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Synthetic aperture radar (SAR) interferometry uses the phase difference between two
SAR antennas to obtain an elevation estimate of the imaged terrain. Using an initial
digital elevation model (DEM), the time-domain backprojection algorithm implicitly
removes the terrain height phase from images during image formation. The use of a
DEM during image formation adds additional information to the process of interfero-
metry, resulting in different sensitivities to conventional interferometry. This article
presents a novel method of SAR interferometry using backprojected imagery. It is
shown that the sensitivity and performance of backprojection interferometry is sig-
nificantly different to that of conventional methods. Specifically, it is shown that
backprojection interferometry is much less sensitive to errors in measurement of the
interferometric baseline length and angle. This comes at the expense of higher sensi-
tivity to phase errors. We conclude that backprojection interferometry is best suited for
airborne operation.

1. Introduction

In synthetic aperture radar (SAR), interferometry may be divided into two categories:
along-track interferometry and cross-track interferometry (Melvin and Scheer 2013).
Along-track interferometry uses multiple receive antennas separated in the along-track
dimension in order to extract information about target motion in the imaged scene. Cross-
track interferometry utilizes multiple receive antennas separated in the cross-track dimen-
sion (i.e. elevation and/or ground range) in order to determine the height of the imaged
terrain (Franceschetti and Lanari 1999). Cross-track interferometry is employed in the
generation of digital elevation models (DEMs) (Li and Goldstein 1990; Rodriguez and
Martin 1992; Zebker and Villasenor 1992; Rosen et al. 2000; Zebker and Goldstein 1986).
This article examines cross-track interferometry and from this point forward refers to it as
simply interferometry.

Traditional SAR interferometry uses coherent images formed by frequency domain
methods to produce a height map of the imaged surface. Because frequency domain
methods are used, traditional interferometry is subject to two implicit assumptions: (1) the
interferometric phase difference between the images is due to the propagation path length
difference, and (2) imaging is in the slant plane. Because imaging is in the slant plane
(which is different for each image), the two images must be co-registered. The time-domain
backprojection algorithm (Duersch and Long 2015), however, produces images in the
ground plane (ameliorating the need to co-register the two images) and the resulting pixels
have a phase related to the difference between the expected propagation path length and the
actual length. Thus, backprojected interferometric phase is a difference of differences (this
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point is clarified later). Because of this distinction in interferometric phase, a new, back-
projection-oriented interferometric calculation is required to estimate terrain elevation.

Backprojection creates images in the ground plane and can use an initial estimate of the
terrain elevation for image formation It is important to note that the use of a DEM during
backprojection adds additional information to the interferometry problem. Thus, it is reason-
able to anticipate a performance difference in interferometry performed with and without a
DEM. (Note that the authors do not suggest that the performance difference between the
methods is a result of clever processing.) The use of a reference DEM adds information to the
process that alters sensitivities in a way that is particularly useful at low altitudes.

This article considers side-looking SAR interferometry for the time-domain back-
projection algorithm. The article does not propose using backprojection interferometry in
place of traditional interferometry, but rather seeks to explore the difference between each,
and the strengths and weaknesses of both. Backprojection interferometry is derived,
followed by an analysis of its characteristics and a comparison to traditional interferome-
try. It is seen that backprojection interferometry is much less sensitive than conventional
interferometry to measurement errors in the interferometric baseline, and backprojection
interferometry ameliorates phase unwrapping of the interferogram. Backprojection, how-
ever, is more sensitive to phase noise. We show that it is best suited for low-altitude use.
Because SAR interferometry is used in a number of applications, this article does not limit
itself to a single application, but rather attempts to provide analysis for general use.

The article is organized as follows. Section 2 derives backprojection interferometry for
squint-less, side-looking SAR. Using these results, Section 3 compares the input para-
meter sensitivity of traditional interferometry to backprojection interferometry. Specific
performance characteristics of backprojection interferometry are given in Section 4.
Finally, Section 5 concludes with analysis of the results and recommendation of when
backprojection interferometry is advantageous.

2. Backprojection interferometry derivation

The following derivation of time-domain backprojection interferometry assumes a side-
looking, squint-less geometry with a narrow-beam antenna. As shown in Duersch and
Long (2015), under these assumptions the phase of each backprojected pixel can be
estimated as the residual phase at the point of closest approach. This makes a derivation
of backprojection interferometry tractable.

The phase of a received coherent radar signal lends insight into the length of the
propagation path that the signal travelled. Given a monostatic antenna A, the observed
signal phase is a 2π wrapped equivalent of the distance times the carrier wavenum-
ber (k ¼ 2π =λ),

ϕ ¼ 2kra mod2π; (1)

where ra is the one-way range from the antenna to a given target. Unfortunately, because
of the phase wrapping, the range-resolution of the radar is typically not fine enough to
unambiguously recover the exact distance the wave travelled. However, through the use of
two receive antennas A and B, the difference in path length (ra � rb) between the two can
be determined with great precision. Interferometry makes use of this fact in order to obtain
the height of the imaged terrain.

The backprojection interferometric phase difference �� of two collocated, back-
projected pixels is
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�� ¼ 2k �ra ��rbð Þ; (2)

where k is the radar carrier wavenumber, and �r is the backprojection residual range
(Duersch and Long 2015), where the subscripts a and b refer to the receive antennas A
and B, respectively. The quantity �ra ��rbð Þ is the ‘difference of differences’ mentioned
earlier. Note that any contribution due to the transmit antenna is explicitly neglected so
long as the receive antennas share a common transmitter. We assume that there are no
polarimetric phase effects, in which case the propagation phase from the transmitter to the
scattering cell is common to both receive paths and is removed by the interferometric
difference. The term scattering cell refers to the physical volume represented by a given
pixel.

Backprojection removes the assumed phase component to the scattering cell, leaving a
residual phase due to the unknown exact range to the phase centre of the scattering cell
(Duersch and Long 2015). However, because the receive antennas are not collocated they
do not observe precisely the same area. Figure 1(a) illustrates this in an exaggerated
manner. Vectors A and B are the receive antenna locations, and C is the estimated
scattering cell phase centre (for the pixel of interest) at the reference elevation. The
dashed concentric arcs show the areas that fall within a given slant-range bin (i.e. the
pixel of interest). Because the two receive antennas observe the ground plane from
slightly different angles, they do not necessarily simultaneously illuminate the same set
of scatterers. Points D and E are the actual phase centres of the scattering cell as observed
from antennas A and B, respectively, which illustrates the phase centre of the scattering
cell differing as observed from each antenna. The level to which the phase centres differ is
a measure of geometric decorrelation (Duersch and Long 2015).

Given that the two antennas may observe slightly different locations for the phase
centre of the scattering cell, this article proceeds with a derivation of the interferometric
height resulting from backprojected residual phase. The interferometer geometry is given
in Figure 1(b). Here, r is the estimated range from the receive antenna to the scattering cell
phase centre and r0 is the actual range to the scattering cell phase centre. The three-
dimensional displacement vector δ δx; δy; δz

� �
is the offset from C to D and � is the

displacement from D to E. Hence,

D ¼ C� δ; (3)

E ¼ C� δþ �ð Þ: (4)

In general, δ and � are unknown. In this derivation, δ is the interferometric displace-
ment from which height information is obtained. Although not used here, θ is the
incidence angle to the scattering cell and α is the interferometric angular baseline.
These variables become important later in this section to parameterize traditional
interferometry.

The backprojected residual ranges �r are defined as

�ra ¼ ra � r0a; (5)

�rb ¼ rb � r0b: (6)

These ranges are given by the distances to the various points:
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ra ¼ C� Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa � xcð Þ2 þ ya � ycð Þ2 þ za � zcð Þ2

q
; (7)

r0a ¼ D� Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa � xdð Þ2 þ ya � ydð Þ2 þ za � zdð Þ2

q
; (8)

rb ¼ C� Bk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xb � xcð Þ2 þ yb � ycð Þ2 þ zb � zcð Þ2

q
; (9)

r0b ¼ E� Bk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xb � xeð Þ2 þ yb � yeð Þ2 þ zb � zeð Þ2

q
; (10)

with x in along-track, y in ground-range, and z in elevation. The actual range from receive
antenna A to the phase centre of the scatter cell is

Figure 1. Exaggerated illustration of scattering cell phase centre differences in interferometry. The
axes x̂, ŷ, and ẑ represent along-track, cross-track, and elevation, respectively. Receive antennas are
located at points A and B. Point C is the estimated phase centre of the scattering cell given coarse
knowledge of the topography (e.g. a DEM). Points D and E are the actual phase centres of the
scattering cell observed by antennas at A and B, respectively. Notice that because the two antennas
are not collocated, they observe a slightly different set of scatterers within the resolution cell.
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r0a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa � xc � δxð Þ2 þ ya � yc � δy

� �2 þ za � zc � δzð Þ2
q

¼ xa � xcð Þ2 þ ya � ycð Þ2 þ za � zcð Þ2�
δx 2 xa � xcð Þ � δxð Þ � δy 2 ya � ycð Þ � δy

� �� δz 2 za � zcð Þ � δzð Þ

!1=2

(11)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a � δx 2 xa � xcð Þ � δxð Þ � δy 2 ya � ycð Þ � δy

� �� δz 2 za � zcð Þ � δzð Þ
q

: (12)

Using the first-order Taylor series approximation for the square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n

p � mþ n=ð2mÞ, this becomes

r0a � ra �
δx 2 xa � xcð Þ þ δxð Þ þ δy 2 ya � ycð Þ þ δy

� �þ δz 2 za � zcð Þ þ δzð Þ
2ra

: (13)

The first-order Taylor series approximation is highly accurate near the point of closest
approach, and it works well for a non-squinted geometry (see Duersch 2013). The
squinted geometry case is beyond the scope of this article since there is no closed-form
solution for the squinted residual phase.

As the range from the receive antennas to the scattering cell is presumed to be much
larger than the phase centre displacement, Equation (13) can be reduced further to

r0a � ra � δx xa � xcð Þ þ δy ya � ycð Þ þ δz za � zcð Þ
ra

: (14)

Likewise, for antenna B,

r0b � rb �
δx þ �xð Þ xb � xcð Þ þ δy þ �y

� �
yb � ycð Þ þ δz þ �zð Þ zb � zcð Þ

rb
: (15)

Substituting these into the range residuals yields

�ra ¼ ra � r0a

¼ δx xa � xcð Þ þ δy ya � ycð Þ þ δz za � zcð Þ
ra

;
(16)

�rb ¼ rb � r0b

¼ δx þ �xð Þ xb � xcð Þ þ δy þ �y
� �

yb � ycð Þ
rb

þ δz þ �zð Þ zb � zcð Þ
rb

:
(17)

Inserting �ra and �rb into the interferometric phase �� ¼ k �ra ��rbð Þ results in
one equation with six unknowns because the three-dimensional phase centre displace-
ments δ and � are unknown. Under some simplifying assumptions, this may be reduced to
one unknown.

A key assumption in interferometry is that the pixels, as imaged from the two
antennas, are highly correlated. This requires that the baseline separation not be too
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great (Duersch and Long 2015). The assumption that the pixel correlation is high requires
that the scattering cell phase centre be nearly the same when viewed from both receive
antennas. In other words, the � terms are approximately zero. When � � 0 (i.e. the phase
centre as observed from the second antenna is collocated with that of the first antenna),
the interferometric phase reduces to

��

2k
¼ δx xa � xcð Þ þ δy ya � ycð Þ þ δz za � zcð Þ

ra
� δx xb � xcð Þ þ δy yb � ycð Þ þ δz zb � zcð Þ

rb

¼ δx
xa � xc

ra
� xb � xc

rb

� �
þ δy

ya � yc
ra

� yb � yc
rb

� �
þ δz

za � zc
ra

� zb � zc
rb

� �
:

(18)

Solving for the height displacement δz results in

δz ¼
��
2k � δx

xa�xc
ra

� xb�xc
rb

� �
� δy

ya�yc
ra

� yb�yc
rb

� �
za�zc
ra

� zb�zc
rb

� � (19)

¼ ��ra rb
2k rb za � zcð Þ � ra zb � zcð Þð Þ � δx

rb xa � xcð Þ � ra xb � xcð Þ
rb za � zcð Þ � ra zb � zcð Þ

� δy
rb ya � ycð Þ � ra yb � ycð Þ
rb za � zcð Þ � ra zb � zcð Þ ; (20)

which is one equation with three unknowns (δx, δy, and δz).
For now, assume that δx � 0 and δy � 0. The consequences of this assumption are

discussed in Section 4.2. With this assumption, there is only one unknown, which is the
estimated height offset eδz for the scattering cell:

eδz ¼ ��ra rb
2k rb za � zcð Þ � ra zb � zcð Þð Þ : (21)

Note that in this case the height displacement may be computed without the use of
trigonometric functions. However, recognizing that with incidence angle θ, ra cos θa ¼
za � zcð Þ and rb cos θb ¼ zb � zcð Þ, the height estimate may also be written as

eδz ¼ ��ra rb
2k rb ra cos θa � ra rb cos θbð Þ ; (22)

¼ ��

2k cos θa � cos θbð Þ : (23)

The traditional interferometric phase for single-pass, fixed-baseline SAR is (Rosen
et al. 2000; Bamler and Just 1993)

� ¼ kB sin θ � αð Þ; (24)
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θ ¼ arccos
H � δz

r

� �
; (25)

where � is the traditional interferometric phase difference, B is the baseline distance
between the receive antennas, α is the angular difference between the antennas with
respect to the horizontal plane, and H is the interferometer height above the reference
plane. This leads to the height estimate

eδz ¼ H � r cos θ;

¼ H � r cos αþ arcsin
�

kB

� �
: (26)

A cursory comparison of Equations (21) and (26) reveals that the interferometric
height estimate from backprojection is linear with phase, while the traditional method is
nonlinear. The following section compares both interferometric methods and presents their
respective sensitivities.

3. Sensitivity comparison

This section examines the height estimate sensitivity of backprojection and traditional
interferometry. First, the parameter sensitivity of both methods is derived. Next, a basis
for comparing the two methods is provided by assaying the sensitivity to the geometric
and phase input parameters. Finally, this section concludes with an examination of base-
line and phase errors, which are of specific concern when using interferometry.

3.1. Sensitivity derivation

The sensitivity of the interferometry method to its geometric parameters is found by
taking the partial derivative of the height estimate eδz with respect to each variable of
interest. To simplify notation, the ~ on eδz is discarded below. For traditional SAR
interferometry, computing the partials of Equation (26) results in

@δz
@�

¼ r sin θ

kB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

kB

� �2
s ¼ r sin θ

kB cos θ � αð Þ ; (27)

@δz
@B

¼ �
�r sin αþ arcsin

�

kB

� �
kB2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

kB

� �2
s ¼ � r

B
tan θ � αð Þ sin θ; (28)

@δz
@α

¼ r sin αþ arcsin
�

kB

� �
¼ r sin θ; (29)
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@δz
@θ

¼ r sin θ; (30)

@δz
@r

¼ � cos θ: (31)

Notice that the height sensitivities to baseline angle
@δz
@α

and incidence angle
@δz
@θ

are
identical.

In order to compare the traditional sensitivity results to those of backprojection,
Equation (23) must be rewritten in terms of baseline length and angle. From Figure 1,
the paths from the antennas to the cell centre C and to each other form a triangle. Using
the law of sines,

ra

sin
π
2
� αþ θb

� � ¼ B

sin θa � θbð Þ ; (32)

sin θa � θbð Þ ¼ B

ra
cos θb � αð Þ;

θa ¼ θb þ arcsin
B

ra
cos θb � αð Þ

� �
: (33)

Let γ be the incidence angle difference between the two antennas, i.e.

γ ¼ θa � θb (34)

¼ arcsin
B

ra
cos θb � αð Þ

� �
; (35)

then Equation (23) may be rewritten as

δz ¼ ��

2k cos θb þ γð Þ � cos θb½ � : (36)

The backprojection sensitivities are found by taking the partial derivatives of Equation
(36) with respect to each parameter:

@δz
@��

¼ 1

2k cos θa � cos θbð Þ ; (37)

@δz
@B

¼ �� sin θb þ γð Þ
2k cos θb þ γð Þ � cos θbð Þ2

cos θb � αð Þ
ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2γ

p
¼ δzk cos θa � cos θbð Þ sin θa cos θb � αð Þ

k ra cos θa � cos θbð Þ2 cos γ
¼ δz

sin θa cos θb � αð Þ
ra cos γ cos θa � cos θbð Þ ;

(38)
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@δz
@α

¼ �� sin θb þ γð Þ
2k cos θb þ γð Þ � cos θbð Þ2

B sin θb � αð Þ
ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2γ

p
¼ δz

B sin θa sin θb � αð Þ
ra cos γ cos θa � cos θbð Þ ;

(39)

@δz
@ra

¼� �� sin θb þ γð Þ
2k cos θb þ γð Þ � cos θbð Þ2

B cos θb � αð Þ
r2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2γ

p
¼� δz

B sin θa cos θb � αð Þ
r2a cos γ cos θa � cos θbð Þ ;

(40)

@δz
@θb

¼�
�� sin θb þ γð Þ B sin θb�αð Þ

ra
ffiffiffiffiffiffiffiffiffiffiffiffi
1�sin2γ

p � 1

� �
þ sin θb

� �
2k cos θb þ γð Þ � cos θbð Þ2

¼� δz

B sin θb�αð Þ
ra cos γ

� 1
� �

sin θa þ sin θb

cos θa � cos θb
:

(41)

We observe that the sensitivity equations for backprojection are more complicated than
the traditional approach. The sensitivities of both methods are given side-by-side in Table 1.

3.2. Sensitivity analysis

The backprojection sensitivity equations are more complicated than those of the tradi-
tional method, which makes a direct comparison of the sensitivities difficult. However,
two observations may be made in general: (1) in all but phase, backprojection sensitivity
is directly proportional to vertical displacement of the target. This implies that if the target
displacement is small (i.e. the initial DEM is accurate), then backprojection sensitivity to

Table 1. Interferometric sensitivities.

Traditional Backprojection

@δz
@�

r sin θ

kB cos θ � αð Þ
N/A

@δz
@��

N/A 1

2k cos θa � cos θbð Þ
@δz
@B

� r

B
tan θ � αð Þ sin θ δz

sin θa cos θb � αð Þ
ra cos γ cos θa � cos θbð Þ

@δz
@α

r sin θ
δz

B sin θa sin θb � αð Þ
ra cos γ cos θa � cos θbð Þ

@δz
@ra

� cos θ � δz
B sin θa cos θb � αð Þ

r2a cos γ cos θa � cos θbð Þ
@δz
@θb

r sin θ

� δz

B sin θb�αð Þ
ra cos γ

� 1
� �

sin θa þ sin θb

cos θa � cos θb
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the geometry parameters is likewise small. This is a critical insight as traditional inter-
ferometry is extremely sensitive to errors in baseline length and angle. (2) Where range
appears in the sensitivity equations, it always appears in the numerator in traditional
interferometry while in backprojection it always appears in the denominator. Therefore, as
range increases, the sensitivity of backprojection interferometry to the other parameters
decreases.

For these two reasons, backprojection is less sensitive than traditional interferometry
to the geometric errors: baseline length, baseline angle, range to target, and incidence
angle. However, as shown later, for most imaging scenarios backprojection is more
sensitive to phase errors than traditional interferometry, and indeed phase error is the
primary limiting factor in the accuracy of backprojection height estimation.

A detailed comparison of sensitivities is somewhat tedious (Duersch 2013). For
brevity, only the highlights and key observations from Duersch (2013) are given here.
Figure 2, comparing the sensitivity of both interferometric methods, illustrates many of
the points given below. The geometry parameters used are an incidence angle θ ¼ 53�,
antenna baseline length B ¼ 2 m, baseline angle α ¼ 30� and α ¼ 60�, range-to-target
ra ¼ 10 km, and vertical displacement δz ¼ 500λ. Phase sensitivity is evaluated at Ku-
band (λ ¼ 1:9 cm).

● In the interferometric methods, for a given sensitivity parameter, certain incidence
angles perform particularly well. These incidence angles are termed sweet spots.
For both interferometric methods, a sweet spot occurs when the interferometric
baseline angle equals the incidence angle. In addition, for traditional interferometry
a sweet spot occurs in baseline length sensitivity (i.e. tanðθ � αÞ ¼ 0 in Equation
(28)), while for backprojection interferometry it occurs in baseline angle sensitivity
(i.e. sinðθb � αÞ ¼ 0 in Equation (39)).

● Unlike traditional interferometry, backprojection has a second sweet spot in sensi-
tivity to incidence angle. This sweet spot occurs at incidence angle

θa ¼ arcsin � B sin θb � αð Þ
ra cos θa � θbð Þ � 1

� ��1

sin θbð Þ
" #

; (42)

which comes from the numerator of Equation (41).

● The sensitivity of backprojection to the physical parameters (baseline length, base-
line angle, range-to-target) is orders of magnitude lower than traditional. However,
for typical SAR incidence angles, backprojection is about twice as sensitive to
interferometric phase as traditional interferometry.

● The height estimate accuracy of traditional interferometry is better at shallow
incidence angles (near 0°) as opposed to backprojection interferometry, which is
better at large incidence angles (near 90°).

● Backprojection interferometry obtains the biggest improvement in height estimate
accuracy for long range and when the height offset is small. If the DEM is accurate,
then backprojection provides a better estimate of the height offset than the tradi-
tional method.

Errors in phase or baseline measurement significantly affect interferometry perfor-
mance, so they are discussed in more depth in the following subsections.
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3.3. Baseline error comparison

While the brief sensitivity observations of the previous section provide some insight into
the performance of both interferometric approaches, the following two subsections more
closely investigate the height estimate accuracy of both methods. This subsection speci-
fically examines the effects of errors in measurement of the baseline length and baseline
angle. The analysis confirms that traditional interferometry is extremely sensitive to errors
in these baseline parameters, while backprojection interferometry is much less sensitive.

(a) Baseline Length Sensitivity
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Figure 2. Sensitivity comparison of traditional and backprojection interferometry for two baseline
angles. The solid lines correspond to a 30� baseline and the dashed lines correspond to 60� baseline.
Where there is no change, the dashed lines are not visible.
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Below, we examine the height estimate error for several types/magnitudes of baseline
error. Rather than examine one particular incidence angle, the minimum and maximum
error for each interferometric method is calculated across 30� to 60�. In the figures, the
minimum curves represent the performance at the sweet spot of the method, while the
maximum curves represent the performance away from the sweet spot.

Figure 3 gives the height estimation error for both interferometric methods as a
function of range-to-target. The parameters are λ = 3 cm, baseline angle α ¼ 45�, and a
target displacement of 10 m from the DEM. Figures 3(a) and (b) illustrate the effects of
error in the measurement of the interferometric baseline angle for a baseline length of 1 m.
The baseline angle error in (a) is 0.0001 rad and in (b) is 0.001 rad. Errors of this
magnitude are commensurate with those of a low-altitude platform where a combination
of non-ideal motion and errors in attitude measurement lead to errors in the measurement
of the baseline angle. For a small range-to-target, the traditional method has lower error
than the backprojection method; however, the error increases as the range-to-target
increases, and between 200 and 700 m backprojection begins to outperform it. If the
baseline length is increased, then backprojection surpasses the traditional method in
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Figure 3. Comparison of the effects of baseline errors on the interferometric height estimate as a
function of range-to-target. (a) and (b) The effect of angular baseline error with a baseline of length 1 m.
(c) and (d) The effect of baseline length error with a baseline length of 100 m. The nominal baseline
angle is 45�. The maximum and minimum are taken across the range of incidence angles 30� to 60�.

Note: Bpj., backprojection; Trad., traditional.
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performance, even at smaller ranges. It is important to note that if there is significant
uncertainty in measurement of the baseline angle, then the sweet spot of the traditional
approach might go unutilized and the performance would be closer to the maximum error
than the minimum error.

Figures 3(c) and (d) show the effects of error in measurement of the interferometric
baseline length for a nominal baseline length of 100 m. This geometry is more suggestive
of a high-altitude interferometer. In (c), the error in measurement of the baseline length is
1 mm and in (d) is 1 cm. Because of the large baseline, even at near ranges the maximum
backprojection error is less than the traditional method’s error. The maximum error in the
traditional method decreases until an inflection point where it begins to grow large again.
For a large range-to-target, the minimum goes to zero (i.e. no error) at the sweet spot of
α ¼ θ. In the high-altitude case, it may be realistic for most of the range swath to fall
within this sweet-spot.

Notice that in all the cases the error in backprojection height estimate decreases as the
range-to-target increases. Notice also that in each case the performance of backprojection
shows little variation while the performance of the traditional method varies widely. This
reinforces the conclusion of the previous subsection that backprojection is less sensitive to
errors in measurement of the interferometric baseline, while the opposite is true for the
traditional method.

3.4. Phase noise comparison

This subsection compares how errors in the interferometric phase measurement affect both
methods. The variance of the phase error is approximately the same for both methods
despite the fact that traditional interferometry utilizes �, while backprojection interfero-
metry utilizes ��. In the case of ��, subtracting the assumed phase (computed using the
DEM) during image formation does not affect the variance of the phase noise.

Figure 4 compares the effects of interferometric phase error on both methods. In each,
the wavelength λ = 3 cm, the baseline angle α ¼ 45°, and the height from the DEM
δz ¼ 10 m. As before, the minimum and maximum of each method is taken from 30 to
60°. Figures 4(a)–(c) have 10° of phase error, while (d) has 1°. The baseline lengths in
(a)–(d) are 1, 10, 100, and 10 m, respectively.

In (a), (b), and (d) (i.e. 10 m baseline and shorter), the maximum backprojection
height estimate error is worse than the traditional method. At a 100 m baseline in (c), the
performance of backprojection exceeds the traditional method for smaller ranges to target
(where the approximations in traditional interferometry are invalid), but at larger ranges
the traditional method again outperforms backprojection. Whereas with baseline errors
where backprojection’s estimate improves with increasing range, the backprojection
estimate degrades with range for large ranges. Even in (d), where the phase error is
quite small, the traditional method attains a better estimate than backprojection. It is
evident that while both interferometry methods are sensitive to phase errors, backprojec-
tion is more sensitive than the traditional.

4. Interferometry performance

The following subsections describe specific performance aspects of time-domain back-
projection interferometry. The first subsection introduces the concept of the transition
baseline, which is the minimum interferometric baseline length for which the performance
of backprojection interferometry surpasses conventional interferometry. The next
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subsection describes the effects of phase centre shift in each of the dimensions, azimuth,
range, and elevation. The final subsection considers the effects of DEM accuracy.

4.1. Transition baseline

Backprojection interferometry outperforms traditional interferometry for a long baseline.
It is possible to approximate the minimum baseline length where the height estimation
accuracy of backprojection exceeds that of traditional interferometry. While both methods
suffer from height estimation errors due to phase measurement errors, the height estimate
of conventional interferometry also has errors due to baseline length and baseline angle
measurement errors.

To estimate the transition baseline, the baseline length B is determined such that the
major contributing errors of both interferometric methods are equal. Thus, setting @δz
from Equation (37) (the backprojection phase sensitivity) equal to the sum of @δz from
Equations (27) through (29) (the phase and geometric sensitivities of the traditional
method), the transition baseline length B may be found through use of a numerical root
solver if
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Figure 4. Comparison of the effects of phase error for both interferometric methods as a function
of range-to-target. The minimum and maximum error percentage are computed from incidence
angles 30� to 60�. The model parameters are λ = 3 cm, α ¼ 45�, and δz ¼ 10 m. (a)–(c) have 10� of
phase error, while (d) has 1�. The baseline lengths in (a)–(d) are 1, 10, 100, and 10 m, respectively.
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@��

k cos θa � cos θbð Þ ¼ @�
r sin θ

kB cos θ � αð Þ � @B
r

B
tan θ � αð Þ sin θ þ @α r sin θð Þ

¼ r sin θa
@�

kB cos θa � αð Þ �
@B

B
tan θa � αð Þ þ @α

	 

; (43)

0 ¼ k cos θa � cos θbð Þ
@��

r sin θa �

@�

kB cos θa � αð Þ �
@B

B
tan θa � αð Þ þ @α

� �
� 1: (44)

This expression may be simplified if the interferometric angular baseline α � 45�.
Assuming this to be the case,

θb � arccos cos θa þ B cos α

ra

� �
: (45)

Additionally, let

�@� ¼ @��; (46)

where the constant � represents the ratio of phase difference error to phase error.
Substituting these into Equation (44),

� ¼ k

@�

�B cos α
ra

� �
ra sin θa

@�

kB cos θa � αð Þ �
@B

B
tan θa � αð Þ þ @α

� �
¼ � kB cos α sin θa

1

kB cos θa � αð Þ �
@B

@�

1

B
tan θa � αð Þ þ @α

@�

� �
¼ � cos α sin θa

cos θa � αð Þ þ
@B

@�
k cos α sin θa tan θa � αð Þ � @α

@�
kB cos α sin θa:

Rearranging and solving for B,

@α

@�
kB cos α sin θa ¼ @B

@�
k cos α sin θa tan θa � αð Þ � cos α sin θa

cos θa � αð Þ � �;

B ¼ @�

@α
1

k cos α sin θa

@B

@�
k cos α sin θa tan θa � αð Þ � cos α sin θa

cos θa � αð Þ � �

	 

¼ @B

@α
tan θa � αð Þ � @�

@α
1

k cos θa � αð Þ þ
�

k cos α sin θa

� �
:

(47)

Recall that this expression is only valid near α ¼ 45�. For angular baselines away from
this angle, Equation (44) must be solved directly. In these equations, the sensitivity to
range measurement error has been neglected as it is assumed to be insignificant. If it
becomes a significant error source, then the transition baseline is shorter than that given
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above. Note that while the ratios @B=@� and @α=@� are written as partial derivatives,
they are better thought of as ratios of errors (i.e. the ratio of baseline-length error to
baseline-angle error and phase error to baseline-angle error, respectively). Also note that
while calculation of the transition baseline indicates the length for which backprojection
performs better, in practice, both interferometric methods perform approximately the same
for lengths near the transition baseline.

Figure 5 shows the transition baseline length for several prevalent geometries at
various frequency bands through computing Equation (44).

The carrier frequency for the bands used are UHF: 650 MHz, L: 1.5 GHz, C: 6 GHz, X:
10 GHz, Ku: 15 GHz, and Ka: 35 GHz. The geometries in Figures 5(a)–(d) represent cases
(1), (3), (4), and (5) in Table 2, respectively. The errors used in each model are also given in
the table. Note that the values for these errors do not necessarily represent the error for a
particular system, but rather indicate possible values for purposes of comparison. For a
given frequency, a baseline length above the corresponding curve indicates favourability of
backprojection interferometry and those below favour traditional interferometry.

From these examples, several observations may be made. (1) Notice the sweet spot at
45� for traditional interferometry in Figures 5(c) and (d). The peak here suggests that a
longer baseline is required before backprojection becomes advantageous. (2) As the
carrier frequency increases, the transition baseline becomes smaller. This implies that
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Figure 5. Comparison of baseline transition region for several geometries across various frequency
bands.
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backprojection interferometry is better suited to high-frequency usage while traditional
interferometry is better suited to low-frequency. (3) Overall, the geometries corresponding
to Figures 5(a) and (c) are better suited to backprojection interferometry than (b) and (d).
This is because the geometric uncertainties are large enough to push the transition baseline
short enough for the required baseline to be practical.

4.2. Phase centre displacement

In Section 2, in order to eliminate the unknown phase centre displacements in the
derivation of backprojection interferometry, it was assumed that the phase centre displace-
ment is solely in the vertical dimension (i.e. δx ¼ δy ¼ 0). This subsection explores the
consequences of that assumption by evaluating the effect of both vertical and horizontal
phase centre displacement on the interferometric height estimate.

Figure 6 demonstrates the computed height estimate for phase centre displacement
solely in a given dimension, represented by the three curves. The receive antennas are
placed in a horizontal baseline (i.e. α ¼ 0), separated by 100 wavelengths, and the
incidence angle to the scattering cell is 45�. The vertical axis on the left gives the height

Table 2. Example geometries.

# Example Cite Height

Baseline
length
(m)

Baseline
angle (°)

Light
grey @� @B @α

1 Small UAV – 250 m 0.16 45 0.21 0.001 2 × 10−3

2 Medium
UAV

– 500 m 2 90 0.21 0.001 2 × 10−3

3 TOPSAR Zebker et al. 1992 8500 m 2.6 62 0.21 0.001 3 × 10−4

4 SRTM Farr et al. 2007 233 km 60 45 0.21 0.100 3 × 10−5

5 TanDEM-X Krieger et al. 2007 514 km 400 45 0.21 0.100 3 × 10−7
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Figure 6. Height estimate resulting from displacement solely in a given dimension for a horizontal
baseline of 100 wavelengths.
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estimate in wavelengths, and the vertical axis on the right gives the equivalent interfero-
metric phase.

As expected, when the phase centre displacement is strictly in the vertical dimension,
the estimated height is equivalent to the vertical displacement. If the phase centre
displacement is solely in the ground-range dimension, the estimated height is still linear
with displacement, but at a reduced slope compared to that of the vertical displacement.
When the displacement is in the along-track dimension, displacement has negligible effect
on the height estimate, even at distances greater than the length of the baseline itself. This
implies that while phase centre displacement in azimuth may be ignored, displacement in
ground-range causes errors in the height estimate of the cell. However, as previously
mentioned, for distributed targets the phase centre is likely near the physical centre of the
cell so the effect of ground-range displacement is typically be small. On the other hand, as
point targets may be physically located anywhere within the scattering cell, they are
subject to the greatest uncertainty in height estimation.

4.3. DEM accuracy

This section characterizes the performance of backprojection interferometry with respect
to DEM accuracy for various geometries. In doing so, this analysis assumes that the DEM
inaccuracy does not significantly affect pixel focus. If the focus is significantly affected,
then there may be a drop in signal-to-noise ratio (SNR) or signal-to-clutter ratio (SCR).
This may adversely affect the pixel phase and lead to poor interferometry results.

Figure 7 shows plots of normalized interferometric phase ��=k from Equation (21)
for various geometries with vertical height displacement from 0.1 to 100 m across all
incidence angles. Since the phase is normalized by the carrier wavenumber, horizontal
dashed lines are placed in the plot to mark the point where the first phase wrap occurs
(� π) for a given frequency. The frequencies corresponding to the named bands are as
before: UHF: 650 MHz, L: 1.5 GHz, C: 6 GHz, X: 10 GHz, Ku: 15 GHz, and Ka: 35 GHz.
Figures 7(a)–(e) coincide respectively with rows (1)–(5) in Table 2. Figure 7(f) compares
the normalized phase �=k of traditional interferometry.

Examining the plots, the same general curved shape is seen in each where the
normalized phase peaks near 45� incidence and tapers off towards 0� and 90�. A given
magnitude of increase in vertical offset increases the phase by the same magnitude.
Interestingly, in these examples, even for highly displaced targets (100 m), a single-
phase wrap does not occur except at higher frequency bands. This highlights one of the
primary advantages of backprojection interferometry: for many geometries, the need for
phase unwrapping is either eliminated or trivialized. This may be compared to traditional
interferometry in Figure 7(f), where all the offset curves appear to overlap (they are in fact
separate, but indistinguishable on this scale). Notice the large magnitude of normalized
phase. Even a small change in incidence angle across the range swath causes a significant
change in phase and leads to rapid phase-wrapping. Indeed, phase unwrapping is a
primary concern of traditional interferometry (Rosen et al. 2000).

As discussed in the previous section, phase noise places a fundamental limit on the
accuracy of height estimates. For high coherence areas with independent looks (around
n ¼ 4Þ, it is very reasonable to achieve a phase standard deviation of 10� (Bamler and
Hartl 1998). To get an idea of what that means for height estimate accuracy, from the plots
in Figure 7, first choose a frequency band. Since the �=k wrap lines for that band
represent 180�, divide by 10� (the phase standard deviation). That means the minimum
distinguishable height lies 18 times (or 101:25) lower than the wrap line for the given band.
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For example, given the geometry in (b), at Ku-band, the minimum discernible height is in
the tens of centimetres. The results of these plots confirm the analyses of previous
sections: phase noise limits the height estimate accuracy of backprojection interferometry.
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Figure 7. Comparison of normalized interferometric phase �=k for various imaging geometries.
(a)–(e) represent backprojection interferometry and (f) represents traditional. The subfigure geome-
tries are (a) and (b) low-altitude cases for baselines compatible with small UAVs; (c) similar to
TOPSAR; (d) similar to SRTM; (e) similar to TanDEM-X; (f) similar to SRTM using traditional
interferometric methods. In (f), the curves are so close they appear to overlap. The horizontal dashed
lines represent the normalized phase where the first phase wrap occurs for a given frequency band.
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5. Discussion

Ideally, the use of backprojection implies that an initial DEM is available. As DEMs are
available over most of the surface of the Earth, this is a reasonable assumption. Creation
of an initial DEM could be performed via traditional interferometry. The purpose in
performing backprojection interferometry is to either refine the DEM or to measure
changes in height that have occurred since the DEM was generated. Assuming that a
sufficiently accurate DEM is available to generate a focused backprojected image, there
are four key advantages to backprojection interferometry.

(1) Backprojection reduces the need for phase unwrapping. As shown at the end of
the previous section, the backprojection interferometric phase varies slowly as the
cells are displaced from the DEM. Not only does this help eliminate height
estimate inaccuracies due to errors in phase unwrapping, but may also lead to
the ability to resolve heights of very steep terrain (e.g. urban environments). This
is also notably advantageous in low-altitude interferometry where the rapid
change in incidence angle across the range swath leads to especially rapid
phase-wrapping. Additionally, this is advantageous at higher frequency bands
where phase wrapping likewise occurs more rapidly.

(2) As seen in Section 3, backprojection has low sensitivity to errors in the measure-
ment of the interferometry baseline length and angle. This is particularly advanta-
geous at lower altitude applications on an aircraft where turbulence and non-ideal
motion lead to errors in the measurement of baseline angle. Where attitude
measurement error is pronounced, traditional interferometry can be inaccurate.

(3) Section 3 shows that for conventional interferometry, height estimate errors grow
as the baseline length grows. Backprojection interferometry, however, grows in
accuracy as the baseline length increases. While an increase in baseline length
increases the frequency of phase wraps in the interferogram, the frequency of
wrapping is much lower than traditional interferometry and when phase wrapping
occurs it may be removed using relatively simple methods.

(4) Backprojection explicitly forms images in the ground plane, making orthorectifi-
cation unnecessary. As topography can be explicitly included, image artefacts due
to terrain relief are reduced, which may also lead to improved accuracy in image
analysis and identifying the height of a given location. For example, artefacts like
layover may be reduced through backprojection interferometry.

While backprojection interferometry may be advantageous in spaceborne applications,
it is especially advantageous at lower altitudes where phase wrapping and errors in
baseline measurement are important issues. These problems have commonly made inter-
ferometry difficult at lower altitudes, but the use of backprojection may provide an avenue
for accurate interferometry at lower altitudes.

6. Conclusion

This article presents a novel method for SAR interferometry using backprojected images.
A new interferometric method is required in order to accommodate backprojected images
because the backprojected pixel phase corresponds to the difference between the terrain
height and the DEM. It is shown that the sensitivity and performance of backprojection
interferometry is significantly different than the conventional methods. Specifically, it is
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shown that backprojection interferometry is much less sensitive to errors in measurement
of the interferometric baseline length and angle. This analysis, which shows that back-
projection interferometry is particularly well-suited for low-altitude airborne SAR, pro-
vides a tool to augment traditional interferometry theory.
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