0.13]
Maoist seasonal forest (Sm) 4200 -7.545 0205 0.286 0.015 1.802 0.059
Very moist forest (Vm) 9601 -7.668 0.230 0.292 0.0!18 1.828 0.070
Tropical seasonal lowland forest (Tsl) 600  -7.843 0.611 0.280 0034 i.784 0.127
Degraded forest formation (Df) 243 -7.551 0392 0.258 0.022 1.698 0.078
Degraded deciduous woodland (Ddw) 999 -8.592 0366 0.252 0.023 1.676 0.08!
Caatinga (Ca} 1866 -9.329 0674 0.075 0.037 1.167 0.093
Degraded caatinga formation (Dca) 336 -9.805 0449 0.094 0.022 1209 0.055
Chaco (Ch) 5184 .9.452 0484 0.162 0.032 1.389 0.090
Campus cerrados north (Cen) 3922 -10.055 0.696 0.151 0.022 1.357 0.062
Campos sujos ! limpos (Csh) 2030 -10.140 1.653 0.192 0.067 1493 0.215
Pantanal (Pa) 2116 -10.322 0945 0.178 0.026 1436 0.078
Cultivated crops (Cr) 2545 -10.461 0.893 0.165 0.022 1.398 0.061
Degraded lowiand woodlands (Dlw) 668 -10.675 0.564 0.152 0.025 1.360 0.068
Grassland with palms (Gp) 643 -10.748 1.149 0210 0.037 1.536 0.119
Campos cerrados south (Ces) 1836 -10.936 0.731 0.175 0.019 1427 0055
Degraded campos cerrados (Dec) 684 -11.180 0508 0.144 0.017 1338 0.046
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dicates that errorless discrimination was achieved. The var-
iance for k can also be calculated, allowing different clas-
sifications to be assessed for statistically significant
differences.’> These calculations were performed for the
seven discrimination experiments and tabulated.

In interpreting the « figures, we note that the sample drawn
for the classification was not random, but was delimited by
drawing a polygon around various homogeneous vegetation
regions. Furthermore, spatial autocorrelation, which is likely
to exist within the A, NDVI, and IR/R data, technically vi-
olates the assumption of independence of observations re-
quired for valid significance tests. In order to see how sen-
sitive our results were to these violations, we stratified the
entire data set by polygon, and extracted 5000 random pixels.
The discrimination analyses were then conducted again. This
process was repeated three times, using a different sample
for each repetition. The results produced from the samples
did not differ substantially from results using the entire data
set of 38,534 pixels. In some cases the accuracy values were
slightly lower or higher (almost always less than 1 percentage
point), but never did the values contradict the results using
the entire data set.

5 Results

A statistical summary of the 18 vegetation classes is given
in Table 1. The table, sorted by A value, includes both the
training and the test pixels. In general, the forest types had
the highest A values, followed by the degraded forest, wood-
land classes, caatinga, and grassland classes. The NDVI class
mean values showed the same general trend for larger to
smaller values. As illustrated in Figs. 4 and 5, the correlation
between the two indexes and the SASS A data is moderate
(rrma =0.799, rypyra =0.763, p <0.05). It seems that the
biophysical parameters affecting the vegetation-index values
are reflected in the A data. The caatinga classes are notable
exceptions to the general linear relationship between the A
and vegetation-index values. The low caatinga NDVI (<0.1)
can be attributed to the general character of a xerophytic
woodland in the dry season, where actual leaf area is ex-
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Fig. 4 NDVI versus SASS A graph of class means for the 18 veg-
etation categories. The abbreviations are listed in Table 1. Note how
the caatinga classes deviate significantly from the general linear
relationship.
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Fig. 5 IR/R versus SASS A graph of class means for the 18 veg-
etation categories. The abbreviations are listed in Table 1. Note how
the caatinga classes deviate significantly from the general linear re-
lationship depicted.

tremely limited; but we cannot explain the caatinga midrange
values of A. We suspect that the bare soil typical of caatinga
is a strong contributing factor.

The results of the 18 group discrimination experiments
are shown in Table 2. Using the A data alone, only 18.4%
of the vegetation pixels were properly classified. The
AVHRR vegetation indices performed only slightly better,
with NDVI and IR/R producing percentages of 24.8 and 26.7
respectively. The best results were obtained by combining
the A data with one of the AVHRR indices. As shown in
Table 2, there was no significant difference in classification
accuracy when IR/R was substituted for NDVI in combi-
nation with the A data.

After attempting to discriminate between all 18 forma-
tions, the vegetation categories were combined and the clas-
sification experiments repeated. Table 3 shows the confusion
matrix resulting from the final four group classification uti-
lizing both A and NDVI as discriminating variables. As
shown there, the final groups can be broadly labeled as forest,
degraded woodland/forest, woodland/savanna, and caatinga.
Misclassification between the groups is plausibly distributed.
For example, the forest group is confused somewhat with the
degraded forest/woodland group, but there is little confusion
between forest and caatinga. While we would expect de-
graded forest to be confused somewhat with untouched forest,
we would not expect those same wet forests to be confused
with xerophytic caatinga.

Table 2 Results of the 18 group classification experiment, sorted by
k. An asterisk (*) indicates a classification significantly (p<0.05)

Results from the four-group discrimination experiments
are summarized in Table 4. The pattern established in the
18-group experiment is apparent in this experiment as well.
While the A data constituted the poorest discriminator when
used alone, the highest accuracies were achieved by com-
bining them with the vegetation indices. Specifically, the
highest classification accuracy was achieved by combining
A with the NDVI information (90.3%, k =0.84). Based on
K, this classification is significantly better than its closest
competitor ( p <0.05).

6 Conclusions

Given the success of these discrimination experiments, fur-
ther research into combining SASS and AVHRR data may
provide significant advances in monitoring equatorial regions
from space. Monitoring global rain forests requires that
changes from forest to degraded forest and other categories
be accurately classified and mapped. In the future, much of
the confusion in pure AVHRR optical-infrared classifications
could be removed by integrating reconstructed scatterometer
images using a methodology similar to the one described in
this report. With the launch of ADEOS and the enhanced-
resolution ground processing of NSCAT imagery, the prob-
ability of successfully integrating the two data sources is high.
Unlike the SASS data, which covered only three months,
NSCAT and AVHRR coverage of the equatorial and savanna
regions for the entire year will allow the change in back-
scatter, NDVI, and IR/R to be monitored throughout an an-
nual cycle and used as a discriminator for more accurate

Table 3 Confusion matrix produced in the four-group experiment
using A and NDVI as discriminating variabies. The overall classifi-
cation accuracy is 90.3%.

Predicted Group
Degraded Woodland
Actual group Forest woodland  Caatinga and

and forest savanna
Forest
(Tsl. Em, Sm. Os. Vm) nmn 527 5 21
Degraded woodland
and forest 112 475 1 32
(Ddw. Df)
Caatinga 0 14 1000 87
(Ca. Dca)
Woodland and savanna 160 504 416 8733
(Dcc, Cen. Ch, Cr. Ccs.
Pa, Csl, Gp. DIw)

Table 4 Results from the four-group discrimination experiments,
sorted by k. An asterisk (*) indicates a classification is significantly
(p<0.05) superior to the classification in the preceding row of the

superior to the classification in the preceding row of the table.

Discrimination %  Kappa Variance
Variables correct  (X) (sz.‘)

A 184 0.136 7.30x 107
IR/R NDVI 227 0.175% 9.08 x 10°
NDVI 248 0.181 9.25x10%
IR/R 26.7 0.198* 1.00x 10°
A.NDVI 39.1 0.331* 1.30x 107
A, IRR 40.1 0340 1.32x10°
A IRR,NDVI 397 0344 131x10°

table.

Discrimination % Kappa Variance
Variables correct  (X) (sz,()
A 725 0436 1.78x10°
IR/R 846 0.699* 2.13x 10°
IR/R NDVI 85.1 0.761* 147x10°
NDVI 856 0.767 1.46x10°
A, IR/R,NDVI 875 0.796* 1.34x10°
A, IRR 88.7 0.814* 1.27x 107
A,NDVI 90.3° 0.838* 1.15x10°
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vegetation mapping. A yearly comparison of the two image
types would also help in understanding the mechanisms of
backscatter at Ku-band frequencies at moderate resolutions.
It may also be possible to utilize reconstructed NSCAT im-
agery (which is less prone to cloud-cover problems) to better
calibrate AVHRR imagery and the GVI products.

While the future of integrating reconstructed scattero-
metry imagery with AVHRR is untested, the use of recon-
structed SASS data as a historical data source is more ob-
vious. Given adequate effort, it will be reasonable to extend
the SASS reconstruction procedure for the subtropical globe
so it can be integrated with AVHRR data sets of similar age.
The results of this study indicate that a highly accurate base-
line of forest extent would be possible with the combined
data sets.

The potential for utilizing the SASS-AVHRR image set
may go beyond land-cover mapping and monitoring. The
existence of several vegetation-class gradations within and
between the vegetation formations, along with the moderate
correlation between the backscatter and vegetation-index val-
ues, indicates the possibility of obtaining critical quantitative
information about subtropical vegetation community char-
acter from these integrated sources. While the correlation
between the A and GVI images leads us to believe that
14.6-GHz backscatter in equatorial areas is a function of
canopy density or leaf area, it is possible these backscatter
coefficients also change in response to canopy vigor, canopy
moisture, other canopy structural characteristics, or more
complex quantitative variables. The existence of the caatinga
outliers indicates that the information in the SASS A was not
redundant. Another physical mechanism besides leaf area was
operating to produce the outliers. Using higher-resolution
SAR, visible, thermal, and infrared imagery of carefully se-
lected field sites as primary data sources, it may be possible
to use enhanced-resolution reconstructed scatterometer im-
agery and AVHRR imagery together in order to extend de-
rived estimates of biomass, canopy structure, moisture con-
tent, or transpiration rates over large regions.

7 Definitions
The definitions below were adapted from UNESCO.'®

e Caatinga: Semideciduous thorn scrub with succulents.
Climax caatinga is ligneous, drought-deciduous,
thickly branched, narrow-leaved, and sometimes
thorned. In some areas it may resemble steppe, and in
other regions it may be a dense scrubland with canopies
reaching 10 m. Cactus may also be found.

e Chaco: Drought deciduous lowland and submontane
woodland. This woodland is typically multicanopied,
with cactus in drier areas. There are many climatic and
edaphic variations on a local scale.

e Campo cerrado: Medium-tall grassland with several
species of broad-leaved evergreen trees and shrubs. In
general, southern campo cerrado is distinguished from
northern communities by its shorter dry season, definite
cool season, and denser understory.

e Campos sujo/limpo: Prairie grassland nearly devoid of
shrubs (limpo) or having scattered shrubs (sujo).

e Pantanal: Primarily a humid savanna of hygrophytic
grassland, 80% flooded during the rainy season. In areas
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of higher local relative relief, this grassland is replaced
by shrubs, woodland, and forest.
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