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[1] The scatterometer ocean wind retrieval process produces several possible solutions or
ambiguities at each point, requiring a separate ambiguity selection step to infer a unique
wind vector field. An ambiguity selection error occurs when the selected wind vector is
not the closest ambiguity to the true wind. The current ambiguity selection routine for
SeaWinds is ad hoc, but performs well under most circumstances. Factors such as
instrument noise and rain can also cause the estimated wind flow to deviate from the true
wind. A quality assurance (QA) analysis is performed to assess the ambiguity selection
effectiveness and noise level of the retrieved wind using a low-order wind field model.
The wind field model is data-driven and shown to be rather insensitive to the training data
set. The QA analysis demonstrates that the SeaWinds ambiguity selection process is at
least 95% effective. Ambiguity selection errors are correlated with storms and rain
corruption. A subjective analysis on a set of cyclonic storm passes confirms that the wind
retrieval is somewhat less effective in storm regions. INDEX TERMS: 4275 Oceanography:

General: Remote sensing and electromagnetic processes (0689); 4504 Oceanography: Physical: Air/sea
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1. Introduction

[2] Spaceborne scatterometers afford a valuable means of
studying the oceans at high accuracy without the limitations
associated with surface-based measurement schemes. Sea-
Winds on QuikSCAT, the latest spaceborne scatterometer
employed by NASA, observes global marine winds in all
weather conditions and independent of time of day. The
SeaWinds wide-swath design affords near-full coverage of
our planet’s oceans daily at 25 km resolution [Spencer et al.,
1997]. SeaWinds, launched in mid-1999, replaces the
NASA Scatterometer (NSCAT) which failed in 1997 after
less than 9 months of operation. A second SeaWinds
instrument is scheduled for launch in November 2002
aboard ADEOS II.
[3] The scatterometer wind retrieval process has two

steps: First, a set of potential solutions or ambiguities are
generated from the backscatter (s�) values by a maximum
likelihood estimation (MLE) technique at each wind vector
cell (wvc) [Chi and Li, 1988; Long and Mendel, 1991].
Then, an ad hoc ambiguity selection routine is used to
choose a unique wind vector field from the set of ambi-
guities [Shaffer et al., 1991].
[4] There are two major types of error in scatterometer

winds: First, the variability of the ambiguity closest to the
true wind is influenced by factors such as instrument
noise, measurement geometry, rain contamination, and
accuracy of the geophysical model function (GMF) relat-

ing s� to the wind speed and direction [Freilich and
Dunbar, 1999]. These factors generally cause the selected
wind flow to appear ‘‘noisy’’. For a discussion on GMF
inaccuracies and the limitations of the comparison data,
see Brown [2000].
[5] Second, data quality is affected by the accuracy of the

ambiguity selection process. An ambiguity selection error
occurs when a selected wind vector is not the closest
ambiguity to the true wind. Due to the nature of the
ambiguity selection process, ambiguity selection errors
generally occur in clusters and result in 90� or 180� shifts
in the selected wind flow. Because both noise and ambiguity
selection errors can cause the retrieved winds to have
inconsistent flow, the noise level and ambiguity selection
performance can be assessed by evaluating the general
consistency of the ambiguity-selected wind [Gonzales and
Long, 1999].
[6] Traditionally, quality assessment is accomplished by

comparing ambiguity-selected winds to numerical weather
prediction (NWP) fields or buoy measurements. These
methods allow a validation check of the data, but are
sensitive to the accuracy of the comparison data and
interpolation methods. Validation of NSCAT data against
both buoy measurements and NWP fields has yielded good
results [Freilich and Dunbar, 1999; Vershell et al., 1999].
For our quality assessment, we adapt and extend a self-
contained method developed by Gonzales and Long [1999]
for NSCAT. The NSCAT quality assurance (QA) assessment
method compares ambiguity-selected winds to a low-order
Karhunen-Loève (KL) wind model fit. Regions exceeding
error thresholds are identified and tallied.
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[7] Our implementation of this model-based assessment
method uses an empirically determined set of error thresh-
olds and other criteria to locate possible ambiguity selection
errors in the presence of noise and estimates the overall self-
consistency of the wind. This technique does not evaluate the
absolute correctness of the scatterometer data. Rather, it is a
method of identifying inconsistent wind flow, which sug-
gests a wind retrieval ambiguity selection error. Natural
phenomena such a fronts or fine-scale storms may contain
apparently inconsistent wind flows and thus be erroneously
identified by the method as a possible ambiguity selection
error. An additional analysis of storm cases is provided to
better quantify the wind retrieval performance in storm areas.
Further, it is possible that an ambiguity selection error can
result in a seemingly consistent flow, which is not correct.
We assume that such errors are infrequent. Although this
model-based approach has limitations, it works well for most
wind data has the distinct advantage of being self-contained.
[8] In this paper, the QA analysis method is described

along with rationale for the selection of parameters. Section
2 describes the QuikSCAT instrument and data set. The KL
wind model size and truncation point are discussed with an
analysis of the KL model’s data sensitivity in section 3. The
QA analysis method is described in detail in section 4. The
QA analysis is applied to 2 years of SeaWinds data and
the results are presented as a function of cross-track posi-
tion, RMS wind speed, time, and latitude band in section 5.
Higher noise is shown to occur in low wind speed regions
and at nadir. Possible ambiguity selection errors tend to be
highly correlated with rain and storm occurrences. The
ambiguity selection is determined to be at least 95%
effective for wind speeds above 3.5 m/s. An additional
subjective analysis for cyclonic storm areas is presented in
section 6, indicating that scatterometer wind estimation is
less effective in cyclonic storm regions.

2. Data

[9] SeaWinds is a Ku-band wide-swath scanning pencil-
beam scatterometer. The design employs two antenna
beams: an outer (v-pol) beam, and an inner (h-pol) beam,
giving an effective swath width of approximately 1800 km
[Spencer et al., 1997]. The rotating dish antenna traces a
helical pattern on the surface and gives dense sampling of
the ocean at constant incidence and varying azimuth angles.
The standard QuikSCAT wind data set (Level 2B) is
processed on a resolution grid of 25 � 25 km wvcs, with
a swath size of 76 � 1624 wvcs. Cells not containing valid
ocean wind data (wvcs over land or ice) are not processed.
[10] SeaWinds infers near-surface ocean winds by meas-

uring the normalized radar backscatter cross-section (s�) of
the ocean surface at incidence angles of 46� for the inner
beam and 54� for the outer beam. The radar signal scatters
mainly from wind-induced capillary waves on the order of
the electromagnetic wavelength due to the Bragg effect. The
returned power is sensitive to the size and orientation of the
waves, making s� a function of the vector wind [Moore and
Fung, 1979].
[11] Wind speed and direction are related to s� through the

GMF. Because the inverse mapping of s� to the wind is not
unique, several scatterometer observations at different azi-
muth angles are required to retrieve the wind. SeaWinds

achieves this azimuthal diversity with fore and aft observa-
tions at each wvc. The azimuth angle difference between
fore and aft measurements varies with cross-track position.
There is little azimuthal diversity at the far swath, and a near-
180� difference at nadir (center swath). Due to symmetry in
the GMF, the MLE process results in several (1 to 4 with
SeaWinds) possible wind vector choices or ambiguities. The
ambiguities are ordered according to likelihood. Since the
first (most likely) ambiguity is not always the closest
ambiguity to the true wind, a separate ambiguity selection
step is required to obtain a unique wind vector field.
[12] Ambiguity selection routines are generally based on

ad hoc considerations and are prone to error. The ambiguity
selection algorithm currently used by JPL in processing
SeaWinds data has two parts: nudging and median filtering.
In traditional nudging, each wvc is initially set to the
ambiguity that most closely matches NWP fields produced
by the National Centers for Environmental Prediction
(NCEP). JPL implements a variant of traditional nudging
known as thresholded nudging [Stiles et al., 2002] with
SeaWinds. In thresholded nudging, the estimated instrument
skill (probability of a correct first ambiguity) at a wvc
dictates the set of ambiguities used in the initialization.
Where the estimated instrument skill is high, only ambi-
guities with high likelihood values are selected by nudging.
Where the instrument skill is low, all ambiguities may be
involved in the selection.
[13] After selecting an initial ambiguity field by nudging,

a modified point-wise median filter is applied [Shaffer et al.,
1991]. For each wvc, the point-wise median filter selects the
ambiguity that minimizes the directional error between the
ambiguity and the surrounding 7 � 7 selected ambiguities.
The point-wise median filter is iterated until convergence
criteria are met.
[14] Unlike previous fan-beam instruments, SeaWinds

retrieves wind in the nadir region, increasing the total swath
coverage. Due to SeaWinds’ constant incidence angles,
observations of the nadir region are at oblique incidence.
(For a further description of SeaWinds geometries, see
Spencer et al. [1997].) A near-180� azimuth difference
between fore and aft measurements at nadir causes the
MLE technique to be ill-conditioned, giving rise to a noisy
nadir wind field [Oliphant and Long, 1999]. Also, low wind
speed data is generally noisy due to a low signal-to-noise
ratio (SNR) and possible effects of a low-wind speed cut-off
in s� [Donelan and Pierson, 1987]. Model function inac-
curacies also exist at high wind speeds due to high-wind
saturation in relating winds to backscatter [Donelan and
Pierson, 1987; Donnelly et al., 1999; Zeng and Brown,
1998]. Thus, the performance of the SeaWinds wind esti-
mation is variable with both cross-track position and wind
speed [Oliphant and Long, 1999].

3. Analysis of the KL Wind Model

[15] Our QA analysis method is based on comparing
QuikSCAT retrieved winds to a low-order KL wind model
fit and identifying regions where the model fit significantly
deviates from the retrieved winds. The KL model fit
effectively smooths the wind data. Other smoothing meth-
ods (truncated Fourier spectrum, wavelets, averaging) may
be used; however, the KL model optimally compresses the
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low-order wind information into a few basis vectors that
resemble true phenomenological features. These basis vec-
tors span most of the low-order wind flow, and give a very
good estimate of the underlying wind field.
[16] In general, the KL transform (also known as the

method of principle components and commonly used in
image processing) maps a signal (an image or wind field)
on to a set of orthogonal basis vectors [Jain, 1989] formed
from the eigenvectors of an autocorrelation matrix. In wind
applications, the autocorrelation matrix is empirically gen-
erated from a training set of QuikSCAT retrieved winds. Each
‘‘square’’ N � N wind sample used to form the autocor-
relation matrix is extracted from a swath of QuikSCAT
winds and reshaped into a 2N2 vector by column scanning
and then stacking the cross-track (u) and along-track (v)
orthogonal components of the wind field. The autocorrela-
tion matrix ðR̂Þ is constructed by combining the information
from each wind field vector (wn) by

R̂ ¼ 1

M

XM
n¼1

wnw
T
n ð1Þ

where M is the number of N � N wind fields in the training
data set. The eigenvalues, or principle components, of the
autocorrelation matrix indicate the amount of energy in the
training set that is in the direction of the corresponding
eigenvectors. The eigenvectors are ordered by decreasing
eigenvalue, with the first eigenvector having the largest
energy. The KL approach optimally compresses the greater
part of the signal variability into the lowest order KL basis
vectors and minimizes the basis restriction error [Jain, 1989].
[17] The KL wind model is formed from the lowest order

KL basis vectors, i.e., a truncated KL basis. An N � N wind
field can be written as a linear combination, using a least
squares fit, of the KL model basis vectors. Because the wind
has a generally red spectrum [Freilich and Chelton, 1986],
the KL model basis vectors represent the low-frequency
component of the wind. Thus, the low-order model fit
retains the general flow of the wind and rejects high
frequency content [Moon and Stirling, 2000]. Where the
difference between the model fit and the ambiguity-selected
(observed) wind is large, the truncated basis is not sufficient
to characterize the selected wind flow. Large errors between
the model fit and the observed wind may be due to
ambiguity selection errors, noise, or fine-scale wind features
outside of the space spanned by the truncated basis, but are
most commonly associated with noise and ambiguity selec-
tion errors.

3.1. KL Model Size and Truncation Point

[18] The spatial frequency resolution of the KL model is
determined by the model size (N) and the truncation point
(number of basis vectors retained). A desired frequency
resolution can be attained with most model sizes as long as
the number of basis vectors is chosen appropriately. The
size of the KL model used in the QA analysis is determined
by a tradeoff between the ability to pinpoint error regions
and minimize modeling error. The use of a smaller model
affords better localization of error regions and is less
computationally expensive. A larger model requires more
basis vectors to achieve the same resolution, but can more

accurately represent the overall flow of the wind and is thus
less prone to modeling error. Test versions of the QA
analysis method were evaluated for different model sizes.
An 8 � 8 KL model was subjectively determined to be the
best compromise between error region localization and
modeling error minimization. The QA analysis, however,
is not particularly sensitive to the model size as long as the
truncation point is chosen such that the spatial frequency
resolution is similar.
[19] The general approach in choosing the KL model

truncation point is to remove higher-order eigenvectors
containing mostly noise. Examining the eigenvalues of the
wind autocorrelation matrix for an 8 � 8 region size (see
Figure 1), there are noticeable discontinuities in eigenvalues
after the second and sixth eigenvalues. Because the first six
eigenvectors characterize over 95% of the wind variation,
six is a reasonable truncation point for a simple, low-order
model.
[20] The discontinuities in the eigenvalues after the sec-

ond and sixth value can be explained by examining the
spatial frequency of the eigenvectors via the 2-D vector
cosine transform. Figure 2 displays the first six basis vectors
and the magnitude of their corresponding vector cosine
transforms. The first two basis vector wind fields are the
mean wind, and consist solely of the constant (1,1) cosine
basis term (upper left corner). The next four basis vectors
represent various common wind features and are linear
combinations of the (1,2) and (2,1) cosine basis terms.
The succeeding six KL basis fields consist of the (1,3),
(2,2), and (3,1) cosine bases (Figure 3). This analysis
suggests that the eigenvalue discontinuities correspond to
edges of discrete frequency groupings. With six basis
vectors, the model can represent a wide range of wind
features, including cyclonic storms, col points, and diver-
gent fields.
[21] The effective spatial resolution achieved by the

QuikSCAT KL model is similar to that of the NSCAT KL
model. Gonzales and Long [1999] used a larger (12 � 12)
region size with an arbitrary truncation point of 22 param-
eters in analyzing NSCAT data. Due to QuikSCAT’s finer

Figure 1. The first 50 eigenvalues of the 8 � 8 KL model.
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grid, the actual spatial resolution achieved by the 6-param-
eter QuikSCAT model is on the order of the resolution
achieved by the larger NSCAT model.

3.2. KL Basis Data Sensitivity Analysis

[22] Because the KL model is derived from SeaWinds
ambiguity-selected wind fields, it is important to evaluate
the sensitivity of the model to ambiguity selection errors in
the training data. To do this, we employ Monte Carlo
simulation to the ambiguity-selected winds to form several
KL models whose training data sets are ‘‘corrupted’’ with
artificially induced ambiguity selection errors. A cluster of
artificial ambiguity selection errors is introduced into Sea-
Winds data by adding an arbitrary angle between 60� and
300� to a randomly shaped patch of ambiguity-selected
winds and choosing the nearest ambiguities. The ambiguity
selection errors are added until a certain percentage of wind
vector cells have been corrupted. A KL model is then
generated from the corrupted data. We then evaluate the

vector space spanned in common between the corrupted and
uncorrupted models.
[23] The following derivation introduces a basis compar-

ison metric that calculates the amount of energy in common
between the spans of two truncated KL basis models. We
begin the derivation by defining the two truncated bases,
A = [a1 a2 ��� aN] and B = [b1 b2 ��� bN] where an and bn are
the nth basis vectors of A and B, respectively. We map each
basis vector of A onto the space spanned by B via the inner
product,

x̂n ¼ BTan: ð2Þ

Because the columns of B are orthonormal, each element in
x̂n gives the magnitude of the projection of an in the
direction of the B basis vectors. Also, because each an has
unity length, the magnitude of x̂n is between zero and one.
A value of ‘‘0’’ indicates that an is orthogonal to B while
‘‘1’’ indicates that an can be completely represented by B.

Figure 2. The wind fields corresponding to the first six KL basis vectors (top) and the magnitudes of
their corresponding cosine transforms (bottom). The vertical dimension of the cosine transform
corresponds to increasing frequency in the vertical direction. Likewise, the horizontal dimension of the
cosine transform corresponds to increasing frequency in the horizontal direction.

Figure 3. The wind fields corresponding to KL basis vectors 7–12 and the magnitudes of their
corresponding cosine transforms.

5 - 4 DRAPER AND LONG: QUIKSCAT ASSESSMENT



The total mean energy of the first N projected basis
vectors is

LA;B ¼ 1

N

XN
n¼1

kBTank22 : ð3Þ

LA,B is known as the basis comparison metric. The value
of LA,B is also between 0 and 1, indicating the fraction of
the energy in the span of A that is also spanned by B.
Simplifying equation (3), we obtain

LA;B ¼ 1

N

XN
n¼1

ðBTanÞTBTan

¼ 1

N
tr ðBTAÞTBTA
n o

¼ 1

N
k BTA k2F ð4Þ

where k � kF is the Frobenius norm.
[24] The basis comparison metric (LA,B) is applied to the

uncorrupted KL model against each of the corrupted
models and the results are given in Table 1. From this
analysis, each six-parameter model derived from corrupted
data is shown to span over 99% of the same vector space as
the original KL model. This indicates that the KL model is
not sensitive to ambiguity selection errors (at least as high
as 20%) in the training data set. Because the ambiguity
selection errors inherent in QuikSCAT data are estimated to
only be about 5% (see section 5.1), the low-order model is
considered insensitive to the ambiguity selection of the
training set.

4. QA Analysis Method

[25] Because we do not know the true wind, an absolute
assessment of the performance of QuikSCATwind retrieval is
unachievable. It is possible, however, to evaluate the self-
consistency of the ambiguity-selected winds. From the KL
analysis in section 3, we see that thewind is dominated by low
spatial frequency content. By mapping the observed winds
onto the low-order KL eigenvectors and comparing the
observed wind to the model fit, we identify the wind varia-
bility outside of the typical wind spectrum. We can generally
attribute large errors between themodel fit and the ambiguity-
selected wind to noise or ambiguity selection errors.

[26] Besides noise and ambiguity selection errors, certain
fine-scale wind features cannot be accurately modeled by
the KL model’s limited basis set. Such areas may differ
from the model fit, albeit the ambiguity selection is the best
possible. Also, it is possible for ambiguity selection errors
to result in a consistent wind flow. Due to these consid-
erations, the QA analysis method is considered effective
only in identifying ‘‘possible’’ ambiguity selection errors
[Gonzales and Long, 1999].

4.1. Overview

[27] Our QA analysis method has two parts: First, each
8 � 8 region is classified as ‘‘good,’’ ‘‘fair,’’ or ‘‘poor’’ by
the absolute level to which it deviates from the model.
This region classification rates the level of noise, ambi-
guity selection errors, and poorly modeled fine-scale wind
features. Second, possible ambiguity selection errors
regions are identified using a more sophisticated approach.
This ambiguity selection error detection method is opti-
mized to suppress certain known effects of noise in order
to better locate those regions containing ambiguity selec-
tion errors. A flow diagram of the QA method is shown in
Figure 4 with a summary description given in the follow-
ing sections.
4.1.1. Weighted Least Squares Model Fit
[28] The swath is segmented into 8 � 8 regions over-

lapping by 50% in the cross-track and along-track direc-
tions. Regions containing more than 25% invalid cells are
ignored. An invalid cell is a wvc over land or ice where
wind retrieval is not performed. The KL model is applied to
each 8 � 8 region using a weighted least squaress fit,

ŵm ¼ FðFTWFÞ�1
FTWwo ð5Þ

where F is the truncated basis model, W is a weighting
matrix, wo is the observed wind, and ŵm is the model-fit
estimate. The vectors wo and ŵm and the columns of F are

Table 1. Comparison of Several KL Models Corrupted With

Artificially Induced Ambiguity-Selection Errors to the Original

(Noncorrupted) KL Modela

Induced Ambiguity-Selection
Errors, %

LA,B, Six
Basis Vectors

0 1.0000
4 0.9996
8 0.9992
12 0.9989
16 0.9984
20 0.9981

aThe percentage of wvcs corrupted by induced ambiguity-selection
errors in the training data is given in the left column. The basis comparison
metric is given in the right column (LA,B) where A is the corrupted KL
model and B is the original model. A and B both have six basis vectors.

Figure 4. A flow diagram describing the QA analysis
method. The left shaded box defines the region classifica-
tion thresholds, and the right shaded box defines the
thresholds involved with flagging a region as an ambiguity-
selection error.

DRAPER AND LONG: QUIKSCAT ASSESSMENT 5 - 5



in standard vector form defined in section 3. The diagonal
weighting matrix W places a weighting of ‘‘1’’ on valid
wvcs and a weighting of ‘‘0’’ on invalid wvcs. Thus, wvcs
containing invalid data do not contribute to the modeled
wind field.
[29] After creating the model fit, the directional and

vector error between the observed wind and model-fit wind
for each wvc is computed. The directional error is the
difference in direction between the model-fit cell and the
selected ambiguity, i.e.

fe ¼ jfm � foj0	fe	180 ð6Þ

where fm and fo are the directions of the modeled and
observed vectors. The direction error is always between 0�
and 180�. The vector error is the magnitude of the vector
difference between the model fit and the selected ambiguity,
i.e.

ke ¼ ððum � uoÞ2 þ ðvm � voÞ2Þ
1
2 ð7Þ

where (um, vm) and (vo, vo) are the cross-track and along-
track components of the model-fit and observed wvc,
respectively.
4.1.2. Region Classification (Good, Fair, Poor)
[30] In order to evaluate the overall consistency of the

wind, each 8 � 8 region is classified according to the
number of wvcs exceeding ‘‘constant’’ directional or vector
thresholds. The term ‘‘constant’’ denotes that the thresholds
are independent of cross-track position (as opposed to
‘‘variable’’ thresholds explained in section 4.1.3). These
wvc thresholds are given in Table 2.
[31] When the region exceeds 20% flagged cells (those

that exceed the ‘‘constant’’ thresholds), it is classified as
‘‘poor.’’ A poor rating indicates that the region is not
spatially consistent due to a high noise level, significant
ambiguity selection errors, or fine-scale wind features such
as fronts or storms. If the region contains 5% to 20%
flagged wvcs, it is classified as ‘‘fair.’’ A fair rating
indicates that the region may have several noisy vectors
or some fine-scale wind variations. Small isolated ambigu-
ity selection errors may also receive a fair rating. A ‘‘good’’
rating (less than 5% flagged cells) indicates a spatially
consistent wind field with possibly only a few noisy vectors.
These region thresholds are summarized in Table 3.
4.1.3. Ambiguity Selection Error Detection
[32] The next stage of the QA analysis is ambiguity

selection error detection. Here, we suppress flagging of
regions due to noise in order to better locate ambiguity

selection errors. To detect 8 � 8 regions containing possible
ambiguity selection errors, two types of consistency checks
are performed: a model-based consistency check, and a
directional-histogram-based consistency check.
[33] First, we perform a model-based consistency check.

The region is compared to the KL model fit and wvcs are
flagged according to variable directional and vector error
thresholds (similar to the region classification explained in
section 4.1.2). The variable wvc thresholds are tuned to a
manually inspected training data set. The training set consists
of 15 swaths of SeaWinds data in which ambiguity selection
errors are manually flagged. The variable wvc thresholds are
set to equalize the false alarm rate for all cross-track/rms wind
speed bins, giving constant performance across the swath
(see Figure 5). Where the region exceeds a limit in the
number of cells flagged (set at 14%) and an RMS error
threshold, it is flagged as inconsistent. This model-based
consistency check is explained further in Appendix A.
[34] Second, we perform a directional-histogram-based

consistency check by inspecting the 8 � 8 wvc region for
multiple directional flows. The purpose of this non-model-
based consistency check is to ensure that the region is not
being flagged solely due to noise. Generally, the directions
of noisy wind vectors have some random distribution about
a mean flow. When no ambiguity selection errors are
present, a high noise level may cause the region to deviate
significantly from the model, albeit there is only one mean
flow. Ambiguity selection errors, however, generally cause
neighboring patches of wvcs to point in contradictory
directions, creating multiple main wind directions in a
single 8 � 8 region. This can be detected by inspecting
the histogram of directions for multiple modes. This sup-
plementary consistency check is described further in
Appendix B. When a region fails both model-based and
directional-histogram-based consistency checks, it is iden-
tified as containing possible ambiguity selection errors.
[35] In addition to these consistency checks, all regions

under 3.5 m/s RMS wind speed are not examined for
possible ambiguity selection errors because the SNR is
too low to validate the wind direction estimates. From
experience with the NSCAT QA analysis, most NSCAT
regions with RMS wind speed less than 4.0 m/s are flagged
primarily because of noise [Gonzales and Long, 1999].
Similarly, through subjective examination of SeaWinds
data, the noise level for regions below 3.5 m/s RMS is
determined to be too high to subjectively assess the ambi-
guity selection. Approximately 7% of the total number of
regions fall beneath this threshold.

4.2. Performance of the Ambiguity Selection Error
Detection Method on the Training Data Set

[36] Ambiguity selection error detection is performed on
the training data set, and the number of false alarms and

Table 2. Constant wvc Thresholds Determining the Flagging of a

Vectora

wvc Threshold Value

Direction error 23�b

Vector error max
2:7b

0:5urms

(
m=s

aThe term urms is the region root mean square (rms) wind speed defined
by urms = (wo

Two/N )1/2, where wo is the standard vector form of the observed
wind field and N is the number of valid data cells in the region.

bDenotes values used by Gonzales and Long [1999].

Table 3. Thresholds Determining the Classification of a Region

Classification Percentage of Cells Flagged per Region, %

‘‘Good’’ <5
‘‘Fair’’ 5–20
‘‘Poor’’ >20a

aDenotes values used by Gonzales and Long [1999].
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missed detections are tabulated. A region is considered a
false alarm if it was not subjectively identified as an
ambiguity selection error, but is flagged by the detection
method. A region is considered a missed detection if the
region was subjectively identified as an ambiguity selection
error, but neither it nor an overlapping region is flagged by
the detection method. The false alarm rate (number of false
alarms per number of regions not subjectively flagged as
ambiguity selection errors) is determined to be approxi-
mately 1.5%. The missed detection rate (number of missed
detections per number of regions subjectively flagged as
ambiguity selection errors) is found to be about 3%. This
means that the ambiguity selection errors are correctly
identified 97% of the time.
[37] The false alarm and missed detection rates are also

computed as a function of cross-track position and RMS
wind speed. These results are summarized in Figure 6. From
this, we see that the far swath produces less false alarms
than the inner- and mid-swath regions. Also, the false alarm
rate and missed detection are slightly higher in the 3.5–4.5
m/s bin because the data at these wind speeds tend to be
somewhat noisier than for other wind speed bins.

5. QA Analysis

[38] In this section, the QA analysis method is applied to
2 years of QuikSCAT data and a statistical account is
presented. First, the overall quality of the data set is
evaluated. Next, the quality assessment is presented as a
function of cross-track position and RMS wind speed. Last,
we present the QA results as a function of time and latitude
band. We also compare the ambiguity selection errors to the
number of cyclonic storms and the percentage of wvcs
corrupted by rain.

5.1. Overall SeaWinds QA Results

[39] An aggregate assessment of the ambiguity selection
and self-consistency of retrieved winds for 2 years of
QuikSCAT data is provided in this section. Table 4 summa-

rizes the percentage of 8 � 8 regions classified as ‘‘good,’’
‘‘fair,’’ or ‘‘poor’’ and the percent flagged as possible
ambiguity selection errors. The majority of the regions
examined are classified as ‘‘good’’ (>65%). This indicates
that in general, most QuikSCAT point-wise derived winds
have a relatively low noise level. A substantial portion
(15.5%) of the regions are classified as poor. These regions
have a high noise level or contain ambiguity selection
errors. However, using the ambiguity selection error detec-
tion method, only 5% of regions are flagged as possible
ambiguity selection errors, suggesting that only about one
third of the poor regions are a result of ambiguity selection
errors. Thus, we conclude that the SeaWinds ambiguity
selection is at least 95% effective for wind speeds exceeding
3.5 m/s.
[40] We also note that the automated ambiguity selection

error detection method classifies regions in the 2-year data
set in approximately the same proportion as the training data
set, suggesting that the training data is representative of the
2-year SeaWinds data collection.
[41] The results given here for SeaWinds are very com-

parable to the QA results obtained for NSCAT [Gonzales
and Long, 1999]. With NSCAT, 65% of regions are classi-
fied as ‘‘perfect’’ or ‘‘good,’’ which is similar to a ‘‘good’’
classification for the SeaWinds QA analysis. In addition,
18% of NSCAT regions are classified as ‘‘poor’’ which is
only slightly more than for SeaWinds. Also, both SeaWinds
and NSCAT ambiguity selection is determined to be at least
95% effective for wind speeds exceeding 3.5 and 4 m/s,
respectively.

5.2. Cross-Track/RMS Wind Speed Dependence

[42] Here, we analyze the results of the QA analysis as a
function of cross track position and region RMS wind
speed. We first compare the percentage of ‘‘poor’’ regions
to possible ambiguity selection error regions as a function
of cross track position and RMS wind speed (see Figure 7).
Poor regions occur in higher percentages at nadir and
where there is low wind speed. As discussed in section 2,

Figure 5. The (a) directional and (b) vector error thresholds per cross track and RMS wind speed that
give a constant false alarm rate.
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these areas generally contain higher noise, and are thus
more apt to be rated ‘‘poor’’. Poor wind retrieval at low
wind speeds are additionally observed by Patoux and
Brown [2001].
[43] An important observation is that fewer possible

ambiguity selection errors are inferred at nadir and on
the edges of the swath than in the ‘‘sweet spot’’ (the off-
nadir region, usually characterized by a high percentage of
correct first ambiguities). In order to explain this, we
examine the average number of ambiguities produced by
the JPL wind estimation algorithm per cross-track posi-
tion. The fraction of one to three ambiguity cases per
cross track is compared to the fraction of four ambiguity
cases averaged over 600 revolutions of SeaWinds data in
Figure 8. The general shape of the curve representing the
one to three ambiguity cases of Figure 8 closely mirrors
the percent of ambiguity selection errors per cross-track
position shown in Figure 7. At nadir and on swath edges
(where there are fewer estimated ambiguity selection
errors), there is a higher likelihood of having four
ambiguity choices.
[44] These results suggest that a higher number of

ambiguities enables the creation of a more self-consistent
wind field by the ambiguity selection algorithm. A
manual inspection of ambiguity selection errors shows
that higher errors in the sweet spot often occur in
connection with rain occurrences (see section 5.3 for an
objective analysis of the rain effect). In regions of data
corruption such as rain contamination where an entire
region of first ambiguities may be incorrect, thresholded
nudging in the sweet spot can result in blocks of incorrect
initial selections. The point-wise median filter alone is
insufficient in correcting such errors. Since more ambi-
guities are used in the nudging process at nadir and along

swath edges [Stiles et al., 2002], the result is a more self-
consistent initial estimate in the presence of rain. Also,
where there are more ambiguities, the point-wise median
filter has a wider selection of possible vector directions to
match the flow of the surrounding wvcs in regions of rain
corruption.

5.3. Temporal QA Statistics

[45] Next, we examine SeaWinds ambiguity selection as
a function of time. Figure 9 shows the flagged ambiguity
selection errors averaged over 3 days for each point. The
percent of flagged ambiguity selection errors stays nomi-
nally between 4% and 5% for the 2 years of SeaWinds
data analyzed. Although the overall ambiguity selection
appears constant, seasonal weather variations in various
oceanic regions locally affect the SeaWinds wind retrieval
performance.
[46] In order to understand weather pattern variations that

affect SeaWinds’ performance, we divide the QuikSCAT
wind data into latitude bands (see Table 5). For each band,
the average percentage of possible ambiguity selection

Figure 6. False alarm and missed detection rates for the ambiguity-selection error detection method per
cross track and RMS wind speed. This data is taken from a test set of 15 subjectively analyzed revs.

Table 4. Overall Results of the QA Analysis for the SeaWinds

Data Set and for the Training Data Seta

Region Classification
Entire Data
Set, %

Training Data Set
(15 Revs), %

Good 65.2 63.6
Fair 19.3 19.6
Poor 15.5 16.8
Containing ambiguity-selection
errors

4.6 4.9 (4.0 subjectively
flagged)

aAlso, the percent of ambiguity-selection errors subjectively flagged in
the training data set.
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errors detected by the QA method, the average number of
cyclonic storms passed by SeaWinds per degree latitude
(see section 6 for details on cyclonic storm detection), and
the number of wvcs flagged by the JPL rain flag [Hud-
dleston and Stiles, 2000] per day are computed and given in
Figure 10.
[47] We define our count of the number of storms per

latitude band as the number of cyclonic features passed by
SeaWinds with RMS wind speed >6 m/s divided by the
latitude band size in degrees. Due to SeaWinds’ polar orbit,
storms in the arctic and midlatitude regions may have
multiple observations per day, while some tropical storms
may only have one or possibly zero observations in a single
day. Thus, this scatterometer-observed storm count is some-
what skewed from a true count of the number of storms in
each latitude band.
[48] Storms are problematic in wind retrieval for several

reasons. First, since storms exhibit fine-scale wind varia-
tions, the nudging field must be sufficiently accurate to
correctly position such features. The numerical weather
prediction models used to nudge SeaWinds data are inter-
polated from low-resolution estimates. Storm centers and
other fine scale features may be misplaced or smoothed due
to the interpolation process, resulting in a poor initial
estimate of the wind flow.
[49] It is also important to note that small-scale storm

features may be erroneously identified as possible ambigu-
ity selection errors due to the limited basis set of the KL
model [Gonzales and Long, 1999]. Thus, the correlation

between storms and estimated ambiguity selection errors
may be somewhat artificially induced. However, as is
shown by a subjective analysis in section 6, the wind
retrieval is worse in storm regions.
[50] Second, rain often exists in stormy areas. Rain

affects the ambiguity selection of SeaWinds data by
disrupting the scatterometer signal. Falling rain interacts
with the signal, causing attenuation and backscatter from
the atmospheric hydrometeors [Ulaby et al., 1981]. In
addition, rain disrupts the wind-generated capillary waves
on the ocean surface, altering the wind-induced backscatter
signature [Bliven and Giovanangeli, 1993]. Rain-corrupted
wvcs are often augmented in speed and contain incorrect
direction information. Generally, the first and second
ambiguities point in a direction almost parallel with the
cross track, independent of the wind’s true direction. The
ambiguities point parallel with the cross track because rain
is a nearly isotropic scatterer, giving an equal response for
both fore and aft looking observations. Likewise, winds
blowing crosswise to the satellite flight direction also give
a near-equal response from fore and aft observations
[Huddleston and Stiles, 2000]. Rain effects on wind
scatterometer backscatter returns have been found to be
significant [Bliven and Giovanangeli, 1993; Moore et al.,
1983].
[51] Nearby ambiguity selection is influenced by rain-

corrupted wvcs. When rain occurs in regions of high
instrument skill (where thresholded nudging chooses only
the first or second ambiguities), incorrect wind vectors may

Figure 7. Percentage of all regions flagged as ‘‘poor’’ and flagged as containing ambiguity-selection
errors (ASE regions) per (a) cross-track position and (b) RMS wind speed.

Figure 8. (a) Percent of wvcs per cross track position with one to three ambiguities and (b) percent of
wvcs per cross-track position with four ambiguities averaged over 600 revs of SeaWinds data.
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be chosen to initialize the median filter. Because these
corrupted wind vectors are given the same weight as other
wind vectors, they influence neighboring cells causing an
entire area of wvcs to point in an incorrect direction. Also,
because the direction of isolated cells that have been rain
contaminated may be incorrect, they may be flagged as
possible ambiguity selection errors, since there is no better
choice.
[52] From visual inspection of Figure 10, a correlation

exists between the possible ambiguity selection errors,
number of storms, and rain percentages. We quantify this
correlation by computing the correlation coefficients bet-
ween storms and ambiguity selection errors and between
wvcs flagged as rain and ambiguity selection errors. These
coefficients are listed in Table 6 for each latitude band. The
highest correlation occurs in the third, fifth, and seventh
latitude bands. This correlation suggests that rain and storms
contribute to poor ambiguity selection and inconsistent
wind flow.
[53] The equatorial band (latitude band 4) has the few-

est storms. Large cyclonic storms around the equator are
rare because the Coreolis effect that drives cyclonic
circulation disappears at the equator. Thus, of storms
and rain, rain has the larger influence on the self-con-
sistency of the ambiguity-selected wind in that area. From
visual inspection, both rain and possible ambiguity selec-
tion errors for the equatorial band peak around April. This
time period in the equatorial band has some of the highest
wind retrieval error rates.

[54] Latitude bands 3 and 5 (north and south tropical
regions) demonstrate the most noticeable seasonal trend in
storms, rain, and possible ambiguity selection errors. During
the Austral summer months (November to May), rain,
storms, and ambiguity selection errors increase in the
Southern Hemisphere tropical band (see Figures 10b and
10c, latitude band 3). In the Austral winter months (May to
November), there are decreased rain, storms and ambiguity
selection errors. A similar, shifted seasonal trend occurs in
the Northern Hemisphere in the fifth latitude band. Peak
rain averages in band 5 (Northern Hemisphere tropics) are
higher than band 3 for these years, resulting in higher peak
ambiguity selection errors.
[55] Though more total storms occur in bands 2 and 6

(midlatitude regions) than in the tropics, the midlatitude
bands are the most stable with respect to ambiguity selec-
tion errors. The seasonal variation of rain and ambiguity
selection errors in these bands are not as distinct as in bands

Figure 9. Ambiguity-selection errors as a function of time. The data line is the fraction of ambiguity-
selection errors averaged over 3 days. The smooth line is a 30-day moving average.

Table 5. Latitude Bands

Latitude Band Range

7 45� to 90�
6 25� to 45�
5 5� to 25�
4 �5� to 5�
3 �25� to �5�
2 �45� to �25�
1 �90� to �45�
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3 and 5, resulting in more seasonally uniform performance
of scatterometer wind retrieval. Midlatitude rain averages
are higher in the Northern Hemisphere, causing a slightly
worse performance of SeaWinds ambiguity selection in this
region.
[56] The two polar regions (bands 1 and 7) have

distinctly different characteristics. The key difference
between the polar regions is the position of the Earth’s
landmasses at each of the poles. In the Southern hemi-
sphere (band 1), wind retrieval is not performed over the
pole due to the position of Antarctic land and ice. The
estimated winds are only from the upper part of the band,
and are therefore very similar in their characteristics to the
winds from the second latitude band. In the Arctic region
(band 7), SeaWinds retrieves winds in the ice-free areas of
the Arctic Ocean. Since the weather in the Arctic region
widely varies with the seasons, the performance of Sea-
Winds also varies. The peak in ambiguity selection errors
for the arctic region occurs from October to April during
the stormy winter months.

6. Subjective Analysis of Cyclonic Storm Regions

[57] To better understand the scatterometer wind ret-
rieval performance in storms, we perform a subjective
analysis of the winds in regions containing cyclonic storm
features. Cyclonic storm features are located by fitting the

KL model to the NCEP fields and comparing the mean
square of parameters 3 and 6 to the mean square of model
parameters 1 and 2. Parameters 3 and 6 have cyclonic
features, while parameters 1 and 2 represent uniform wind
flow (see Figure 2). Where the mean square of parameters
3 and 6 is greater, the region is flagged as a cyclonic
storm.
[58] The circular region surrounding the storm center with

radius 10 wvcs (250 km) is manually examined in both the
NCEP and ambiguity-selected data. The region is subjec-
tively given a rating of ‘‘1,’’ ‘‘2,’’ or ‘‘3.’’ A ‘‘1’’ rating
indicates that the ambiguity-selected storm’s cyclonic flow is
very well defined and realistic. A ‘‘2’’ rating occurs when the
storm has a mostly cyclonic flow, but there are some
noticeable ambiguity selection errors or rain-corrupted wind
vectors. A rating ‘‘3’’ indicates that the cyclonic flow is not
well defined and the region may contain significant ambi-
guity selection errors or rain corruption. Examples of each
rating are shown in Figure 11.
[59] Two separate time periods are examined: 2 weeks of

QuikSCAT data from 19 July to 1 August 1999, and 2 weeks
of QuikSCAT data from 17 January to 30 January 2000.
Cyclonic features bordering land or ice, and those with
excessively lowwind speed (less than 6m/s rms) are ignored.
Additionally, the data is divided into Northern and Southern
Hemisphere. The number of storms given each rating for each
time period and hemisphere is shown in Table 7.
[60] Overall, less than 40% of the manually inspected

storm cases are identified as ‘‘1.’’ The remaining 60% of
storm cases have some level of inconsistent wind flow which
can often be attributed to ambiguity selection errors. In
addition, 26% are given a ‘‘3’’ rating, indicating very poor
wind retrieval.
[61] The Northern Hemisphere summer case exhibits the

highest percentage of ‘‘1’’ ratings, while the proportion of
Northern Hemisphere ‘‘3’’ cases remains approximately the
same as the other cases. This increase in accuracy for the
Northern Hemisphere summer may be related to the accu-
racy of the nudging NCEP fields for this case. In order to
examine the accuracy of the NCEP winds, we calculate the
distance between NCEP and QuikSCAT storm centers for
each storm rated ‘‘1’’ or ‘‘2.’’ After manually flagging the
storm centers, we average the distances between NCEP and
QuikSCAT centers for each period (see Table 8). The
Northern Hemisphere July 1999 case exhibits the statisti-
cally best storm retrieval and also demonstrates the best
collocation between NCEP and QuikSCAT storms. This
example suggests that more accurate nudging in this area
improves the wind retrieval performance.

Figure 10. (a) Percent of ambiguity-selection error
regions, (b) number of cyclonic storms per degree latitude,
(c) percent of wvcs flagged with L2B rain flag for each
latitude band averaged over 3 days per data point.

Table 6. Correlation Coefficients for Each Latitude Banda

Latitude Band Csa Cra

7 0.9193 0.7626
6 0.5314 0.6285
5 0.8737 0.9152
4 0.1047 0.8399
3 0.8794 0.8456
2 0.6126 0.4388
1 0.5700 0.4072

aCsa is the correlation coefficient between the smoothed ambiguity-
selection error and storm data of Figure 10. Cra is the correlation coefficient
between the smoothed ambiguity-selection error and rain data of Figure 10.
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[62] In addition to the sensitivity to misplaced storms, the
scatterometer wind retrieval of storms is also seriously
affected by rain. For storms rated ‘‘3,’’ on average, approx-
imately 30% of vectors per region are flagged by the
QuikSCAT L2B rain flag. For regions ranked ‘‘1’’ or ‘‘2,’’
only 20% of vectors are flagged as containing rain. The
higher rain averages in storms rated ‘‘3’’ suggests that rain is
related to poorly retrieved storms. From manual inspection,
where the rain corruption is severe, especially in lower wind
speed regions, the backscatter is sufficiently affected as to
make retrieval of fine scale features nearly impossible with
current methods.
[63] This subjective analysis of QuikSCAT cyclonic

storm cases suggests that scatterometer wind retrieval is
more error prone in regions of cyclonic storms and lends
support to the argument that storms, rain and ambiguity
selection errors are correlated. Because rain and storm
mislocation along with the QA flag and other factors can
be indicators of poorly retrieved storms, automated storm

rating procedures can be created using these storm sensi-
tive parameters as inputs. An attempt at a simple max-
imum likelihood storm-rating technique is given in
Appendix C.

7. Discussion and Summary

[64] Scatterometer wind retrieval offers the opportunity
for advanced study of the oceans. Although the estimation
process results in ambiguous solutions, we estimate the
current point-wise ambiguity selection technique to be
95% effective in creating a self-consistent wind flow.
Problems associated with the current wind retrieval proc-
ess generally are correlated with natural phenomena (i.e.,
wind speed, storminess, and rain) and instrument geome-
try. Wind speed and instrument geometry affect the overall
noise level of the retrieved winds. Scatterometer winds are
especially noisy at low wind speeds and at nadir for
SeaWinds. Nearly 100% of regions with RMS wind
speeds less than 2.5 m/s are sufficiently corrupted by
noise to receive a ‘‘poor’’ rating. In addition, about 25%
of regions at nadir are given a ‘‘poor’’ rating.
[65] Ambiguity selection errors are correlated with rain

corruption in the scatterometer signal and cyclonic storm
features. Rain corruption generally creates significant
changes in the s� values. The large error in the vector
estimates for rain contaminated wvcs not only affects the
corrupted wvc, but can significantly change the flow of the
surrounding wvcs from the point-wise filtering process, thus
creating patches of ambiguity selection errors.
[66] Storms present a dual problem. First, the nudging

data used to initialize the ambiguity selection process is
often in error near fine-scale wind features. Second, rain
associated with cyclonic storms often significantly affects
the retrieved winds. From the subjective analysis presented
in this paper, 37% of examined storm cases have very well
defined and realistic flow in the scatterometer-derived wind
fields, while 26% of storm cases have very poorly retrieved
flow. The effects of rain and nudging-data storm misplace-
ment are significant.
[67] Although limitations in scatterometer retrieved winds

exist, point-wise estimated scatterometer winds are of very

Figure 11. (a) QuikSCAT storm region rated ‘‘1,’’ (b)
corresponding NCEP data. (c) QuikSCAT storm region
rated ‘‘2,’’ (d) corresponding NCEP data. (e) QuikSCAT
storm region rated ‘‘3,’’ (f ) corresponding NCEP data.

Table 7. Number of Storms Identified as Rating ‘‘1,’’ ‘‘2,’’ and

‘‘3’’ for Two Time Periods: July 1999 and January 2000a

Rating

July 1999 January 2000 Total

1 2 3 1 2 3 1 2 3

North 55 17 33 /105 39 54 35 /128 94 71 68 /233
South 42 62 35 /139 74 76 44 /194 116 138 79 /333
Total 97 79 68 /244 113 130 79 /322 210 209 147 /566

aFor each time period, the data is further subdivided into Northern and
Southern Hemisphere locations.

Table 8. Average Distance Between the NCEP Storm Centers and

the L2B Storm Centers for Storms Rated 1 or 2a

July 1999 January 2000 Combined

North 74 112 95
South 118 106 111
Combined 100 108 105

aValues are in km.
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high quality in nonrain and moderate wind speed areas.
Further research in wind estimation in the presence of rain
or in storm regions may aid in higher accuracy of scatter-
ometer retrieved winds. These improved methods may
include the addition of a rain rate parameter into the MLE
technique and specialized storm retrieval methods using the
KL or other storm-specific models. Some current methods
designed to improve wind retrieval accuracy include those
of Draper and Long [2001], Stiles et al. [2002], Patoux and
Brown [2001], and Long and Mendel [1990]. In addition,
research is ongoing to improve the GMF at low [e.g.,
Shankaranarayanan and Donelan, 2001] and high wind
speeds [e.g., Yueh, et al., 2001].

Appendix A: Model-Based Consistency Check

[68] The model-based consistency check is based on
comparing the directional and vector errors against a set
of ‘‘variable’’ thresholds. The term ‘‘variable’’ indicates that
the thresholds are raised in areas of known high noise to
suppress flagging of vectors due to noise. As discussed
previously, the noise level for SeaWinds is variable with
cross-track position and wind speed. In order to reduce
flagging of regions due to noise only, the wvc thresholds are
individually adjusted for each cross-track position and RMS
wind speed.
[69] The variable wvc thresholds were empirically deter-

mined through an analysis of false alarms versus missed
detections on a training data set consisting of 15 subjec-
tively analyzed swaths (L2B revs 3000-3014). All 8 � 8
wvc regions that subjectively exhibited ambiguity selection
errors were identified and binned according to cross-track
position and RMS wind speed. Then, the vector and angle
thresholds for each bin were separately iteratively applied
and the number of flagged wvcs were tallied. The regions
that exceeded a limit in wvcs flagged were identified as
ambiguity selection errors. The variable wvc thresholds
were iteratively adjusted until the region false alarm rate
was equalized for all cross-track/rms wind-speed bins. In
doing this, region threshold of 14% performed the best and
was chosen as the region threshold for flagging a region as
an ambiguity selection error. These variable wvc thresholds
were then smoothed and further manually adjusted to give
subjectively better performance. The final wvc thresholds
are given in Figure 5.
[70] The variable thresholds are indexed by the cross-

track position and RMS wind speed of the 8 � 8 region and
applied to all valid wvcs in the region. When a wvc exceeds
either vector or angle thresholds, it is flagged as a possible
ambiguity selection error. Where greater than 14% of cells
in a region are flagged with the variable thresholds and the

RMS region error is greater than 1.8 m/s, the entire 8 � 8
region is considered as possibly containing ambiguity
selection errors. The RMS region threshold of 1.8 m/s
was subjectively determined. The method, however, is not
particularly sensitive to this value.

Appendix B: Directional Histogram-Based
Consistency Check

[71] In addition to the model-based consistency check,
each 8 � 8 region is inspected for multiple directional
flows. A histogram of the vector directions in the region is
assembled with a bin spacing of 24�. Then, the histogram is
reordered with the lowest bin value first (this eliminates
peaks straddling 0� and 360�). The histogram is then
numerically differentiated. Multiple modes in the histogram
are identified where the derivative crosses the zero line.
[72] The consistency check is relatively insensitive to the

bin size. Similar performance on the training data set was
achieved for bin size of 20� and 30�. However, a bin size of
24� yielded the least false alarms.
[73] Examining the histogram of wind directions for

multiple modes supplements the model-based detection
scheme by providing an additional view of the consistency
of a region without the issues associated with the restricted
basis model.

Appendix C: Automated Storm-Rating
Procedure

[74] The data set of subjective storm ratings is used to
train an automated storm detection and rating method. With
this method, storms are located in the nudging data as
previously described, and a finer search is performed in
both QuikSCAT and nudging fields in the surrounding area
of a detection. The storm center in both QuikSCAT and the
nudging data is estimated to be positioned where the ratio of
the mean square of model basis coefficients 3 and 6 to the
mean square of coefficients 1 and 2 is a maximum. The
following parameters are then calculated for the surrounding

Table 9. Sample Means and Standard Deviations of Automated Storm Rating Parametersa

Rating

d R Q1 Q2 Uq Un

m s m s m s m s m s m s

1 82.5 55 18.5 21.2 22.5 9.5 19.2 10.5 11.6 3.3 11.6 2.5
2 127.5 97.5 22.4 20.2 31.3 10.3 29.2 10.3 12.2 3.1 12.0 2.9
3 145 85 29.7 25.6 33.8 11.5 31.2 11.4 11.2 3.2 10.5 2.18
aHere, d, distance between NCEP and QuikSCAT storm centers (km); R, wvcs flagged with the L2B rain flag per region (%); Q1, wvcs flagged per

region by the variable thresholds (QA individual cell flag) (%); Q2, wvcs flagged per region by both the QA region and individual cell flag (%); Uq, average
RMS wind speed of storm regions (m/s) from QuikSCAT data; Un, average rms wind speed of storm regions (m/s) from NCEP data.

Table 10. Number of Storms Subjectively Rated ‘‘1,’’ ‘‘2,’’ or

‘‘3’’ Versus Number of Storms Rated ‘‘1,’’ ‘‘2,’’ or ‘‘3’’ by the

Automated Method

Subjective Rating

Automated Rating

‘‘1’’ ‘‘2’’ ‘‘3’’

‘‘1’’ 117 44 24
‘‘2’’ 51 68 50
‘‘3’’ 12 17 49
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circular region of radius 10 wvcs (250 km): (1) distance
between QuikSCAT storm center and nudging storm center,
(2) percentage of wvcs flagged by the L2B rain flag, (3)
percentage of individual wvcs flagged by the QA variable
thresholds, (4) percentage of individual wvcs flagged by the
QA variable thresholds where the 8 � 8 region was addi-
tionally flagged, (5) RMS wind speed of the QuikSCAT
region, and (6) RMS wind speed of the nudging field
region. The means and standard deviations of each of these
parameters given the region is subjectively identified as a
‘‘1,’’ ‘‘2,’’ or ‘‘3’’ are given in Table 9.
[75] Now, assuming a Gaussian distribution for each

parameter, a maximum likelihood estimator is used to
automatically rate each region,

Rating ¼ arg min
n

X
i

ðXi � mi;nÞ
2

s2i;n

( )
ðC1Þ

where (mi,n, si,n) are the mean and standard deviation of the
ith parameter given a rating of n. The quality of this method
is demonstrated in Table 10.
[76] The automated method correctly detects a ‘‘1’’ rating

with about 65% accuracy. Also, the majority of storms
automatically rated ‘‘2’’ or ‘‘3’’ are generally subjectively
rated either ‘‘2’’ or ‘‘3,’’ although the automated method is
not able to distinguish between a ‘‘2’’ and ‘‘3’’ with high
precision. Although this simple method has limitations and
is not tuned for optimal performance, it suggests that
ambiguity selection of a cyclonic storm in scatterometer
data can be evaluated by automated methods. The ability to
automatically locate and rate storms may aid scientists and
those using the data to indicate if the data around a storm is
usable. Also, where storms are identified as a ‘‘2’’ or ‘‘3,’’
specialized ambiguity selection schemes may be used to
increase the quality of the data in those regions.
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