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Abstract—Operational SeaWinds on QuikSCAT data can be en-
hanced to yield a 2.5 km ultra-high resolution (UHR) wind product,
which can be used to help estimate tropical cyclone (TC) charac-
teristics such as TC center and wind radii. This paper provides the
results of two studies in which the QuikSCAT UHR wind product’s
effectiveness in estimating these TC characteristics is evaluated.
First, a comparison is made between an analyst’s choice of center
location based on UHR images and interpolated best track posi-
tion. In this analysis, the UHR images are divided into two cate-
gories based on the analyst’s confidence level of finding the center
location. In each category, statistical error quantities between the
analyst’s choice of center location and interpolated best track lo-
cation are computed. UHR images within the high-confidence cat-
egory can provide, for a given year and basin, mean error distance
as small as 19 km with a 10 km standard deviation.

Second, a comparison of QuikSCAT’s performance in esti-
mating wind radii is made. QuikSCAT’s performance is gauged
against the H*wind dataset and the extended best track (EBT)
dataset. Results show that QuikSCAT UHR data yields the correct
34 kt wind radius most of the time regardless of the TC category
when compared to both H*wind and EBT, whereas the 50 kt and
64 kt wind radii estimates do not always agree with H*wind and
EBT. A more sophisticated method is implemented to automati-
cally estimate wind radii based on a model fit to QuikSCAT data.
Results from this method are compared with EBT wind radii. The
50 kt and 64 kt wind radii obtained from QuikSCAT model fit are
generally highly correlated with EBT estimated wind radii.

Index Terms—Atmospheric modeling, radar remote sensing, sea
surface, tropical cyclones.

I. INTRODUCTION

URRICANES, a particular type of tropical cyclone (TC),

are one of the most complex weather phenomena tracked
by weather forecasters. Their genesis usually takes place over
warm oceans within the tropics from weak disturbances. With
the right conditions, TCs can gradually increase in size and
strength, and potentially become dangerous as they get closer
to populated areas. It is therefore crucial to provide to the popu-
lation adequate warnings, advisories, and precise weather fore-
casts so as to protect life and property as much as possible.
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Hurricane forecasting cannot effectively occur without the
use of instruments and sensors to help monitor, measure, an-
alyze, and predict atmospheric processes such as hurricanes.
In this paper, we are interested in evaluating the perfor-
mance of the SeaWinds scatterometer, which is installed on
the QuikSCAT satellite platform, for TC wind analysis. The
SeaWinds scatterometer (commonly referred as QuikSCAT)
is designed to infer wind speed and direction over the ocean
from radar backscatter measurements. QuikSCAT wind prod-
ucts were originally destined for research purposes; however,
QuikSCAT products have been used by the weather forecasting
community throughout the world, starting a few years after
becoming operational in 1999 [1]. Prior to QuikSCAT use,
weather forecasters used European Remote Sensing (ERS)
scatterometer data [2]. Originally designed for a three-year
mission, the highly successful QuikSCAT provided continuous
wind data for ten years after its launch.

Itis desired to provide a comprehensive study of QuikSCAT’s
effectiveness in determining two specific TC parameters: TC
center location and wind radii. These TC parameters help deter-
mine the TC size, intensity, and potential zone of destruction.
In this paper, analysis of QuikSCAT performance in estimating
these parameters is explored. A simple method to automatically
estimate wind radii is also presented and evaluated.

The paper is organized as follows. Background information
about SeaWinds and its available wind products are discussed
in Section II. Section III provides a comprehensive analysis
of QuikSCAT UHR images’ effectiveness in identifying TC
center location. This evaluation is done for all TC cases in
the Atlantic basin since QuikSCAT became operational from
1999 through 2008. Finally in Section IV, TC wind radii
are manually estimated and visually compared with H*wind
and the extended best track (EBT) datasets. A data modeling
technique is also introduced to enable wind radii estimation
in an automated fashion. Performance is measured against the
EBT dataset. Section V discusses the availability of QuikSCAT
winds for TC analysis. Section VI concludes this paper by
summarizing the various analyses presented.

II. BACKGROUND

A. Scatterometer SeaWinds on QuikSCAT

The QuikSCAT satellite was launched on 19 June 1999 and
remained fully operational until 23 November 2009. QuikSCAT
is the first wind-vector scatterometer using a dual scanning
pencil-beam rotating antenna. QuikSCAT operates at a single
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Fig. 1. Wind speed and direction fields plotted (left) on a 25 km grid (L2B) for TC Dean on 20 Aug. 2007, (center) on a 2.5 km grid (UHR), and (right) for TC
Debby on 21 Aug. 2006. White arrows represent the L2B wind direction field. Note that UHR images (center and right) contain UHR wind speed field overlaid

with L2B wind direction field. Color scale is in m/s.

Ku-band frequency of 13.4 GHz and flies on a sun-synchronous
polar orbit 803 km above the earth [3]. This sensor has been
designed to measure the normalized radar backscatter (¢°)
over the ocean. ¢° measurements are collected over a 1800
km wide swath at two nominal incidence angles, 46° (h-pol)
and 54.1° (v-pol). This configuration improves wind direction
determination, particularly in mid-swath (about 200-700 km
on either side of the satellite track) as four types or “flavors” of
0° measurements are possible: inner-forward, outer-forward,
inner-aft, and outer-aft. However in the far swath, only two
flavors of ¢° are available, thus reducing quality in wind
retrieval in this area [4]. With a high operating frequency like
Ku-band, rain contamination can be problematic, particularly
when combined with high or low wind speeds. With low to
moderate wind speed (< 15 m/s), backscatter signals are pos-
itively biased. This effect is reversed when rain is combined
with hurricane force wind (>32 m/s) [S]-[9].

Since QuikSCAT travels at about 7 km/s, each orbit is about
101 minutes long which results in approximately 14 revolutions
(revs) per day. With its 1800 km wide swath, QuikSCAT is ca-
pable of measuring ¢° for about 90% of the ice-free ocean in 24
hours with an exceptionally high rate of successful data collec-
tion (more than 98% of the time over its life) [4].

B. QuikSCAT Standard L2B Product and the Ultra-High
Resolution Product

When raw telemetry data from QuikSCAT is processed and
analyzed, it is made available near-real time to the scientific
community for distribution as various geophysical data prod-
ucts. These products are organized in different levels (Level 1 B
through Level 2 B). The Level 2 B (L2B) data product provides
ocean wind vectors in a 25 km swath grid [10]. A real-time
version of the Level 2 B product, known as Merged Geophys-
ical Data Record (MGDR), is produced by the National Envi-
ronmental Satellite, Data, and Information Service (NESDIS)
part of the National Oceanic and Atmospheric Administration
(NOAA) [11].

This paper uses the L2B product, which is referred to as the
QuikSCAT standard L2B product; however, results are similar
when using the MGDR product. The L2B and MGDR products

are commonly used by various weather and research centers
throughout the world. For example, the Marine Prediction
Center (now called the Ocean Prediction Center) forecasters
have been using this data extensively since July 2001 to help
ensure the safety of ocean-crossing commercial ships and
other types of vessels traveling on the high seas [1]. Hurricane
forecasters have also been using QuikSCAT data since the
2000-2001 hurricane season to help identify TC characteristics
and help in early detection of tropical depressions.

With the standard L2B product, images of hurricanes can
be obtained by plotting the wind speed and direction fields
(see Fig. 1). Though a few TC structural features are iden-
tifiable in this figure (such as the eye center, eyewalls and
TC size), ambiguity selection errors and low resolution can
hinder the ability to distinguish such features. To improve
the spatial resolution, a resolution enhancement algorithm
can be used to generate high resolution backscatter images
which can ease TC feature identifications [12]-[16]. The UHR
algorithm takes advantage of the spatial overlap of ¢° mea-
surements to enhance the spatial resolution of the ¢° values
used to estimate the wind. The final product obtained from
this technique is called the ultra-high resolution (UHR) wind
product and is reported on a 2.5 km swath grid [16], [17] . This
product is made available through the National Environmental
Satellite, Data, and Information Service (NESDIS) “manati”
web site (http://manati.orbit.nesdis.noaa.gov/quikscat/) and
from the Scatterometer Climate Record Pathfinder web site
(http://www.scp.byu.edu/data/Quikscat/HRStorms.html). Al-
though prone to noise and rain contamination, the general
patterns and TC centers are much more readily apparent in
the UHR wind fields than conventional resolution winds, as
revealed in Fig. 1.

C. Best Track Data

So-called “best track” information is used as ground truth for
TC center and category identification. Best track data is pro-
vided by the National Hurricane Center (NHC) and the Joint Ty-
phoon Warning Center (JTWC) for the five major ocean basins
(Atlantic, Indian, Southern Hemisphere, Western, and Eastern
Pacific). For each named TC, the best track dataset provides
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the center location, maximum sustained wind speed, and atmo-
spheric pressure at the center every six hours over the TC life-
time. A limitation of this dataset is that it does not contain in-
formation about storm structure. The ‘extended’ best track data
(EBT) is a supplement to best track data. The additional param-
eters EBT contains are maximum radial extent of 34, 50, and 64
kt wind in four quadrants; the radius of maximum wind; the eye
diameter if available; and pressure and radius of the outer closed
isobar [18]. These datasets are usually available several months
after a given hurricane season, since several different types of
post-analysis are required to confirm and set the best possible
TC track dataset. Though the best track and EBT datasets are
used in this study as ground truth, there are two key factors to
keep in mind: first, QuikSCAT MGDR winds may have been in-
cluded at times in the best track data development, which may
limit its utility as an independent analysis tool; second, best
track data are not immune from errors. Despite such limitations,
best track data and EBT are useful tools to validate QuikSCAT
UHR TC center locations and wind radii estimation.

III. TC CENTER IDENTIFICATION

Both standard 25 km and UHR wind products are opera-
tionally retrieved from SeaWinds on QuikSCAT for each named
TC. Best track data are used to co-locate QuikSCAT passes with
TC center locations. Since best track data provide center loca-
tions only every six hours for a given TC, a parametric spline
interpolation technique is used to approximate the best track
center location corresponding to the time of each QuikSCAT
pass over a TC. No restriction was set on location or basin in
this study. All available reported best track data are used to ob-
tain as many collocations as possible in a given basin. The TC
category is identified from the best track data.

Two sets of images are created at different resolutions for
each given QuikSCAT pass of a TC within a basin. The first
set (L2B) contains wind field images with a standard resolu-
tion of 25 km, whereas the second set (UHR) contains winds re-
trieved at an ultra-high resolution of 2.5 km. Rain is not flagged.
Using a simplistic subjective approach, each image was manu-
ally analyzed by a student to locate the center of the TC [19].
Note that the analyst did have significant prior experience in
this task and that the manual center location was done without
prior knowledge of the best track locations. The analyst’s TC
center identification is exclusively based on QuikSCAT wind
products, and primarily based on the general flow pattern con-
tained in the wind speed field, with a mild consideration of the
general wind direction field; alternate wind solutions (ambigui-
ties) are not used in this paper. The center is subjectively based
in a concentration of higher wind speeds, at central local min-
imum if present, see below. Center positions are separately es-
timated from both L2B and UHR wind speed images.

While we recognize that more sophisticated center algorithms
[20] and other sensor data could be used, we have adopted a very
simple QuikSCAT-only approach to evaluate the effectiveness
of just the QuikSCAT data. Using the estimated center loca-
tions, we compare the error distance between the manual analyst
center locations to best track’s in order to evaluate QuikSCAT’s
effectiveness in TC analysis in the following.

A. Confidence Level With UHR Images

Since it is subjectively easier to identify the TC center loca-
tion at higher resolution, UHR image analysis is divided into
two categories depending on the confidence level of identifying
the center in each image. The first category includes images in
which we have high confidence in the TC center location; the
second category includes images where TC center identifica-
tion is possible but with a low to medium level of confidence.
In general, the latter category includes images of underdevel-
oped TCs, TCs with equivocal wind patterns, TCs halfway over
land, or images which only partially cover a TC. The low con-
fidence category also includes TCs with a concentrated area of
maximum winds but no apparent central wind minimum.

The right panel of Fig. 1 is a good example of an underde-
veloped TC. This UHR image is considered low confidence be-
cause no well-defined center can be identified; it is difficult to
decide where the center of the TC is. On the other hand, the
center panel of Fig. 1 is a good representation of a high-confi-
dence case. In this figure, the center is unambiguously identi-
fiable. We note that these confidence levels are defined subjec-
tively with the analyst deciding whether the center location is
of low or high confidence.

For each confidence category, a table with the standard de-
viation, mean, and median of the error distance (in kilometers)
between the manual analyst center location and the interpolated
best track center location is created. Histograms based on these
error distances are plotted and analyzed for the full QuikSCAT
mission. The following subsection describes results obtained for
the year 2006 in the Atlantic (ATL) basin.

B. Results for the Year 2006 in the ATL Basin

In 2006, ten named TCs swept through the Atlantic basin. For
these ten TCs, 112 UHR and 98 L2B images from SeaWinds on
QuikSCAT were analyzed (not as many L2B images were re-
tained as it was impossible at times to identify a TC center in
an L2B image). An error distance histogram is plotted for each
set of images [see Fig. 2(a) and 2(b)]. The error distance repre-
sented in these plots is between the interpolated best track center
location and the analyst’s location based on the QuikSCAT im-
ages. Comparing both histograms, we notice a 12 km improve-
ment in the mean error using all UHR images over standard
resolution images as well as a slight improvement in the me-
dian and standard deviation. Yet, close analysis of Fig. 2(b) in-
dicates that the error between the analyst and the interpolated
best track center location is still significant for a high number
of UHR images (mean error of 54 km). The statistics are further
analyzed and split into the two confidence categories described
in Section III-A.

1) Low-Confidence Category: The analyst concluded that
77 out of the 112 UHR images for the Atlantic basin fall in
the low-confidence category. A histogram of error distances for
these low-confidence images is shown in Fig. 2(c). For this cat-
egory, the mean error distance is 67 km (20% higher than the
mean error for all UHR images combined), with a median of
55 km and a standard deviation of 44 km. Despite the low-con-
fidence criteria given to these images, nearly half of the images
have an error distance below 50 km (37 out of 77). Thus, even
if the analyst is not sure where the center location of a TC is,
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Fig. 2. Error distance between interpolated best track and analyst’s center location for all TCs in the Atlantic (ATL) basin in 2006 (see plots (a) and (b)—all
L2B and all UHR, respectively). Plots (c) and (d) represent the error distance between interpolated best track and analyst’s center location for the low and high-

confidence UHR images, respectively.

TABLE I
STATISTICAL RESULTS FOR L2B AND UHR IMAGES
FOR THE ATL BASIN IN 2006

TABLE 11
STATISTICAL RESULTS FOR LOW-/HIGH-CONFIDENCE UHR IMAGES IN THE
ATL BASIN FOR THE PERIOD 1999-2008 (DISTANCE IN km; LC AND HC REFER
TO LOow CONFIDENCE AND HIGH CONFIDENCE, RESPECTIVELY)

Mean error (km) Median(km) Stand. dev.(km)
All L2B 67 54 50 ATL basin 99 00 01 02 03 04 05 06 07 08
All UHR 55 39 44 LC Mean 70 61 60 57 52 70 50 67 49 44
Low confidence 67 55 44 LC Med. 44 52 38 42 40 54 53 55 45 34
High confidence 27 20 26 LC Stdv. 69 53 64 54 53 70 36 44 36 32
Total obs. 38 31 43 27 84 31 44 77 48 75
HC Mean 18 24 25 24 21 19 23 19 24 22
reasonable results can be obtained for the center location. Since ~ HC Med. 13 21 23 19 16 15 21 18 18 20
: : HC Stdv. 15 19 15 17 14 16 15 10 17 14
low-confidence cases are common for low intensity TCs and Tomlobs. 42 €0 55 42 154 76 115 31 25 45

during cyclogenesis, these results show that an analyst can ac-
curately locate the TC center from QuikSCAT alone at least 50%
of the time.

2) High-Confidence Category: A total of 35 observations in
the Atlantic basin were considered of high confidence. In this
case, the mean error distance to the interpolated best track center
location is 27 km; the median and standard deviation are respec-
tively 20 km and 26 km [see Fig. 2(d)]. Table I regroups these
statistics. The mean error distance obtained from the high-confi-
dence set of observations shows a noticeable improvement from
both the low-confidence and the overall set of UHR observa-
tions. From 55 km (all UHR images combined), the mean error
decreases to 27 km which is a 51% improvement. Typically,
hurricane eyewalls of developed TCs have a diameter of 20 to
60 km [21]. Thus a 27 km mean error for the high-confidence
set of observations means that on average the analyst can easily
pinpoint the center of a TC. Even by taking into account the
26 km standard deviation, the analyst can find the center of a
TC almost in every single high-confidence UHR image. Even
with such good results, it is interesting to note that four obser-
vations have an error distance greater than 60 km [see Fig. 2(d)];
these errors range from 68 km to 131 km. Such large errors are
surprising. Further extensive analysis of these observations led
us to the conclusion that problems in the best track data are the
most likely the prime source of error since the EBT reported
locations were outside of the high wind speed region. By ne-
glecting these four unusual error distances greater than 60 km,
the mean error distance for the high-confidence category de-
creases from 27 km to approximately 19 km (a 65% improve-
ment compared to all UHR images combined); the median de-
creases from 20 km to 18 km and the standard deviation from
26 km to 10 km. For this particular basin, high-confidence UHR
images represent 31% of all UHR images analyzed.

C. Results for the Years 1999 to 2008 in the ATL Basin

For the ATL basin, the low- and high-confidence categories
encompass, respectively, 499 and 646 UHR images over the
period of 1999-2008. Table II shows the statistical results
(mean error distance, standard deviation, median as well as
the number of low/high-confidence observations) for the years
1999 through 2008. The high-confidence error plot shows a
fairly small and consistent average in the error distance of the
TC’s center position which in turns reinforces the reliability
of QuikSCAT data. For the low-confidence set of images, the
mean is between 44 km and 70 km, while the high-confidence
mean is between 15 km and 25 km. As before, few observations
have very large error distances. A total of eight different cases
(spread out in the years 2000, 2001, and 2004) have such
error distances. After extensive analysis, it was determined
that best track data reports for these particular cases were
likely erroneous. These cases have been excluded from Fig. 3.
The corresponding error plots of the yearly means with their
respective standard deviation can be found in Fig. 3.

We conclude that an analyst accurately finds the TC center lo-
cation in all high confidence QuikSCAT UHR images. Between
1999 and 2008, 56% of all UHR images for the ATL basin were
considered of high confidence.

IV. WIND RADII ESTIMATION

A wind radius is defined as the largest radius at a fixed wind
speed in a quadrant around a TC center. The wind speeds at
which wind radii are estimated are 34, 50, and 64 kt. Wind radii
are valuable metrics used by NHC to help estimate the size,
storm surge, TC intensity, and possible impact of a given TC.
When TCs are reachable by aircraft, wind radii estimates are
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Fig. 3. Yearly mean error plots for the UHR images in the Atlantic basin
from 1999 to 2008. The curve with large standard deviations and yearly means
greater than 60 km corresponds to the low-confidence category; the other with
lower yearly means and standard deviations corresponds to the high-confidence
category.

generally derived from instruments placed on aircraft which fly
through TCs in an alpha pattern as far as 105 nautical miles
from the center [22]. With the use of GPS dropwindsonde and
on-board radiometers/scatterometers, these aircraft are capable
of measuring atmospheric pressure, temperature, humidity, and
wind speed and direction along their path. These measurements
can be sent to the TC forecasters at the NHC for immediate
analysis.

Because aircraft cannot fly over the whole TC, resolution of
the aircraft-inferred wind speed field can be low in a given TC
quadrant. Furthermore, when TCs are out of reach from these
aircraft, forecasters rely heavily on the relatively few buoys
scattered over the Atlantic ocean and scatterometers to estimate
wind radii. The latter can supply substantially more data for a
given TC compared to buoys. NHC estimates of wind radius
are subjective and therefore it is of interest to develop and use
automated algorithms to estimate wind radii using QuikSCAT
UHR wind product and analyze their performance. Prior to per-
forming such a task, a comparison of wind radii obtained from
QuikSCAT is made with co-located H*Wind and the extended
best track (EBT) dataset.

A. Comparison With H*Wind and EBT Data

The hurricane research division (part of NOAA) has been
working since 1996 on a project called H*wind [23]. The pur-
pose of this project is to develop an integrated tropical cyclone
analysis system using data gathered from various platforms (in-
cluding QuikSCAT). The experimental product includes wind
data (surface speed and direction fields) which are mostly used
for research purposes. H*wind products are considered to be
reasonably accurate with a 10 to 20% error; this error margin
is attainable only when aircraft data are used in the generation
of H*wind data, which is only possible when TCs are reachable
from land-based aircraft. This limits the number of possible spa-
tial and temporal co-locations between QuikSCAT passes and
H*wind between 1999 and 2008 to only 47 TC cases (co-lo-
cations were done by [24]) in the ATL basin where H*wind is
mainly available. Table III summarizes the number of co-loca-
tions per intensity category (the latter being provided by best

TABLE III
NUMBER OF QUIKSCAT TC CASES AND CO-LOCATIONS PER INTENSITY
CATEGORY WITH H*WIND AND EBT (1999-2008)

Int. cat. Quik. TC cases H*wind Co-Loc. EBT Co-Loc.
Trop. Dep. 180 0 0
Trop. Storm 559 10 20
Hurr Cat 1 214 9 11
Hurr Cat 2 71 6 2
Hurr Cat 3 58 5 3
Hurr Cat 4 61 12 11
Hurr Cat 5 — 5 2
Extratropical 209 0 2
Total 1352 47 51

track data). It is important to note that QuikSCAT data was ex-
cluded in the generation of the 47 co-located H*wind data so as
to provide a fair comparison between the two products.

QuikSCAT wind radii are determined visually for each co-lo-
cation and compared with H*wind. To simplify the analysis, the
comparison is conducted only for the North East (NE) quadrant
of each co-located TC. QuikSCAT wind radii determination
is done using a scatterplot of QuikSCAT wind speed versus
distance from the center for a given quadrant (see Fig. 4). Since
wind radii are determined by finding the maximum possible
wind speeds at a given radius, QuikSCAT wind speed on this
plot is based on its four largest values for each distance. These
wind speed maxima, however, should be interpreted with
caution since UHR wind product is inherently noisy and may
be rain-contaminated [16]. We note that rain flagging is not
used in this paper. Note Fig. 4 also shows H*wind wind speed
field (left-most plot) as well as the scatterplot of H*wind wind
speed versus distance from the center, overlaid with QuikSCAT
wind speed maxima, (right-most plot) for TC Ivan on 14 Sep.
2004. The middle plot of Fig. 4 represents the corresponding
QuikSCAT UHR wind speed field.

For each TC co-location between H*wind and QuikSCAT,
similar scatterplots are created and used to determine
QuikSCAT wind radii. Results of this analysis are repre-
sented on the top three plots of Fig. 5. Each plot shows
correlation between H*wind and QuikSCAT wind radii at a
given wind speed (i.e., 34, 50, and 64 kt). The first two plots
show a consistent agreement between the two datasets. How-
ever, it is clear that poor results are obtained for the 64 kt wind
radii; in this latter case, QuikSCAT tends to underestimate high
winds, which should be expected due to scatterometer GMF
limitations, particularly in the presence of rain [5], [6].

This preliminary wind radii analysis between H*wind and
QuikSCAT yields the following points:

* QuikSCAT wind speed is often erroneous in high rain rate
areas. It is therefore very useful to identify and exclude
such areas prior to visually determine a wind radius.

+ Isolated thunderstorms of variable size can be present in
the proximity of a TC core, which may lead to wind speed
overestimation and larger than necessary 34 kt wind radii.
If the effects of these mesoscale weather systems are ig-
nored, 34 kt wind radii estimated from QuikSCAT are usu-
ally very similar to H*wind 34 kt wind radii.

* QuikSCAT shows a much more complex wind field than
suggested by H*wind, though the overall wind speed
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H*wind wind field——H4 Ivan on 14 Sep. 2004
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Fig. 4. Plots of H*wind and QuikSCAT UHR wind speed fields for TC Ivan on 14 Sep. 2004 (far left and center plots, respectively). Color scale is in knots. The
far right plot is a scatterplot of H*wind wind speed versus distance from the center overlaid with QuikSCAT wind speed maxima for the North East quadrant of
the TC only. Note the three EBT wind radii shown by the vertical lines. In this plot, the 34 kt QuikSCAT wind radius is found to be close to 300 nmi; while EBT

is around 225 nmi and H*wind around 210 nmi.

versus radius shape is maintained. There is more poten-
tial information available due to the higher resolution
QuikSCAT wind product.

* As with TC Ivan (see Fig. 4), it is possible to obtain high
correlation between the two datasets in extreme cases (hur-
ricane-type TC) especially for the 34 kt and 50 kt wind
radii.

* QuikSCAT wind speeds are severely underestimated for
most of the TC core in extreme wind conditions (i.e.,
HI1-H5).

A similar analysis is carried out with the EBT dataset, which
is a supplement to best track [25]. This dataset contains, in addi-
tion to what best track data already provides, the radius of max-
imum wind speed, center diameter, pressure of the outer closed
isobar (hPa), radius of the outer closed isobar (nmi), and radii
of 34, 50, 64 kt for each quadrant of the TCs. Since EBT pro-
vides these metrics every six hours during any TC lifetime, 169
co-locations for the ATL basin (1999-2008) between the EBT
dataset and QuikSCAT UHR are possible. Using only the EBT
dataset west of 55 longitude (which is more reliable thanks to
available aircraft data), and because of land contamination and
underdeveloped TC conditions, the number of useful co-loca-
tions is 51 (see Table III).

For illustration purposes, EBT wind radii are represented with
vertical lines in Fig. 4. For all QuikSCAT-EBT co-locations,
QuikSCAT wind radii are determined the same way as described
in the previous analysis with H*wind. Results can be found
on the three lower scatterplots of Fig. 5. The following points
summarize the observations made during QuikSCAT-EBT wind
radii analysis:

* A recurrent problem is underestimated QuikSCAT wind

speed around the eye wall. This may explain the absence of
50 kt and/or 64 kt wind radii from QuikSCAT, especially
in extreme cases.

* The 34 kt wind radii, however, are highly correlated with
EBT wind radii but occasionally are overestimated (see
Fig. 5).

o It is hard to interpret why at times QuikSCAT has no
difficulty estimating the radii of wind speeds close to or
above 50 kt, while most of the time the estimates are
inaccurate.

* Hurricane Dean (cat 1) case provides some interesting re-
sults: the 34 kt and 64 kt wind radii from QuikSCAT cor-
relate reasonably well with EBT wind radii; however the
50 kt is underestimated by approximately 40 nmi. There is
no clear justification as to why such results are obtained.
However, it is interesting to note that wind radii reported
by hurricane analysts (i.e., EBT wind radii) are subjective
estimates and may not indicate direct wind radius measure-
ments from any instrument; a subjective margin of error
may have been added to the actual wind speed measure-
ments received.

* In some rare cases (for example, Hurricane Katrina cat 5
on 28 August 2005 at 1127 UTC), the three wind radii
estimated by QuikSCAT are very close to the EBT wind
radii, even in extreme wind speeds. As mentioned earlier,
heavy rain rates may have positively biased QuikSCAT
wind speed, though this cannot be confirmed.

While limitations have been identified when using
QuikSCAT UHR wind product to estimate wind radii, this
preliminary analysis shows that there is a strong potential for
using QuikSCAT UHR winds to help determine wind radii.
It is important to note that these analyses have been based
solely on the use of the QuikSCAT wind speed maxima for
each of the four radii from the center. These values are noisy
and should be used with care. Yet, this data yields a correct
34 kt wind radius most of the time regardless of intensity
category when compared to both H*wind and EBT. The 50 kt
and 64 kt wind radii estimated from QuikSCAT UHR data
do not always match H*wind nor EBT and rain bands can
adversely affect QuikSCAT wind speed estimation. Despite
these limitations, we can use data modeling techniques to
estimate QuikSCAT wind radii in an automated fashion as
described below.
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Fig. 5. Scatterplots of NE quadrant 34, 50, 64 kt QuikSCAT wind radii vs. H*wind (see top row), and QuikSCAT wind radii vs. EBT (see bottom row). The top
row and bottom row plots are based on all TC co-locations between QuikSCAT and H*wind, and between QuikSCAT and EBT from 1999 to 2008, respectively.
Note that a ‘missed” wind radii corresponds to an instance where QuikSCAT wind speed profile never reaches one of the 34, 50, or 64 kt wind speeds.

B. Wind Radii Estimation Using a Data Modeling Technique

A simple method is now implemented to estimate wind
radii based on a model fit to QuikSCAT data. The purpose of
using such a method is to help automate the wind radii estima-
tion process. While we are aware that there are sophisticated
methods of estimating such a metric [16], [26], our goal is to
provide a simple objective method for estimating QuikSCAT
wind radii in each quadrant for comparison to the EBT wind
radii.

1) Wind Radii Estimation Procedure: The proposed wind
radii estimation procedure is fairly simple to implement. Two
major elements constitute the backbone of this estimation
process: the use of a static model and a transfer function. First,
a model based on empirical data from all QuikSCAT TC passes
from 1999 to 2007 is used to estimate the mean wind speed
versus radius from the TC center for a given intensity category.
Since wind speed inferred from QuikSCAT data is a mean wind
speed [27], it is necessary to convert the model wind speed to
an equivalent maximum sustained wind speed. This enables the
wind radii estimation from a model fit to QuikSCAT data to be
validated against the EBT data set. This is accomplished with

a simpled transfer function based on H*wind co-located TC
cases with QuikSCAT to adjust the model mean wind speed to
a maximum sustained wind speed.

2) Model Description: As shown in Section IV-A and [6],
at extreme winds the wind speed inferred from the QuikSCAT
UHR wind product can be under- or overestimated at times
due to heavy rain. This minimizes the effect of noisy measure-
ments. The model uses all QuikSCAT TC passes from 1999 to
2007. The mean wind speed for each distance from the center
is found by empirically computing the conditional expectation
E(S|ID =d, Q@ = gq. T = t), where S is the wind speed in
knots, D is the distance from the center in nautical miles (nmi),
(J is a quadrant, and T is a intensity category. Since the con-
ditional expectation E(S|D = d, Q = ¢, T = t) and all
other density functions used to derive this quantity are always
conditioned on Q) and 7" throughout this section, these two vari-
ables are implied to simplify notation; i.e., fs.pjo.7 (8, d|¢,t)
fs.p(s,d). The model wind speed at each radius from the center
is found using the empirical conditional expectation

E(SID=d)=>s- fsp(sld)

5

)
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Fig. 6. Histogram-derived joint density functions of wind speed and distance from the center. For each intensity category (IC), four density plots are shown—one
for each quadrant. Color scale is in dB. The bottom right plot represents the mean wind speed for each distance from the center for the NE quadrant of all TCs.
Seven curves can be found in this plot—one for each intensity category (TD, TS, H1, H2, H3, H4, E).

where fg p(s|d) is the conditional density function of the
wind speed s given the distance d from the center. To compute
Jsip(s]d), it is first necessary to determine the joint density
function fs p(s,d). Fig. 6 illustrates the empirical joint den-
sity functions of wind speed and distance from the center for
each quadrant and intensity category. Note that for a given
intensity category, the shapes of the joint density functions
are very similar from quadrant to quadrant. However, from
one intensity category to another, there is a definite change
in curve shapes. This change can be due to significant wind
speed changes around the eye’s vicinity, and TC size variation
between intensity categories.

Using Bayes’ rule, it is possible to find the conditional den-
sity function of the wind speed given distance from the center,

f5|D(5|d)

fS,D(Sv d)
fo(d)

where fp(d) is the marginal density function of distance d from
the center. This quantity is found using the following identity:

= ZfS,D(Sv d)

fsip(sld) = (2)

)
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Table IIT shows the number of cases used per intensity cate-
gory to compute the various density functions necessary to ulti-
mately determine the desired conditional expectations. In the
lower right corner of Fig. 6, a plot of the mean wind speed
for each distance from the center for the NE quadrant of all
TCs is represented. In this plot, seven curves are shown—one
per intensity category. Note that the smoothest curves corre-
spond to intensity categories with the most TC cases retrieved,
as shown in Table III. We note the relatively low maxima of the
mean wind speed curves. This is the result of the Geophysical
Model Function, which relates the near-surface wind speed to
the QuikSCAT backscatter measurements, clipping at 50 ms~*
(= 97 kts) [10]. Rain attenuation of high winds may also be a
contributor [5], [16].

3) Model Implementation: Since the model described pre-
viously is based on the mean wind speed at a given radius, a
linear relationship is assumed between the model fit and the
wind speed data, i.e.,

Si(di) = o+ f}s'rn(di) (4)

where s;(d;) and s,,(d;) represent the data wind speed and
the model wind speed, respectively, from the distance d; to the
center. «v and /3 represent the model parameters which control
the shape and vertical shift of the model fit curve. These pa-
rameters can be found using the minimum mean square error
estimation technique (MMSE). Once « and [ are determined,
obtaining a model fit to the data is possible using the estimated
mean wind speed.

Rewriting (4) in matrix form is helpful to estimate the wind
speed:

Sl(dl) 1 S,m(dl) (()/)

s5:(d) 1 s(ds) ) NP
The model parameters & and 3 (in A) can be found using the
pseudo-inverse technique:

A=(D'D) 'D's. Q)

This equation provides a minimum mean square error solution
to the system of linear equations as shown in (5), and a model
fit to the data is obtained when A is found.

4) Bias Adjustment Using H*wind Data: The estimation of
a wind radius for a given wind speed requires knowledge of the
maximum sustained wind speed at each radius from the center.
Therefore, it is necessary to adjust QuikSCAT wind speed to
be consistent with a 1-minute maximum sustained wind speed
prior to estimating wind radii from it. Since our model fit is
based on mean wind speeds, the standard deviation of the mean
wind speed model is added at each radius. We note that best
track wind radii are estimated based on l-minute maximum
sustained wind speeds, while the reported QuikSCAT wind
speed is roughly equivalent to a 810 minute mean surface
wind [27].

H*wind data provide a 1-minute maximum sustained wind
speed field for each available TC co-location with QuikSCAT
data. To ensure data compatibility between QuikSCAT and
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Fig. 7. H*wind versus QuikSCAT wind speed scatterplots at various distance
ranges from the center. Note the second-order fit on the top plot. Wind speed is
in knots.

H*wind and best track, we use all H*wind and QuikSCAT
TC co-locations to perform a simplistic bias adjustment of the
model fit wind speed based on H*wind wind speed. The top
scatterplot of Fig. 7 shows H*wind versus the estimated wind
speed (from the updated model fit) for the 47 co-locations
found (see Table III). It can be seen that for distances close
to the center (10—60 nmi), the model fit based on mean wind
speed plus standard deviation generally underestimates wind
speed. As distance from the center increases, the model fit
overestimates wind speed. Note the second-order fit to the data
in this scatterplot; the coefficients of the second-order fit are
used to adjust the QuikSCAT model fit wind speed. The bottom
scatterplot of Fig. 7 shows H*wind wind speed versus the
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Fig. 8. Scatterplots of 34, 50, and 64 kt wind radii from QuikSCAT adjusted model fit versus EBT. At the bottom of each scatterplot, the number of missed
QuikSCAT model fit wind radii is specified. In the lower right corner of each plot, a correlation coefficient p is also provided.

adjusted QuikSCAT model fit wind speed. A higher correlation
is found between the two sets of data for all distances from
the center. Yet, for distances closer to the center, correlation is
lower for extremely high wind speeds, which is to be expected
due to GMF clipping at 50 m/s [10].

C. QuikSCAT Wind Radii Validation

To evaluate the performance of the wind radii estimation pro-
cedure described in this section, we use 49 out of the 51 temporal
and spatial co-locations between QuikSCAT and the extended
best track (two co-locations refer to type HS TCs—the model
for wind radii for this TC category is not estimated due to the
small number of cases).

Fig. 8 shows the scatterplot of 34, 50, and 64 kt wind radii
from both QuikSCAT adjusted model fit and EBT. Results
obtained from the QuikSCAT adjusted model fit are generally
highly correlated with EBT estimated wind radii. It is inter-
esting to note that there are fewer missed 64 kt wind radii than
50 kt (6 versus 15; see Fig. 8). Despite the number of missed
wind radii, we can conclude that it may be possible to estimate
the wind radius in an automated fashion using the procedure
outlined in this section. Once QuikSCAT wind radii are found,
they can be analyzed and adjusted by hurricane forecasters
based on their extensive experience.

V. QUIKSCAT TC TRACKING UTILITY

In the areas where most TCs occur, at most two observa-
tions per day are available (in some rare locations such as the
Gulf of Mexico, up to three times). Thus, when tracking a TC
it may be possible to obtain two UHR images from QuikSCAT
daily. However, center locations may not always be identifiable
in every image; at times TCs may be only partially covered,
partway over land, or incipient. As previously noted, such im-
ages may not be useful for TC analysis since the TC centers
cannot be determined in these situations.

Our purpose in this section is to evaluate how often
QuikSCAT UHR images have been useful for TC center obser-
vation over its mission. The analysis is done on a TC-by-TC
basis. For each TC, UHR images are classified into two main
categories based on the number of QuikSCAT images received
per day. Once classified, the usefulness criteria come into play:
the images are either considered useful or not based visibility
of the TC center. Fig. 9 illustrates the results of this analysis
for the Atlantic basin using bar graphs.

Due to the complex nature of this figure, an example is
provided below to demonstrate how to interpret it. We desire
to analyze in the Atlantic basin TC Olga in 2001 (TC number
15; see third bar graph in Fig. 9). As indicated on the plot, the
TC life is 12 days. For 10 out of these 12 days, two co-located
images per day are obtained for TC analysis (as shown in the
top portion of that plot). Out of these 10 days, 50% of the
time both images are considered useful to the analyst; 40% of
the time, only one is considered useful, and 10% of the time
neither of them are. The bottom portion of the plot shows cases
where only one co-located QuikSCAT image is obtained in a
day. For TC 15, this occurred twice. Only once in these two
days is the obtained image found to be useful for TC analysis.
Overall, at least one useful QuikSCAT UHR image per day is
available 83% of Olga’s TC life, while two useful UHR images
per day are available 42% of it. The same analysis can be done
on a TC-by-TC basis and is reported in these bar graphs in
Fig. 9. It is then possible to appreciate how often, out of the
lifetime of a given TC, useful co-located QuikSCAT images of
the TC center are obtained.

For more general results, pie charts are provided for each
basin (see Fig. 10), which combine all the results obtained from
1999 to 2007. They show the distribution of useful UHR im-
ages received daily. The ideal situation is to obtain two useful
QuikSCAT observations per day all the time; however, this oc-
curred only 25.7% of the time in the ATL basin (see Fig. 10).
Nevertheless, at least one useful UHR image is obtained daily
60.5% (ATL) of the time. Having at least two scatterometers on
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Fig. 9. Bar graphs showing the amount of useful QuikSCAT observations received per TC daily for the ATL basin from 1999 to 2007. On each bar graph, two
sets of data are shown: upper bars show statistics for two co-located images obtained daily; lower bars show statistics when only one co-located image is obtained
daily. The former scenario has three cases where possibly both obtained images are useful to the analyst, only one is, or none of them are. In the latter scenario,
the received image is either useful to the analyst or not. Each of these possibilities is represented in percent on the bar graph for each TC.

different platforms would increase these low results. Inany case, heavily on the analyst’s experience in interpreting a QuikSCAT
judging the usefulness of an image is a subjective task and relies ~ wind field UHR image. Therefore, it may be possible to obtain
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Fig. 10. Pie chart displaying how often useful UHR images are retrieved for
TCs of all QuikSCAT images available daily, as noted on each slice (years
1999-2007 combined for the ATL basin). Up to two images can be retrieved
per day although in many cases only a single image per day is available. The
exploded slices show that two useful (for TC center identification) out of two
available images per day were obtained for 25.7% (ATL) of the time between
1999 and 2007.

Fig. 11. Pie chart displaying how many useful UHR images are retrieved per
day for the ATL basin during the year 2003. During this year, two scatterometers
(SeaWinds on ADEOS II and on QuikSCAT) provided UHR images simultane-
ously which increased temporal coverage. It is then possible to obtain up to four
useful UHR images per TC per day.

more useful images per day depending on the analyst’s experi-
ence in interpreting wind field patterns.

A. Results Obtained From SeaWinds on QuikSCAT and
ADEOS II for the Year 2003

For nine months in 2003, two SeaWinds scatterometers were
operational (QuikSCAT and ADEOS II). Both devices provided
the same wind products at the same daily rate. The orbit phasing
ensured that each instrument observes the same location at a dif-
ferent local-time of day. As a result, the amount of useful daily
UHR images for TC analysis ideally is doubled. Fig. 11 shows
the results obtained for that year. As expected, a maximum of
four useful UHR images are available daily (in seldom cases up
to five). However, only 15.5% of the time in the Atlantic basin
were four out of four daily UHR images useful to the analyst.
The chart shows that for about 45% of the time, two or more
useful UHR images are available daily, versus 25% when only
one scatterometer is available (see pie chart in Fig. 10). As one
might expect, two scatterometers measuring wind fields over
the ocean and operating simultaneously around the globe pro-
vide more critical data on a daily basis for TC analysts.

VI. CONCLUSION

This paper provides an analysis of QuikSCAT UHR wind
product’s effectiveness in estimating specific TC param-
eters such as center location and wind radii. In Section III,
QuikSCAT TC UHR passes are visually analyzed and separated
into two categories (low and high confidence) depending on
the confidence level of identifying the TC center location. This
analysis is done based only on scatterometer wind speed and
direction fields. TC center identification using high-confidence
cases provides similar results compared to best track data. A
high-confidence UHR image is therefore useful in obtaining
a good estimate of a TC center location. It can be argued that
QuikSCAT data is not necessary to identify center location
when TCs are well-defined since the center can be identified
using infrared or optical satellite imagery. However, a Central
Dense Overcast (CDO) can be present, which makes it difficult
to find the center using traditional methods. In such cases,
QuikSCAT data can be essential. Identifying TC center in a
low-confidence case (an underdeveloped TC or a TC with a
poorly defined eye) can be difficult, though QuikSCAT wind
products are considered useful in identifying developing trop-
ical depressions [28]. Although poor results in determining TC
center location are frequent in low-confidence QuikSCAT im-
ages, these images are still valuable to the weather community.

Section IV describes and analyzes two ways of estimating
wind radii using QuikSCAT UHR data. The first method con-
sists of direct wind radius estimation from QuikSCAT max-
imum wind speed at a given radius. This estimation is com-
pared with both H*wind and EBT co-located TC cases. The
second method proposes the use of a static model and a transfer
function applied to QuikSCAT UHR wind product to automat-
ically estimate wind radii for any TC. Validation of the results
of this method is performed with co-located EBT cases. Due
to the simplicity of this model and the existence of more com-
plex algorithms, this method represents an upper bound on the
achievable accuracy. Nevertheless, the results demonstrate that
the QuikSCAT UHR wind product can be used to estimate wind
radii. The simple automated method assumes knowledge of the
center location and intensity category to use the appropriate
static model. In a near-real-time application, the center loca-
tion would have to be identified manually beforehand. Once the
latter is estimated, a hurricane forecaster can infer a wind ra-
dius estimate from QuikSCAT UHR wind product and adjust it
if necessary. Our results suggest that it may only be possible
to obtain a wind radius estimate from QuikSCAT a maximum
of twice a day due to the nature of QuikSCAT daily ocean cov-
erage. Even with the limited daily coverage QuikSCAT can pro-
vide for a given TC, its UHR wind product may be the most re-
liable source for estimating a TC wind speed field when TCs are
out of reach from aircraft.

VII. POSTSCRIPT

This paper was prepared and submitted prior to the demise
of the QuikSCAT primary wind mission, which ended in
November 2009 when the spin bearing reached end of life.
Though originally designed for only a three-year mission life,
the extended QuikSCAT mission demonstrated the value of
scatterometry in the study of TCs and proved to be a valuable
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resource for real-time hurricane tracking [1]. It will be missed.
Though no U.S. follow-on mission is currently planned, the
Indian Space Research and Development Organization has
launched a similar scatterometer on its Oceansat-2 satellite.
In addition, the European Space Agency continues to operate
a series of C-band fan-beam scatterometers which provide
real-time information for weather forecasting.
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