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Abstract. The NASA scatterometer (NSCAT) estimates the wind speed and direction of
near-surface ocean wind. Several possible wind vectors (termed ambiguities) are estimated
for each resolution element known as a wind vector cell (WVC). Typically, the speeds of
the possible wind vectors are nearly the same, but the directions are very different. The
correct wind must be distinguished in a step called ambiguity removal. Unfortunately,
ambiguity removal algorithms are subject to error. In an attempt to evaluate the accuracy
of the Jet Propulsion Laboratory NSCAT product, we use a new model-based quality
assurance algorithm that uses only NSCAT data. The algorithm segments the swath into
overlapping 12 3 12 WVC regions and classifies each region according to estimated
quality. The 9-month NSCAT mission data set is analyzed. In 82% of the regions the
ambiguity removal is over 99% effective, with the ambiguity errors correctable using a
model-based correction technique. In 5% of the regions, areas of significant ambiguity
error are found. For remaining regions, all of which have root-mean-square (rms) wind
speeds less than 4 m s21, there is too much uncertainty in the wind field model or too
much noise in the measurements to uniquely evaluate ambiguity selection with sufficient
confidence. We thus conservatively conclude that for the set of regions with rms wind
speed greater than 4 m s21, NSCAT ambiguity removal is at least 95% effective.

1. Introduction

Scatterometers do not directly measure the wind; rather, the
speed and direction of the near-surface wind are inferred from
the normalized radar cross-section (s0) measurements of the
ocean surface. The wind is related to s0 via a geophysical
model function. However, given the scatterometer measure-
ments at an observation point or wind vector cell (WVC), there
are several possible wind vectors for any particular set of s0

measurements [Long and Mendel, 1991]. Although the speeds
are very similar, the directions vary with two to four possible
directions for each WVC. Traditional pointwise wind retrieval
consists of two steps and uses only the s0 measurements for a
single WVC to retrieve the wind for that cell. The first step is
to find the multiple wind vectors for each cell of the scatterom-
eter swath. The second step, ambiguity removal, selects one
unique wind vector estimate for each of these cells. Various
ambiguity removal schemes have been developed [Schroeder et
al., 1985], including some fieldwise approaches [Hoffman,
1982; Atlas et al., 1987]. For the NASA scatterometer
(NSCAT) a modified median filter technique is used [Shaffer et
al., 1991; Shultz, 1990]. Correct ambiguity removal results in
selection of the pointwise ambiguity that is closest to the actual
wind vector. Unfortunately, ambiguity removal algorithms are
prone to error. A quality assessment of these algorithms is
essential to establish the integrity of the data.

A second method to determine wind estimates is model-
based wind retrieval [Long, 1993]. The wind field model pro-
vides a description of the near-surface wind field over the
scatterometer measurement swath and is optimized for scat-
terometer wind retrieval. The swath is sectioned into rectan-
gular regions, and the wind is extracted over the entire region
instead of by individual resolution elements. The model relates

the components of the wind vector field over this region to a
set of model parameters [Long, 1993; Oliphant, 1996]. The
models may be data driven or dynamics based.

The wind field models used in model-based wind retrieval
can also be used to improve the pointwise wind product by
identifying and correcting ambiguity removal errors. One way
to do this is to fit the estimated pointwise wind to a simple wind
field model over a small area. Since ambiguity removal errors
typically cause 908 or 1808 shifts in wind direction, large dif-
ferences in the fit suggest possible ambiguity removal errors
while small differences suggest a realistic or spatially consistent
wind field. Ambiguity selection errors can be corrected by
choosing the pointwise ambiguity closest to the model fit. This
technique is exploited in the quality assurance (QA) algorithm
that follows.

In this paper, a wind field model is developed and used to
assess the accuracy of NSCAT ambiguity removal. A technique
is then developed to detect and correct ambiguity removal
errors using only NSCAT data. The results of using this tech-
nique on the data of the NSCAT mission (September 15, 1996
to June 29, 1997) are then presented. We conclude that
NSCAT ambiguity removal is at least 95% effective for the
entire set of regions with rms wind speeds greater that 4 m s21.
This result is consistent with the comparisons with European
Centre for Medium-Range Weather Forecasts (ECMWF)
winds and buoy collocation statistics presented by Freilich and
Dunbar [this issue] and Wentz and Smith [this issue].

2. Wind Field Model
The data used for the NSCAT ambiguity removal assess-

ment are the NASA Jet Propulsion Laboratory (JPL) level 2.0
product for the NSCAT mission [Naderi et al., 1991]. The wind
resolution is 50 km. The Ku band NSCAT makes wind obser-
vations over a dual-sided swath that is 600 km wide or 12
WVCs on each side. Figure 1 is an example section of the
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observed wind field produced by JPL for ascending revolution
847. Two data sets (“nudged” and “unnudged”) were exam-
ined, each processed with the NSCAT 1 geophysical model
function [Freilich and Dunbar, this issue; Wentz and Smith, this
issue] which was tuned to NSCAT data. The same maximum
likelihood wind retrieval technique is used for both data sets.
The data contain up to four ambiguities per cell, ranked by
likelihood with a flag to indicate the ambiguity selected by JPL.
Pointwise ambiguity removal has been performed on the data
using a median filter technique [Shaffer et al., 1991; Shultz,
1990]. In median filtering, each swath is initialized separately
by the most probable ambiguity for unnudged data and by
global surface analysis fields from the National Center for
Environmental Prediction (NCEP) for nudged data [Freilich
and Dunbar, this issue]. In the nudged processing, data from
NCEP are used to select which of the two most probable
solutions are used to initialize the swath for implementing the
median filter [Freilich and Dunbar, this issue]. The unnudged
data exhibit more obvious ambiguity removal errors than
nudged data.

2.1. Determination of the Model

As mentioned, wind field models can be used to assess the
accuracy of ambiguity removal algorithms. In this work, a lin-
ear model similar to Long [1993] is used. It can be expressed as

W 5 FX

where X is an L element vector containing the model param-
eters and F is a constant model matrix where the columns of F
form a basis set for possible wind fields. W is a row scanned
vector of winds sampled at the scatterometer observations over
a small (12 3 12 WVC) region of the swath. For each 12 3 12
region, W is defined in terms of the components of the wind:

W 5 FU

VG (1)

where U is a row-scanned version of the 12 3 12 matrix of east
components of the wind and V is a row-scanned version of the
12 3 12 matrix of north components of the wind. For both U
and V the rows vary with cross track and the columns vary with
along track.

Long [1993] used a simple dynamics-driven model for F; in
this paper, we adopt a data-driven model matrix with a mini-
mum number of basis vectors. We use the Karhunen-Loeve
(KL) model since it is known to minimize the basis restriction
error [Gunther and Long, 1994].

The KL model matrix F is derived from the eigenvectors of
the autocorrelation matrix R of the sampled wind field
[Gunther and Long, 1994]. R is defined as E[WWT]. Since R is
not known, it must be estimated from the sample autocorre-
lation. While a sample correlation could be computed from
global circulation models (e.g., ECMWF or NCEP), these
models are low resolution in comparison to the 50-km NSCAT
resolution. Instead, the pointwise wind estimates from NSCAT
data are used to compute an estimate of R since we want to use
only NSCAT data in the final analysis.

A portion of 3 weeks (128 revolutions) is used to estimate
the sample autocorrelation. Each swath is segmented into 12 3
12 overlapping regions (approximately 53,000 regions), and W
is determined for each of the regions. An estimate of R, R , is
the sample average of the autocorrelation matrix

R 5
1
N O

i51

N

WWT

where N is the number of regions.
Using standard eigenvalue/eigenvector decomposition

methods, the model matrix F is formed as the lower subset of
the sorted eigenvectors of the sample autocorrelation matrix.
The eigenvectors corresponding to the largest eigenvalues are
the most important and are used as the columns of F. Eigen-
vectors with very low eigenvalues describe wind field compo-

Figure 1. A sample wind field over the Pacific Ocean from the nudged Jet Propulsion Laboratory product
for the ascending revolution number 847. A minimum vector length was used to clarify the presentation of very
low wind speed vectors. WVC is wind vector cell.
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nents that are relatively rare or less important. Plots of the
eigenvalues and the model-fit difference are useful for deter-
mining where to truncate the eigenvector series (see Figures 2
and 3). Visible in the eigenvalue plot, Figure 2, are some
natural breakpoints, and the similarity between the unnudged
and nudged data sets is apparent. Figure 3 shows the model-fit
difference versus the number of basis vectors in the model. It
was generated by fitting the model to nudged NSCAT data and
calculating the vector rms difference. In this paper, the model
matrix was subjectively chosen as the first 22 basis vectors of F
for the tradeoff between modeling error and the ability to
locate regions with ambiguity removal errors. We note, how-
ever, that there is little performance difference in the QA
algorithm when truncating the model between basis vectors 20
through 30.

2.2. Model Basis Vectors

We note that the truncated KL model is only minimally
dependent on which data set is used to generate it, even though
the unnudged winds contain many more ambiguity removal
errors than the nudged data set. Separate KL models were
computed for left and right swaths and both-nudged and un-
nudged JPL products. The low-order basis vectors are essen-
tially identical for all cases. The basis vectors beyond the trun-
cation point are the least important and have little effect on the
truncated model. The truncated model admits basis vectors
that describe the common wind fields that are essentially the
same for nudged and unnudged data. Further, when the
NSCAT WVC locations are used to sample ECMWF winds,
the resulting KL model includes the similar low-order basis
vectors, though the ordering is slightly different and the eig-
envalues fall off more rapidly for higher-order vectors than
with NSCAT winds. The latter can be expected since ECMWF
winds are at lower resolution and thus are “low pass” com-
pared with NSCAT winds. The robustness of the truncated KL
model to the data set used to generate it suggests that the
NSCAT winds are, on average, spatially self-consistent and
that ambiguity removal errors (which, as noted later, affect less
than 5% of the data) do not adversely affect the average low-
order spectrum of the estimated winds. Thus the NSCAT-derived
KL model can be used in evaluating ambiguity removal errors.

The truncated model is effective in spanning the majority of
common wind fields since wind fields have a red power spec-
trum; that is the low-frequency components have the most
energy. This is reflected in the KL model: low-order basis

vectors exhibit only low-frequency components and have large
associated eigenvalues compared with higher-order basis vec-
tors which have smaller eigenvalues and higher-frequency
components. If the entire KL matrix were used, any sampled
wind field could be fit exactly to the model. However, by
truncating the model, it can be used to identify regions of
ambiguity removal errors since, while most realistic wind fields
are spanned by the truncated model, fields with ambiguity
removal errors are not.

The basis vectors corresponding to the first few eigenvalues
are of interest as they mirror common natural wind fields.
Figure 4 is a plot of the first six basis vectors for the KL model.
The two most important basis vectors (i.e., those with the
largest eigenvalues) correspond to the mean wind. The impor-
tance of these two basis vectors is evident from the large break
in the eigenvalue plot between these and the subsequent eig-
envalues. The next four are also representative of common
wind patterns. The fourth and sixth are representative of cy-
clonic flows. The third and fifth are both examples of col
points. As the eigenvalues for these wind fields suggest (Figure
2), these basis vectors are fundamental and are the bases for
most wind fields.

Unfortunately, truncating the model does make some real-
istic wind fields inadmissible since not all real wind fields are
adequately described by only the low-order basis vectors. This
“modeling error” can be significant for some wind fields. As
discussed in section 3.1, modeling error can be confused with
ambiguity removal errors; this is a key limiting factor in our
approach.

3. Methodology
To use the model as a quality assurance for the pointwise

wind retrieval, the model is fit in a least squares sense to the
observed pointwise wind field as described in this section. The
swath is segmented into overlapping sections, and the model fit
is tested for each section. The difference in the fit provides
information about the “realism” of the observed wind. Thresholds
are found for the model fit, and regions with statistics exceeding
these thresholds are flagged as containing possible ambiguity
removal errors. Corrections are then made when possible.

3.1. Using the Model Fit

A least squares estimate of the model parameter vector X,
X , can be obtained from the observed wind field W0 using the

Figure 2. Eigenvalues of the sample autocorrelation matrix
computed from 128 revolutions of nudged and unnudged data.

Figure 3. Vector rms error versus the number of Karhunen-
Loeve model (KL) basis vectors (only even numbers shown)
for the 128-revolution nudged test data set.
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pseudoinverse of F, F†; that is, X 5 F†W0. The reconstructed
wind field WR, also known as the model-fit field, is WR 5 FX ,
with the reconstruction difference field WE given by

WE 5 WR 2 W0 5 ~FF† 2 I!W0

If the reconstruction difference is small, then the model fit is
good and the observed wind field is considered “realistic” ac-
cording to the model. Large differences are attributed to pos-
sible ambiguity removal errors and flagged. However, the dif-
ference can also be affected by noise in the wind estimates or
modeling error.

To illustrate, Figure 5 is a region with clear ambiguity re-
moval errors in the upper left corner. The model-fit field ex-
hibits large differences at some locations that correspond to
the boundary of the ambiguity removal error region. By finding
these areas of significant wind error in the model fit, ambiguity
removal errors are identified.

There are a number of considerations when implementing
this simple technique. First, the model must be fit to the wind
field over a region. To produce an adequate fit, the input wind
must be defined over the full region. Thus, for this simple
algorithm, only those regions with fewer than eight cells of land
or missing measurements are used. Since the reconstruction
difference field becomes larger with increasing numbers of
missing measurements, the threshold of eight cells was chosen
as a conservative estimate. The missing measurements are re-
placed with the average of the cells surrounding it and then
processed. Second, the wind field model inherently smoothes
the wind field over the entire region owing to modeling error;
the model matches the general flow of the wind but may not
adequately model the center of a cyclone or the boundary of a
front. Such regions can be flagged as containing errors, be-
cause the modeling error is large. Third, the difference in the
model fit can be high in regions where the wind estimates are
very noisy even if ambiguity removal is correct. Thus the region
may be flagged as having possible ambiguity removal errors
even if the ambiguity removal is correct. Fourth, it is possible
for both the JPL field and the model-fit field to be incorrect for
a given region, though it is impossible to detect this sort of
occurrence with only NSCAT data. Finally, at low wind speeds
the wind is highly variable, resulting in significant modeling
error which is further complicated by the low signal-to-noise
ratio in these regions. Manual ambiguity removal is also very
difficult in such regions. As a result, we are unable to verify the
ambiguity removal accuracy for low wind speed regions.

Figure 6 illustrates one such low wind speed region. Figure
7 demonstrates a region that is not represented well by the
model fit. Neither of these regions is spatially consistent and

Figure 4. The first six basis vectors of the KL model.

Figure 5. A wind field that exhibits a significant area of am-
biguity removal errors in the upper left corner. The wind is
spatially inconsistent in the upper left corner of the region,
which is evident in the difference field, where large differences
between the selected wind field and the model-fit field are
observed. Because of the number of large values in the differ-
ence field, this region is classified as poor by the quality assur-
ance (QA) algorithm.

Figure 6. A region of low wind speed that is classified as
poor by the QA algorithm.
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results in large reconstruction differences. While the model fit
seems to show the flow of the wind for this region, it is not clear
that it is representative of the actual wind for this region. In
such regions it can be difficult to verify the ambiguity removal
accuracy because of the inherent uncertainty between model-
ing error and ambiguity removal error.

3.2. Selecting Thresholds

To use the model fit to locate regions with possible ambigu-
ity removal errors, a set of thresholds on the model parameters
and the reconstruction difference field are determined in the

following. These thresholds are used to classify the quality of
the ambiguity removal for each region. A technique for cor-
recting the identified errors is presented, and a description of
the detection and correction algorithm is given.

To select the thresholds for the model parameters, a histo-
gram of each parameter is examined. Figure 8 shows the his-
tograms of four of the parameters for the KL model using 5488
regions of NSCAT data (6 days from 3 weeks). Experimental
testing has shown that large values for any of the model pa-
rameters correspond to regions with possible errors. After
some examination of the values for the parameters, the thresh-
olds are set at twice the standard deviation for each of them.
This provides an initial starting place for subjectively altering
these numbers as needed to correctly identify error-prone re-
gions. Only a few of the model parameters are necessary to
identify regions of possible ambiguity removal errors. Since the
columns of F for the KL model are basis vectors in decreasing
order, only the first few parameters are used as thresholds for
the QA algorithm.

The other thresholds for locating ambiguity removal errors
are determined from the reconstruction difference field. These
thresholds include the rms error, the normalized rms error, the
maximum component error, and the maximum direction error
for each region. The rms error is found by summing the
squared components of the reconstruction difference field, di-
viding by the number of terms, and taking the square root. The
normalized rms error is found by squaring the components of
the reconstruction difference field, dividing by the sum of the
squared components of the observed wind field, and taking the
square root, i.e., nrms 5 (WE

TWE/WTW)1/2. The rms and nor-
malized rms errors aid in locating regions of large error. Both
of these values are calculated for the entire region and thus
provide information about the region as a whole. The maxi-
mum component and maximum direction error values are use-
ful for locating regions in which only a few of the wind vectors

Figure 7. A region that is not represented well by the model
fit and is flagged as poor.

Figure 8. Histograms of estimated values for parameters 3 through 6 for the KL model. Overlaid is a
Gaussian distribution with the same mean and variance.
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are incorrect. The individual errors are identified by finding
those that exceed either of these thresholds. These wind vec-
tors are flagged as possible ambiguity selection errors, though
as discussed before, the error may exceed the thresholds owing
to noise, modeling error, or ambiguity removal error.

To select the threshold values for this algorithm, 3309 re-
gions (32 randomly selected revolutions) of NSCAT data were
manually inspected. The regions were subjectively grouped
into four categories: “perfect” (no errors), “good” (those with
only a few isolated ambiguity removal errors), “moderate” (as
much as 10% but less than 20% of the WVCs identified as
possible ambiguity selection errors), and “poor” (more than
20% of WVCs identified as possible errors). All of the poor
regions either have low rms wind speeds, making the region
difficult to model, or have subjectively identified areas of sig-
nificant ambiguity removal errors. While the possibility of a
poor region classification due to modeling error exists, it was
not observed in this data set. For this data set, 77% of the poor
regions were low wind speed regions (rms speed less than a
subjectively chosen threshold of 4 m s21). All of the remaining
(with rms speed greater than 4 m s21) were regions with sub-

jectively identified areas of significant ambiguity removal er-
rors. The statistics of each region were calculated and com-
pared to the initial 2 s thresholds. The thresholds were
adjusted such that the maximum number of poor, moderate,
and good regions are correctly identified as containing ambi-
guity removal errors, with a minimum number of false alarms.

After this tuning, the algorithm correctly identified 100% of
the poor and moderate regions and over 99% of the good
regions with a false alarm rate of less than 3% on the tuning
data set. Note that the thresholds can be altered to adjust the
detection and false alarm probabilities since the thresholds are
a tradeoff between detection and false alarms.

The thresholds chosen for the detection algorithm were
tested on a manually classified withheld data set of 1561 re-
gions (16 revolutions) and achieved a similar level of perfor-
mance. The algorithm correctly identified 100% of the poor
and moderate regions and over 98% of the good regions, with
a false alarm rate of less than 4%. Combining the statistics for
these two data sets results in a total detection rate of more than
98% for all regions subjectively identified as containing ambi-
guity removal errors, with less than 4% of the perfect regions
misidentified. Thus, though modeling error or noise will some-
times result in an incorrect evaluation of a region as containing
possible errors, the vast majority of regions with possible am-
biguity removal errors are located using this technique. The
classification performance of low wind speed regions was also
consistent with the previous results. Regions with low (,4 m
s21) rms wind speeds accounted for 76% of the poor regions,
with the remaining regions (with rms wind speeds greater than
4 m s21) all containing significant areas of ambiguity removal
errors.

Regions with possible errors are then tested for consider-
ation in the correction algorithm in which wind vectors are
examined individually. For vectors identified as possible ambi-
guity removal errors, the pointwise ambiguity closest in direc-
tion to the model fit is chosen as the corrected wind. Since the
ambiguities typically have similar speeds but different direc-
tions, the speed field remains similar, but the direction field is
more consistent with the model fit for corrected wind fields.
Figure 9 demonstrates the use of the correction algorithm. As
can be seen, the observed wind product contains several am-
biguity removal errors. The algorithm chooses the ambiguity
that is closest in direction to the model-fit field, producing a

Figure 9. A sample corrected wind field. The circled vectors
are those that were changed according to the method de-
scribed in the text.

Figure 10. (left) Histogram of the rms speed for all regions classified as “poor” in the 9-months NASA
scatterometer (NSCAT) mission. (right) Percent of the total regions that are classified as poor at each rms
wind speed bin. The vertical dashed line is at 4 m s21.
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subjectively more realistic corrected wind field. Thus the model
fit is a reasonable basis for both detecting ambiguity removal
errors and correcting at least some ambiguity removal errors.

However, as mentioned, the model does not adequately fit
some wind fields, or as a result of significant ambiguity errors,
the original wind field cannot be determined with confidence
using the model. Thus the model-fit field cannot be used to
attempt to correct these wind fields. The number of possible
ambiguity removal errors is used as a criterion for determining
when a region is a candidate for the correction algorithm. The
number of possible ambiguity removal errors, i.e., the number
of WVCs flagged by the QA algorithm as having large differ-
ences with the model, is determined by those wind vectors that
exceed either the maximum direction or maximum component
error thresholds. If the total number of errors for a region

exceeds this threshold, the region is not considered a candidate
for the correction algorithm. The selection of the threshold
was determined by trial and error. For this implementation,
only regions classified as good or moderate (i.e., with 20% or
fewer possible errors) are considered candidates for ambiguity
selection correction.

The criteria for an ambiguity removal correction of a WVC
is thus extremely conservative. Further, though the vector may
be identified as being potentially in error (due, perhaps, to a
noisy wind vector estimate), many times, the ambiguity closest
in direction to the model fit is, in fact, the original wind vector
and thus no change is made. For example, in Figure 9, even
after attempted correction, a few of the wind vectors still ap-
pear quite noisy and, as a result, are still flagged by the algo-
rithm as possibly incorrect even though no better directional
ambiguity can be found.

4. Analysis
After the algorithm was tuned with 10 revolutions of

NSCAT data, the entire 9-month nudged NSCAT mission data
set was processed to assess the accuracy of NSCAT ambiguity
removal. The results were consistent with the results already
presented herein for the observation subset used to develop
the model. Of 408,069 regions examined, 24% were classified
as perfect 41% as good, 17% as moderate, and 18% as poor,
according to the categories described in section 3.2.

For regions classified as perfect, good, or moderate (82% of
the total), only 4% of the individual vectors were identified as
possible ambiguity removal errors; however, only approxi-
mately 10% of these vectors were changed using the model-
based correction technique. For the remaining, the ambiguity
closest in direction to the model fit was the original wind
vector. Thus only 0.4% of the individual vectors were corrected
using this approach. This result suggests that NSCAT ambigu-
ity removal is thus over 99% effective for these regions.

Figure 10 summarizes key statistics for regions (18% of the
total) classified as poor. Of these poor regions, 74% of them

Figure 11. Percent of nonpoor regions versus time over the
9-month NSCAT mission. Each point represents the average
computed over approximately 2 days.

Figure 12. Geographical latitude bands in the Pacific.
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have rms speed values of 4 m s21 or less, and we are unable to
verify the ambiguity removal accuracy owing to the difficulty of
modeling low wind speed regions and the noise level at low
wind speeds. The poor regions with rms wind speeds greater
than 4 m s21 contain significant ambiguity removal errors.
Such regions represent less than 5% of the total number of
regions. We note from Figure 10 that not all regions with rms
wind speeds less than 4 m s21 are rated poor but that all
regions with an rms wind speed less than approximately 2 m
s21 are rated poor. This is consistent with a low wind speed
cutoff in the geophysical model function such as that proposed
by Donelan and Pierson [1987], who suggested that below a
temperature-dependent wind speed threshold of 3 to 5 m s21

at Ku band, depending on incidence angle, the normalized
radar cross section falls off rapidly. Such a roll-off would de-
crease the signal-to-noise ratio and reduce the accuracy of the
wind estimates.

Although 5% of the total number of regions have large
ambiguity removal errors, portions of these regions contain no
errors. Since we cannot uniquely resolve corrections using only

NSCAT data and this simple technique for these high wind
speed (.4 m s21) poor regions, a conservative approach is to
treat each wind vector in the region as a possible ambiguity
removal error. Combining this with the previous result of al-
most complete effectiveness for nonpoor regions, we conser-
vatively conclude that, based only on NSCAT data, the effec-
tiveness of NSCAT ambiguity removal is 95% or better for the
entire set of regions with rms wind speeds of 4 m s21 or
greater.

The accuracy of NSCAT ambiguity removal is evaluated as
a function of time during the mission in Figure 11, which shows
the percent of nonpoor regions as a function of time. There is
an apparent slight decrease in the accuracy of NSCAT ambi-
guity removal over the mission. To understand this effect, the
ambiguity removal is evaluated over several Pacific Ocean lat-
itude bands as defined in Figure 12. Figure 13 summarizes
some of the statistics over the five latitude bands. The expected
variation of wind speed with latitude is clearly evident. There
is a strong correlation between the ambiguity removal perfor-
mance and the rms wind speed, with reduced overall ambiguity

Figure 13. (a) Percentage of nonpoor regions as a function of time over the NSCAT mission. (b) Percentage
of poor regions with an rms wind speed greater than (solid curve) and less than (dotted curve) 4 m s21. (c)
Average regional rms wind speed as a function of time. (d) Normalized histograms of all regions (thick curve)
and those classified as poor by the QA algorithm (thin curve). The vertical dashed line is a 4 m s21.
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removal performance (i.e., more poor regions) at lower wind
speeds. Thus the wind speed distribution in each band affects
the ambiguity removal performances, and seasonal changes in
the wind speed distribution results in temporal variations in the
ambiguity removal performance. In particular, increased storm
activity in the northern hemisphere results in increased wind
speed with improved ambiguity removal during the winter
months in bands 4 and 5. Similarly, the number of poor regions
increases during the southern hemisphere summer owing to a
decrease in the rms wind speed. The peak in the percentage of
high wind speed poor regions in band 1 corresponds to early
winter in the southern hemisphere, a time of large storms in
this region. Because of its low rms wind speed, equatorial band
3 is the most sensitive to changes in the mean rms wind speed,
with a significant drop in the percent of nonpoor regions cor-
responding to a small drop in the rms wind speed at the start
of 1997.

5. Summary and Conclusions
In summary, the steps of the algorithm to detect and correct

ambiguity removal errors are the following.
1. Segment the swath into 12 3 12 overlapping regions

with 50% along track (6 WVCs) overlap.
2. For each valid region (regions with fewer than eight

missing measurements or land cells), compute the model-fit
field W, the reconstruction error field WE, the model param-
eter vector X, and the statistics of WE. These statistics include
the rms error, the normalized rms error, the maximum com-
ponent error, and the maximum direction error for each re-
gion.

3. For each region, determine if the statistics, including
those for the model parameter vector X, are larger than the
thresholds. If so, the region is identified as containing possible
ambiguity selection errors. On the basis of the number of
possible errors identified for each region, segregate the regions
into four classes (perfect, good, moderate, and poor).

4. For those regions not classified as poor, correct the
ambiguity removal error by choosing the ambiguity closest in
direction to the model fit for those WVCs identified as possible
errors.

In conclusion, using only NSCAT data, the QA algorithm
works very well in identifying regions with possible selection
errors. The technique allows rapid processing of the data set.
Ambiguity removal errors in good or moderate regions can be
corrected with a high degree of confidence. Using this tech-
nique over the 9-month NSCAT mission, the NSCAT ambigu-
ity removal is found to be better than 95% effective for the
entire set of regions with rms wind speeds greater than 4 m s21.
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