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This article explores the SAR back-projection algorithm for stripmap image formation
and its characteristics. The article provides a derivation of generalized time-domain
back-projection from first principles. It shows that back-projection may be considered
an ideal matched filter for SAR. The article presents an analysis of the sensitivity of
back-projection to its geometric parameters as well as several performance considera-
tions: azimuth beam width, residual phase error, digital elevation map accuracy, and
antenna position estimation accuracy.

1. Introduction

Synthetic aperture radar (SAR) utilizes platform motion to obtain finer resolution in the
along-track dimension than that given by the along-track illumination footprint (Cumming
and Wong 2005). In order to form images from the raw SAR phase history data,
researchers have developed many different algorithms (Cumming and Bennett 1979; Jin
and Wu 1984; Rocca 1987; Raney et al. 1994; Eldhuset 1998; Moreira, Mittermayer, and
Scheiber 1996; Mittermayer, Moreira, and Loffeld 1999). Most SAR algorithms are based
on the use of frequency domain techniques and have been analysed in detail (Cumming
and Wong 2005; Bamler 1992; Carrara, Goodman, and Majewski 1995; Benz, Strodl, and
Moreira 1995; Caves, Quegan, and White 1998; Gilmore, Jeffrey, and LoVetri 2006; Prats
et al. 2007; Zaugg and Long 2009). More recent articles have explored modifications to
frequency domain techniques that allow for high-resolution imaging (Ulander, Hellsten,
and Stenstrom 2003; D’Aria and Guarnieri 2007, Sun et al. 2011; Prats-Iraola et al. 2014;
Rodriguez-Cassola et al. 2015). Time-domain back-projection for SAR has been less
studied (Ulander, Hellsten, and Stenstrom 2003; Zaugg and Long 2015).

This article seeks to provide a more detailed analysis of the time-domain back-
projection image formation algorithm than presently available in the literature, including
characterization of the sensitivities of back-projection to its various parameters. The article
considers the sources of error and provides analysis of requirements to achieve a given
level of performance. In order to facilitate this, we begin with a generalized derivation of
the time-domain back-projection algorithm and analysis of when approximations may be
made to reduce computational burden.

2. Generalized time-domain back-projection

Some SAR image formation derivations begin with two implicit assumptions: that the
radar point spread function is constant across the image and that image formation may be
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separated into two steps – range compression and azimuth compression (Cumming and
Wong 2005; Bamler 1992). This equates to formulating the problem into one of convolu-
tion. Since this is only an approximation, in order to be more general, we explicitly avoid
this assumption.

The following subsections provide a detailed derivation of the stripmap time-domain
back-projection image formation algorithm. We begin with a general, time-domain,
uncompressed formulation and then progress to other forms through the use of various
assumptions. These results are used in later sections as the basis for the back-projection
analysis.

2.1. Derivation of general form

We begin with a generic linear frequency modulated (LFM) transmit signal:

stxðtÞ ¼ w ðtÞ expf j2πϕ ðtÞg;
¼ w ðtÞ expf j2πf0t|fflffl{zfflffl}

propagation
phase

þ jπKt2|ffl{zffl}
FMchirp

þ jϕ0g; (1)

where ϕ ðtÞ is the LFM phase, t is fast-time, f0 is the centre frequency, and K is the
frequency modulation (FM) ramp-rate in Hz per second, ϕ0 is the initial phase, and w(t) is
the pulse envelope (e.g. w(t) = rect (t/T) = 1 over the domain t=T 2 � 1

2 ;
1
2

� �
, with T the

pulse duration).
Consider a stationary, isotropic scatterer located in three-space. The round-trip propa-

gation delay from transmitter to scatterer to receiver is tn, where n is the slow-time pulse
index. Note that tn is implicitly a function of fast-time t (as a result of platform motion
during a pulse), but for simplicity this is not included in notation. From Equation (1), the
scattered received signal is an amplitude-adjusted, time-delayed copy of the transmit
signal:

srxn ðtÞ ¼ Anðt � tnÞGnðt � tnÞw ðt � tnÞ
� exp j2πf0ðt � tnÞ þ jπKðt � tnÞ2 þ jϕ0

n o
þ η:

(2)

Here, An(t) is an amplitude term that depends on target area, atmospheric effects, etc.,
GnðtÞ is an amplitude term dependent on antenna gains, propagation loss, system filters,
etc., and η is additive noise. When the received signal is demodulated this becomes

srxn ðtÞ ¼ Anðt � tnÞGnðt � tnÞw ðt � tnÞ exp �j2πf0tn þ jπK ðt � tnÞ2 þ jϕ0
n o

þ η: (3)

Examining this equation, the first term inside the exponential is the propagation phase
while the second term inside the exponential is the LFM chirp.

As the energy of the received signal is spread in fast- and slow-times, it is desirable to
focus this energy as narrowly as possible. This process is known as compression.
Compression is performed with a matched filter since it maximizes signal-to-noise ratio
in the presence of additive noise Richards (2005) (although other types of filters could be
used, e.g. a Wiener filter). To matched-filter Equation (3), the filter reference function is
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hCn ðtÞ ¼ w ðt �~tnÞGnðt �~tnÞ exp �j2πf0~tn þ jπKðt �~tnÞ2
n o

; (4)

where ~tn is the delay parametrizing the matched filter. Ideally ~tn is equal to tn, but it is
retained as a separate term to explore the results of mismatch.

Matched filtering is often implemented through the use of correlation (i.e. sliding
inner-product). However, this concept is not fully congruous with the concept of back-
projection because the kernel is not constant (i.e. it changes with position). By calculating
each pixel individually, the filter is tailored to match the conditions of that pixel. This
becomes especially advantageous in very low-altitude, high-motion environments
Duersch and Long (2015).

Neglecting the noise term for the sake of brevity, the result of matched filtering a
single pixel is

I ¼
X
n2N

ð
srxn ð�ÞhC�n ð�Þd� (5)

¼
X
n2N

ð
Anð� � tnÞGnð� � tnÞwnð� � tnÞ

� exp �j2πf0tn þ jπKð� � tnÞ2 þ jϕ0
n o

� Gnð� �~tnÞwnð� �~tnÞ exp j2πf0~tn � jπKð� �~tnÞ2
n o

d�; (6)

where N is the set of all pulses contributing to the pixel and I is the pixel value. Note the
lack of a conjugation symbol * on G() and w(), which are assumed to be purely real-
valued.

Several observations are in order. First, matched filtering in this manner handles both
propagation phase and the LFM chirp, thus simultaneously performing both azimuth and
range compression, respectively. Second, gain variation in both fast- and slow-time can be
expressed since Gn(t) and wn(t) are functions of both. Third, Equation (6) yields the value
I for only a single pixel: this process must be repeated for a grid of pixels representing the
desired image. Performing this process on an n × n image is computationally expensive,
on the order of Oðn4Þ. Note that in the formulation presented here, the grid of pixels is
defined in the ground-plane, not the slant-plane.

In the model above, the scatterer is a single point target. In general however, a pixel
may contain simultaneous contributions from multiple scatterers within a given area/
volume whose size is bounded by the single-look resolution of the SAR. This volume
is termed a scattering-cell. For a single pulse, the superposition of all the scatterers inside
the scattering-cell is often treated as a single point target. However, the superposition of
the scatterers may have a phase-centre offset δ from the geometric centre of the scattering-
cell. Depending on the nature of the cell, the amplitude and phase of summed scatterers
may not be constant over slow-time.

If ~tn ¼ tn, the pixel value is

I ¼ expðjϕ0Þ
X
n2P

ð
An � � tnð ÞG2

n � � tnð Þw2
n � � tnð Þd�: (7)
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With the assumption that the time delay to the target is known exactly for every pulse,
the phase of the filter perfectly matches the phase of the signal. For this to hold, the target
phase-centre must be located at precisely the anticipated position; it is not sufficient to use
the delay to the centre of the scattering-cell, but rather the delay to the phase-centre of the
scattering-cell (for each pulse). Unfortunately, the physical centre and phase-centre of a
scattering-cell are not collocated in general. This leads to a phase error when the matched
filter is set to the range to the centre of the cell.

If tn � ~tn due to the phase-centre offset, then the complex exponentials in Equation
(6) do not cancel out and a differential propagation phase results: exp j2πf0 ~tn � tnð Þf g.
There is also an error ϕLEMerror due to mismatch in the LFM chirp term; however, for SAR
systems with a typical LFM time-bandwidth product (> 100), the chirp mismatch ϕLEMerror

is insignificant (Cumming and Wong 2005). The resulting pixel value is

I ¼ expðjϕ0Þ
X
n2P

ð
An � � tnð ÞG2

n � � tnð Þw2
n � � tnð Þ exp j2πf0 ~tn � tnð Þf gd�: (8)

The differential propagation phase term is critical and is termed the residual phase.
Residual phase plays a critical role in the back-projection analysis presented in later
sections.

2.2. Compression simplification

As stated above, simultaneously performing range and azimuth compression according to
Equation (6) is computationally very expensive. However, under many conditions com-
pression can be broken into two separate steps (range and azimuth compression). The
limiting factor preventing separation in the derivation above is the implicit dependence of
tn on fast-time. However, if the pulse duration T is short enough that the platform
movement during propagation is insignificant, then tn may be considered fixed for a
given pulse duration. This is the classic stop-and-hop approximation.

When this assumption applies, the matched filter may be modified to first perform
range compression by using the reference function

hRn ðtÞ ¼ wðt � tnÞexpfjπKðt � tnÞ2g; (9)

which includes only the LFM chirp term. This leads to the range-compressed (matched
filtered) signal gn (t):

gn tð Þ ¼
ð
srxn ð�ÞhR�n � � tð Þ d� (10)

¼
ð
An � � tnð ÞGn � � tnð Þw � � tnð Þ exp �j2πf0tn þ jπK � � tnð Þ2 þ ϕ

n o

:w � � t �~tnð Þ exp �jπK � � t �~tnð Þ2
n o

d�:
(11)

When w(t) = rect (t/T), this is approximately

gnðtÞ � Anðt � tnÞGnðt � tnÞ T sinc fKTðt � ðt2n �~t2nÞÞg expf�j2πf0tn þ ϕg: (12)
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At this point it is useful to map this result from time coordinates to spatial coordinates.
This is done by noting that the two-way delay is

tn ¼ rtxn þ rrxn
c

; (13)

where rtxn and rrxn are the transmitter and receiver range-to-target, respectively. In the case
of a monostatic radar, rtxn = rrxn . The propagation phase term in Equation (12) is equiva-
lent to

2πf0tn ¼ k rtxn þ rrxn
� �

; (14)

where

k ¼ 2πf0=c ¼ 2π=λ: (15)

The two-way range to the target is

dn ¼ rtxn þ rtxn ; (16)

while the two-way range parametrizing the matched filter is ~dn. The difference between
the two is the two-way residual range:

Δ dn ¼ ~dn � dn: (17)

The phase-centre may be anywhere in the scattering-cell. In the ‘worst case’ scenario,
it may be in the corner of the scattering-cell which results in maximum residual range.
This is illustrated in Figure 1, where point p is maximally displaced from the centre of the
cell at point o. Thus, the maximum horizontal (i.e. ground-range) displacement of a target
in the scattering-cell is half the ground-resolution cell width:

o

p
δy δx

δz
elevation

range
azimuth

Figure 1. Illustration of a scattering-cell. Point o is the physical centre of the cell and point p is the
phase-centre. In this diagram, the phase-centre is maximally displaced from the physical centre of
the cell. δx, δy, and δz represent the phase-centre displacement in azimuth, range, and elevation,
respectively.
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δy�max ¼ Rg

2
¼ Ry

2 sin θ
; (18)

with Ry the slant-range resolution and Rg the ground-range resolution. The maximum
vertical displacement (at the centre of the cell) is

δz�max ¼ Ry cos θ: (19)

The maximum azimuth displacement is half the azimuth resolution:

δx�max ¼ Rx=2:

Recall that these are the worst-case scenarios. The expected position of the phase-
centre of a distributed target is near the cell’s centre. However, a point target such as a
corner reflector may truly be located at the edge of the scattering-cell.

Using the mapping of time to distance, the range-compressed signal may be written as

gnðlÞ ¼ Anðl � dnÞGnðl � dnÞRðΔdnÞ expf�jkdng; (20)

where l is fast-time distance and R(l) is the range-compressed impulse response centred
at l = 0.

Azimuth compression of the range-compressed signal in Equation (20) is computed by
matched-filtering the range-compressed signal with the reference function:

hAn ðtÞ ¼ wn expð�jk~dnÞ; (21)

where wn is an optional slow-time window function. This leads to the back-projected
result

I ¼
X
n2N

gnð~dnÞwn expðjk~dnÞ

¼
X
n2N

AnðΔdnÞGnðΔdnÞRðΔdnÞwn expðjkΔdn Þ: (22)

In practice, amplitude terms such as antenna gain may be included in wn. The phase
term expðjkΔdn Þ is the residual propagation phase present at each pulse when Δdn � 0.
Performing range and azimuth separately in this manner leads to a computational com-
plexity of O n3ð Þ for an n × n image. Further simplification, albeit with some loss of
quality, may be obtained through fast-factorized back-projection (Vu, Sjogren, and
Pettersson 2008, 2011).

In the stop-and-hop derivation above, the antennas are considered stationary through
the duration of the pulse. If the antennas move significantly (on the order of a wavelength
or more) during the pulse, range/azimuth compression is still separable if the platform
velocity is constant. A derivation of this is shown in Ribalta (2011). A modification for
LFM-CW (continuous wave) operation is given in Zaugg (2010).
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3. Range-to-target

One of the key parameters in the back-projection equation is the distance (or equivalently,
the time delay) from the antenna(s) to the scattering-cell phase-centre. Since the precise
location of the phase-centre is unknown, the assumed distance is that to the physical
centre of the cell. The assumed distance is based on the pixel grid and parameterizes the
back-projection matched filter. It is the difference between the assumed and actual
distances that leads to the residual distance Δdn (and residual phase kΔdn) discussed
previously.

Define the nominal residual phase for a given target as the residual phase at the mean
position of the synthetic aperture, which is ideally the point of closest approach (POC).
Contributing samples from pulses transceived away from the mean position may have a
different residual phase than the nominal. The difference between the residual phase at
surrounding pulses and the nominal at the POC is the phase error. In general, the phase
error increases as the platform distance from the mean position increases. If the phase
error becomes too large then the contributing sample sums destructively during back-
projection summation. In order to facilitate later sensitivity and performance analysis of
back-projection, we examine the residual range that leads to the residual phase.

With the dimensions x, y, z as along-track, cross-track, and elevation, respectively, the
one-way range rn to the physical centre of a scattering-cell is

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n þ z2n

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xþ ςx;n
� �2 þ �yþ ςy;n

� �2 þ �zþ ςz;n
� �2q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ �z2ð Þ þ ςx;n 2�xþ ςx;n

� �þ ςy;n 2�yþ ςy;n
� �þ ςz;n 2�zþ ςz;n

� �
;

q
(23)

where n is the time index. The variables �x, �y, and �z are the mean ranges-to-target in their
respective dimensions. For example, �x is zero for non-squinted geometry, as illustrated in
Figure 2. The variables ςx;n, ςy;n, and ςz;n are the antenna displacements from the mean at
time n. Finally, xn, yn, and zn are the ranges from the antenna to the scattering-cell for each
time index. They are equal to the sum of the mean range-to-target and the antenna
displacement from the mean (e.g. xn ¼ �xþ ςx;n).

The range to the phase-centre r0n is

r0n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0n2þ y0n2þ z0n2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xþ ςx;n � δx
� �2 þ �yþ ςy;n � δy

� �2 þ �zþ ςz;n � δz
� �2q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ �z2ð Þ þ Vx;n þ Vy;n þ Vz;n;

q
(24)

with the azimuth terms grouped into

Vx;n ¼ ς2x;n þ δ2x þ 2 �xςx;n � �xδx
� �

(25)

and likewise Vy;n and Vz;n for the range and elevation terms. Note that as ςy;n and ςz;n are in
general non-zero, the model accounts for non-ideal motion and does not require a strictly
hyperbolic range-to-target.
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Given the ranges defined above, the one-way residual range is

Δrn ¼ rn � r0n (26)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n þ z2n

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0n

2 þ y0n
2 þ z0n

2
q

: (27)

The residual range leads to the phase term 2kΔrn present at each pulse summed in
back-projection (assuming a monostatic radar). A non-zero value for Δrn results in
residual phase. In order to analytically examine the significance of the residual range, it
is necessary to manipulate Equation (27). Unfortunately, manipulation is difficult in this
exact form, but becomes tractable with approximation techniques. Several approximations
are considered in the following.

3.1. First-order Taylor series approximation

Suppose the mean range-to-target is

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ �z2:

p
(28)

Figure 2. SAR geometry. �x, �y, and �z are the mean azimuth, range, and elevation ranges, respec-
tively, to the target. ςx;n, ςy;n (not shown), and ςz;n are the antenna displacements from the mean at
time n.
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A first-order Taylor series approximation of the square root (where a � b)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
� aþ b

2a
(29)

can be used in Equations (23) and (24) to produce

rn � �r þ ςx;n 2�xþ ςx;n
� �þ ςy;n 2�yþ ςy;n

� �þ ςz;n 2�zþ ςz;n
� �

2�r
; (30)

r0n � �r þ Vx;n þ Vy;n þ Vz;n

2�r
: (31)

This approximation is valid for stripmap geometries where, for a given target, the SAR
does not illuminate the target when it is far from the mean range-to-target �r (i.e. a narrow
beam in azimuth). With this approximation the residual range is

Δrn ¼ βn
2�r

; (32)

where

βn ¼ 2 δx �xþ ςx;n
� �þ δy �yþ ςy;n

� �þ δz �zþ ςz;n
� �� �� δ2x � δ2y � δ2z : (33)

A quick examination of this shows that if the phase-centre of the scattering-cell is
known (i.e. the δ terms in Equation (33) are zero) then the residual range vanishes
identically, as expected.

An important observation regarding the approximation of Equation (32) is that in the
case of ideal, linear motion, βn, and therefore the Δrn predicted using the Taylor series
approximation, are constant for all n (given that δx is zero). This, however, is not strictly
true since Δrn is the difference between two hyperbolas with separate foci. This point
illustrates the limitation of the first-order Taylor series approximation: since this approx-
imation erroneously suggests ϕn is constant for all n, it likewise suggests there are no
residual phase variations and thus no phase errors.

For low values of ςx;n, the phase error is small so the constant Δrn approximation can
be used. Hence, the first-order Taylor series is a good approximation for narrow-beam
antennas and is close to the POC approach.

3.2. Bakhshali approximation

In order to ameliorate the restrictions of the first-order Taylor series approximation, we
introduce the Bakhshali square root approximation (Channabasappa 1976). The Bakhshali
method of approximating the square root is equivalent to two iterations of the first-order
Taylor series approximation:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
� aþ b

2a
� b2

8a3 þ 4ab
: (34)
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The residual range is then

Δrn � βn
2�r

� γ2n
4�r 2�r2 þ γnð Þ þ

γn � βnð Þ2
4�r 2�r2 þ γn � βnð Þ ; (35)

with βn as in Equation (33) and

γn ¼ 2 �xςx;n þ �yςy;n þ �zςz;n
� �þ ς2x;n þ ς2y;n þ ς2z;n: (36)

Notice that the first term in Equation (35) is precisely the first-order Taylor series
approximation in Equation (32). As in the Taylor series approximation, when βn ¼ 0, the
residual range vanishes.

A comparison of both methods along with the third-order Taylor series approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
� aþ b

2a
� b2

8a2
þ b3

16a5
(37)

is illustrated in Figure 3(a). In this example, an antenna is placed at a 45° incidence angle
to the scattering-cell and the phase-centre is displaced in slant-range (i.e. both range and
elevation) by 1 m. The solid curve shows the exact value of the residual range. The first-
order Taylor series approximation is constant at all azimuth angles. The third-order Taylor
and Bakhshali methods both exhibit hyperbola-like shapes; however, the Bakhshali
method is accurate over a much wider range of azimuth angles and requires fewer
operations than the third-order Taylor series. The Bakhshali method becomes very useful
when analysing the effects of residual range on wide-beamed antennas.

Figure 3(b) shows the approximation error of each method using the same conditions
above. Incidence angles between 30° and 60° exhibit similar behaviour. How much error
can be tolerated depends on the radar wavelength and expected phase-centre displace-
ment. Radars with fine resolution relative to the wavelength better tolerate phase-centre

Figure 3. Comparison of the range residual approximations for varying azimuth angles-to-target
with an incidence of 45°. Subfigure (a) shows the range residual where the solid curve represents the
exact solution, while the dashed/dotted curves are the approximations. Note that the first-order
Taylor series approximation is constant with azimuth angle. Subfigure (b) shows a comparison of
the approximation error. Each of the approximations is accurate near 0° azimuth (the POC approach)
but beyond that all have varying degrees of accuracy at larger angles.
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displacement than those with coarse resolution. As evident from subfigure (b), antennas
with up to a 20° azimuth beamwidth have about 1% error when using the first-order
Taylor series approximation. Many SAR antennas in practice have such a beamwidth or
even narrower. Thus, for the purposes of this article, an antenna with a beamwidth of 20°
or lower is termed ‘narrow-beam’. If accuracy across a wider beamwidth is required then
the Bakhshali method is preferable as the error is still small at a 90° beamwidth.

Note that these results bound the approximation error: distributed targets are unlikely
to have a phase-centre near the corner of the scattering-cell because they generally have
small phase-centre displacement from the centre of the cell.

3.3. Sensitivity

With the derived approximations in place for the square roots in the residual range
formula, an analytic examination of sensitivity is possible. The sensitivity of the residual
range Δrn is found by solving its partial derivative with respect to each of the constituent
terms. Note that while the partial derivative is taken with respect to only the azimuth
dimension below, similar results hold for the other dimensions by substituting x for y and
z. Thus, only one case is shown.

3.3.1. Phase-centre displacement

@Δrn
@δx

¼ �xþ ςx;n � δx
�r

: (38)

The sensitivity of the residual range to phase-centre displacement determines how much the
residual range changes for a given change in phase-centre displacement. This sensitivity to
phase-centre displacement is greatest in whichever dimension has the largest range-to-target.
For narrow-beam antennas with zero squint geometry, this is the elevation dimension at
shallow incidence angles and the ground-range dimension at large incidence angles.

In a given dimension, when the antenna is located far away from its mean position
(i.e. �x, �y, or �z), phase-centre displacement in that dimension becomes more significant.
This is particularly applicable in the along-track dimension with either a squinted geo-
metry or a wide-beam antenna. In either case, the large azimuth distance-to-target
increases the sensitivity to along-track phase-centre displacement. Because the Taylor
series approximation is inaccurate under these conditions, it is more appropriate to
calculate the sensitivity with respect to the Bakhshali approximation:

@Δrn
@δx

¼ �xþ ζ x;n � δx
�r

� 2 �xþ ζ x;n � δx
� �

γn � βnð Þ
2�r 2�r2 þ γn � βnð Þ þ 2 �xþ ζ x;n � δx

� �
γn � βnð Þ2

4�r 2�r2 þ γn � βnð Þ2
:

(39)

While not immediately obvious due to the complexity of the Bakhshali sensitivity
equation, the Bakhshali approximation reveals greater sensitivity to azimuth displacement
of the phase-centre than suggested by the Taylor series approximation.
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3.3.2. Non-ideal motion

@Δrn
@ζ x;n

¼ δx
�r
: (40)

The ratio of phase-centre displacement to range-to-target determines how sensitive the
residual range is to non-ideal motion. Stated another way, the residual range sensitivity to
non-ideal motion grows in a given dimension as the phase-centre displacement in that
dimension grows (i.e. δx=�r grows larger). For example, if the SAR has very coarse range
resolution (thus increasing the possible values for δx) then the residual range is more
sensitive to any motion outside the linear track. On the other hand, a large range-to-target
mitigates this effect. Thus at farther ranges non-ideal motion becomes less of an issue,
especially for fine resolutions.

3.3.3. Mean position

@Δrn
@�x

¼ δx
�r
� �xβn

2�r3
: (41)

For geometries without squint, the sensitivity to mean antenna position (defined in
Equation (23)) is small. In azimuth, if �x is small (or zero, as in the case of no squint)
then @

@�x � δx
�r , which is the same sensitivity as @

@ζ x;n
above. In general this value is small. In

range and elevation, the second term significantly reduces the magnitude of the first.
Thus, the sensitivity due solely to the magnitude of the mean position is insignificant. The
elements dominating the residual range are from Equations (38) and (40) above.

With the general concepts of sensitivity in place, the performance of time-domain
back-projection is explored in greater detail in the next section.

4. Performance considerations

The following subsections analyse various factors that affect the performance of time-
domain back-projection: digital elevation map (DEM) accuracy, antenna position accu-
racy, azimuth beamwidth, squint, and interpolation of the range-compressed signal. A key
concept throughout is that variations in residual phase cause phase errors that can lead to
reduced performance.

As previously noted, the physical centre and phase-centre of a scattering-cell are not
collocated in general. This leads to a residual phase when the matched filter corresponds
to the centre of the cell. As seen in the previous section, if the antenna’s azimuth
beamwidth is sufficiently narrow then the residual phase due to phase-centre displacement
does not vary significantly with pulse number so the net phase error is small. However, if
there are errors in DEM height or antenna position measurement, or non-linear platform
motion, then the phase error increases.

4.1. Digital elevation map

This subsection considers how the accuracy of the DEM affects the back-projected image.
The effects vary based on the nature of the platform motion and any uncertainty in
knowledge of the platform positions. The case of ideal, linear platform motion is
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presented first, followed by more complex models. Recall that back-projected images are
formed directly in the ground-plane.

4.1.1. Ideal, linear path

The back-projection formula requires knowing the range from antenna to scattering-cell at
every pixel in the image, for every contributing pulse. Assuming the platform positions
are already known, the range is calculated for the scattering-cell’s three-dimensional
location. A priori knowledge of the cell’s vertical position is provided via a DEM of
the terrain. Knowledge of the lateral position is derived from the platform position data
and image grid. A height offset (i.e. a bias error) in the elevation map results in varying
effects on the output image depending on the SAR collection geometry.

For the simplest case, assume that a non-squinted SAR platform has a straight and
level flight track. In this scenario, all platform motion is in the along-track direction (i.e.
there is no deviation from the linear path in elevation or cross-track). Recall from
Equation (23) that the range to a scattering-cell is rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n þ z2n

p
. Considering the

motion to be ideal, yn and zn are constant. Let

�r2 ¼ �y2n þ �z2n; (42)

then

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ �r2

q
; (43)

which varies in slow-time by azimuth position xn. Given a slant-range rn and azimuth
position xn, the potential distances for ground-range y and elevation z are not unique. This
means that while the slant-range from the SAR to a point on the ground is unique, the
potential values for ground-range and elevation of the target lie on a hyperbolic curve
given by Equation (42), any point on which provides a correct solution of the slant-range
to target. Hence, each range/elevation solution produces an equally well-focused pixel in
the back-projected image. However, the elevation offset causes the position of the target in
the output image to be translated (i.e. shifted). This is illustrated in Figure 4, where three
DEM heights and the respective lateral shift of the target are shown.

A positive vertical offset in the elevation map places the ground-plane closer to the
SAR in elevation. As the slant-range solution for a target is constant, this causes the
focused target to appear imaged farther away in ground-range. In the same way, lowering
the elevation map causes the focused target to appear imaged closer to the SAR in ground-
range. Thus, unless the elevation map specifies the correct terrain height, imaged targets
are erroneously shifted in range. However, as discussed below, the target’s focus is
minimally affected for ideal motion. Note that an offset in the elevation map does not
affect the azimuth position of the target in the back-projected image, since the along-track
dimension is orthogonal to the slant-range dimension.

An offset in the DEM adds approximately a constant range residual at every pulse, and
thus approximately the same phase. This is seen in Equation (33). For small DEM errors,
given that �z � ζ z;n and �z � δz, the change in Δrn is approximately the same for every
pulse. As the phase added is roughly constant, it has little effect on compression – it is the
variation in residual phase that lead to phase errors. However, as the DEM errors increase,
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the fixed residual range approximation no longer holds and the compression suffers. Thus,
back-projection requires at least an approximate idea of the height of the scatterers.

An example of the effects of DEM offset on the azimuth impulse response for an ideal
path is illustrated in Figure 5, which shows the azimuth impulse response of a simulated
point target. The parameters used in the calculation are 0.3 m wavelength, 8.6° azimuth
antenna beamwidth (corresponding to 1 m azimuth resolution), and 45° incidence angle.
The azimuth antenna pattern is assumed to be a cosine taper. The SAR platform moves in
an ideal, linear fashion. In subfigure (a) the point target is placed at the centre of the
scattering-cell while in subfigure (b) the target is placed the maximal distance away
according to Equations (18) and (19). Each subfigure has three curves: zero vertical
displacement of the DEM and ± 10 m vertical displacement of the DEM (i.e. DEM height
error). Examining both plots, the DEM offset has little effect on the azimuth response;

Figure 5. Baseline azimuth impulse response plots. The antenna positions are known exactly on an
ideal, linear flight path. Three curves are shown representing different DEM height offsets.

Z

y

Figure 4. Illustration of lateral shift caused by DEM height offset. An antenna is located at point A
and the true DEM height is given by the dark middle line. The dashed curve represents the constant
slant-range line. Point c is the correct position of a target. The upper and lower lines indicate errors
in the height of the DEM. Note the associated horizontal shift in the target position (shown by dots
at points d and e).
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likewise there is little effect on the range response (not shown). While not visible in the
figures (because the curves have been shifted to peak at zero), the imaged target positions
are shifted in range between the various height curves because the target solution in
ground-range changes in order to maintain a constant slant-range to target.

4.1.2. Known, non-ideal motion

For the case above, all platform motion is assumed to be in the along-track direction. If
motion occurs in the cross-track or elevation directions, then Equation (43) leads to a
more constrained estimate for the imaged target position. If the correct height is not used
in processing and there is non-ideal motion, then the target’s compression suffers.
Fortunately, the effect is slight for small height errors.

Figure 6 demonstrates the effects of non-ideal platform motion. Here, the calculation
is set up the same as in Figure 5 except that a zero-mean, Gaussian perturbation of
standard deviation, σant is added to the antenna positions in range and elevation (the
antenna positions are known exactly). The three rows in the figure correspond to position
perturbation with a standard deviation of 0.1, 1, and 10 wavelengths and independent
from pulse to pulse. While this distribution of platform positions is unlikely for some
platforms, the associated analysis estimates the magnitude of the effect of non-ideal
motion. For typical SAR pulse repetition frequencies used on typical platforms, even a
position deviation as large as 0.1 wavelength may be unrealistic. However, the simple
model used here is not intended to be physical, but rather an indicator of how known, non-
ideal motion affects back-projection. In addition, for rotary-wing aircraft with slow
forward velocity, these larger deviations can occur. The first column gives the azimuth
response where the point target is at the physical centre of the scattering-cell and the
second column gives the response where it is maximally displaced. Curves for DEM
offset of zero and ± 10 m in elevation are shown. All plots have been normalized to the
same peak power in order to compare magnitude effects among the plots.

In the first column of subplots, the target is placed at the physical centre of the cell.
When the DEM offset is zero (the solid curves) there is little difference between the
mainlobe responses, although there is a raising of the sidelobes as the perturbation
increases. In the case with DEM offset where σant ¼ 1λ, the peak power is barely affected
but the sidelobe level rises 30 dB. At σant ¼ 10λ the mainlobe becomes indistinguishable
from the sidelobes. This underscores the powerful effect a DEM offset has when the path
motion is non-ideal, even for relatively small deviations.

In the case of non-ideal motion, displacing the target to the edge of the cell has the
greatest effect in cases where there is no DEM offset. In these cases, the sidelobe level
rises significantly. In offset DEM cases, the change in response is insignificant. This
suggests that for large DEM errors, the DEM errors dominate the degradation in impulse
response while that due to phase-centre displacement is negligible.

4.2. Antenna position estimate

DEM uncertainties are not the only sources of geometry error. The position estimates of
the antenna are also subject to error. In the previous section it is assumed that the antenna
positions are known exactly; now the case of uncertainty in the position estimates is
treated. Unknown errors in the antenna position estimate may be classified into two
categories: absolute and relative errors. Absolute errors are translations of the entire set
of position estimates (e.g. GPS reporting an incorrect, fixed offset in altitude across all
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data). Relative errors, on the other hand, are dynamic errors that change over time (e.g.
measurement noise or drift).

Absolute position errors are functionally similar to DEM errors. This is because fixed-
altitude errors behave identically to a vertical offset in the DEM and horizontal position

Figure 6. Azimuth impulse response with Gaussian position variance of σ2ant in range and eleva-
tion. The antenna positions are known exactly. Three curves are shown representing DEM height
offsets. The phase-centre offset mostly affects the sidelobes, not the main lobe.
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errors behave like lateral translations of the DEM. Depending on the scene topography, a
lateral translation of the DEM may have no effect (e.g. perfectly flat terrain) or a very
large one (e.g. terrain with high relief). Because vertical translation is the same as vertical
DEM offset and horizontal translation is scene dependent, no example figures are given
here. In general, however, absolute position errors do not cause a reduction in image
quality if the magnitude of error is bounded by those common to high-precision GPS (i.e.
the GPS absolute position error is smaller than the DEM posting). Since absolute position
errors add roughly the same residual phase to each back-projection summation term, they
have minimal effect on the result.

Relative position errors, on the other hand, are more problematic because these add a
different phase to each term in the back-projection summation. The remainder of this
subsection explores the effect of two types of relative position error: Gaussian random
noise and drift.

4.2.1. Gaussian random noise

Figure 7 demonstrates the effect of uncertainty on the antenna position. Here, an ideal,
linear flight track is assumed during processing using the same parameters as the subsec-
tions above, except that noise is added to the antenna positions. This has the effect of
adding error to the range calculation. The noise is zero-mean, Gaussian distributed with
standard deviations ηant ¼ 1

100 λ;
1
16 λ;

1
8 λ; and

1
4 λ, as shown in Figure 7(a)–(d), respec-

tively. Even with only 1
100 λ of added noise, and although the mainlobe is unaffected, there

is a significant raising of the sidelobes. At 1
16 λ there is noticeable jump in sidelobe level

and the peak also drops by 3 dB. At 1
4 λ the mainlobe is indistinguishable from the

sidelobes.
These plots illustrate the importance of precise knowledge of the relative positions of

the antenna (the absolute positions are not as critical for the reasons previously stated).
Even tiny levels of uncertainty have a strong effect on impulse response. It is interesting
to note that since the antenna position errors dominate, a DEM offset in these cases is
almost imperceptible. Although not shown, this is also the case with an offset phase-
centre: the effect of scattering-cell phase-centre displacement is imperceptible. For typical
SAR inertial navigation systems (INSs), Gaussian random noise on position estimates is
not the dominant source of error: errors such as drift are much more significant.

4.2.2. Position drift

Another form of position error is drift. Navigation systems typically employ an inertial
measurement unit (IMU). As these sensors generate estimates by integrating acceler-
ometer measurements, drift is almost unavoidable. Not only does drift result in an
incorrect estimate of the range-to-target, but it also leads to selecting an incorrect range-
migration curve (i.e. the wrong contributions are used in back-projection summation). The
magnitude of the effect on imagery corresponds to the magnitude of the drift.

Antenna beamwidth is an important factor in determining vulnerability to drift error
because a wider beamwidth leads to a longer synthetic aperture which is more sensitive to
drift. Particularly troublesome is drift in the along-track direction as this leads to a larger
error in selecting the range-migration curve (i.e. the samples used to back-project a given
pixel do not follow the range-migration curve for the corresponding scattering-cell). An
example of the effect of cross-track drift is illustrated in Figure 8.

2026 M.I. Duersch and D.G. Long



The effects of antenna position drift are shown in Figure 9. The antenna positions
are assumed to be linear (ideal) in the processing, but the actual data has is a drift
component (i.e. time-varying position error). The fundamental computational para-
meters are the same as before. The slant-range/azimuth resolutions are each 1 m.
Subfigure (a) shows the result when no drift is present. Subfigures (b) and (c) show
drift in different dimensions as a function of total magnitude of drift in wavelengths
across the synthetic aperture. In (b), 10 wavelengths of position drift in the elevation
dimension have a small effect on azimuth IPR: a slight raising of the sidelobes and an
imperceptible broadening of the mainlobe. Although not shown, the same magnitude of
drift in the ground-range dimension as elevation dimension has an identical effect (for a
45° incidence angle).

Because drift leads to not following the full range-migration curve of a given cell, the
utilized azimuth chirp bandwidth for the cell is diminished, which results in coarser
resolution. As in the previous figure showing random noise on position estimates,
displacement of the phase-centre appears insignificant as it is dominated by errors in

Figure 7. Azimuth impulse response with Gaussian position noise variance of η2ant in range
elevation. The antenna positions are assumed to lie on an ideal, linear path (corrupted by unknown
noise). Three curves are shown representing DEM height offsets. No phase-centre displacement is
present.
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the antenna position estimate. As stated previously, the effect of drift in the along-track
dimension is greater than the other two dimensions.

Figure 9(d) shows the effect of elevation drift on the azimuth position of the target. In
this figure, rather than specifying drift in wavelengths, it is specified in metres where the
slant-range and azimuth resolutions are both 1 m. At 20 m of elevation drift across the
synthetic aperture, the target is displaced nearly 100 m along-track. Figure 9(e) and (f)
show various amounts of drift where the curves have been centred in order to compare
their shape. Note that the same magnitude of drift causes substantially more effect when it
is in the azimuth dimension as opposed to the range or elevation. (Note the difference in
horizontal axis scales between (e) and (f).)

4.3. Azimuth beamwidth

This subsection develops an upper-bound on the usable azimuth beamwidth due to phase
errors resulting from the unknown location offset of the scattering-cell phase-centre. As
shown above, a residual phase results when the phase-centre is not collocated with the
physical centre. This induces a phase error that grows as the platform moves away from
the point of nominal residual phase (i.e. the POC approach). When the phase error grows
sufficiently large, the pulses may sum destructively.

To analyse this, let the slow-time index n = 0 be the pulse index when the platform is
located at the synthetic aperture mean (for the particular target). ϕ0 is then the nominal

Figure 8. Illustration of the effect of drift on range cell migration. The figure presents a top-down
view of the imaging geometry with the solid lines on the left representing the path the platform
travels along and the dashed curves on the right representing the range to a given target for each
along-track position of the platform. Units are arbitrary. The curve without drift is hyperbolic and
symmetric about the POC approach, exemplifying an ideal range-migration curve (RMC). When
platform drift is present (exaggerated in this figure), the range curve is skewed.
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residual phase corresponding to n = 0. Destructive summation occurs for a contribution ϕn
at n � 0 when

jϕn � ϕ0j ¼ ϕerr ¼
π
2
: (44)

Figure 9. Azimuth impulse response where the antenna positions are assumed to lie on an ideal
linear path but the actual positions have drifted in the given dimension; (a) has no drift. In (b) and
(c), a drift of 10λ s–1 is present in elevation and azimuth, respectively. In (d)–(f), drift is expressed in
total metres across the synthetic aperture.
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In range, this corresponds to

Δrerr ¼ ϕerr
k

¼ λ
4
: (45)

Because the residual range-induced phase error grows as the platform distance from
the mean increases, there exists an azimuth beamwidth wide enough to include target
returns that sum destructively if the phase-centre of the cell is is sufficiently displaced.
Using the approximations of Section 3, it is possible to derive an analytic solution for this
maximum azimuth beamwidth.

From Equation (36), γ0 ¼ 0 at the mean. Substituting this in Equation (35), the
nominal residual range Δr0 is

Δr0 � β0
2�r

þ β20
4�rð2�r2 � β0Þ

;

¼ 2β0ð2�r2 � β0Þ þ β20
4�rð2�r2 � β0Þ

;

¼ 4β0�r
2 � β20

4�rð2�r2 � β0Þ
;

¼
β0 �r2 � β0

4

� 	
2�r �r2 � β0

2

� 	 :

(46)

This leads to the value ϕ0 ¼ kΔr0, which is the residual phase at the mean. If β0 is low
compared with �r2 then

Δr0 � β0
2�r

; (47)

which is the same residual range equation as given by the first-order Taylor series
approximation in Equation (32). This confirms the validity of the Taylor series approx-
imation near the POC approach.

According to Equation (45), for contributions away from the nominal (i.e. n � 0), the
point where destructive summation occurs is the maximum residual range Δrmax that is a
quarter wavelength away from the residual at the POC approach:

Δrmax ¼ Δr0 þ λ
4
: (48)

Using Equation (35), we are thus interested in finding the point where

Δrmax ¼ Δr0 þ λ
4
¼ βmax

2�r
� γ2max

4�rð2�r2 þ γmaxÞ
þ ðγmax � βmaxÞ2
4�rð2�r2 þ γmax � βmaxÞ

: (49)

If the motion is ideal (i.e. all motion is in the along-track direction), then
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γn ¼ ζ 2x;n: (50)

Likewise, if the geometry is non-squinted and there is little phase-centre displacement
in azimuth, then

βn � β0 ¼ 2ðδy�yþ δz�zÞ � δ2y � δ2z : (51)

Using these two assumptions it is possible to obtain an analytic expression for the
maximum azimuth distance away from the mean for which Equation (48) applies. Solving
for γn in Equation (35) leads to

γn ¼
βn
2
� 2�r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βnðβn � 4�rΔrnÞð16�r4 þ 4βn�rΔrn � β2nÞ

q
2ð4�rΔrn � βnÞ

; (52)

¼ βn
2
� 2�r2 � β2n

4
þ 4βn�r

4

4�rΔrn � βn


 �
: (53)

Substituting this result into Equations (50) and (51) yields

ζ 2x;max ¼
β0
2
� 2�r2 þ β20

4
þ 4β0�r

4

4�rðΔr0 þ λ=4Þ � β0
: (54)

The minus sign in ± is dropped since this leads to a non-physical solution. For a given
phase-centre displacement, this can be used to find the maximum distance of the antenna
from the POC approach before the pulses sum destructively. This gives a limit for the
maximum azimuth beamwidth of the antenna.

An example of the maximum azimuth beamwidth is illustrated in Figure 10. In
subfigure (a), the maximum azimuth beamwidth is plotted as a function of incidence
angle to the scattering-cell where the platform motion is ideal. Multiple curves are shown,
each depicting a different slant-range resolution in wavelength. The phase-centre displa-
cement is the maximum distance from the physical centre of the scattering-cell (from
Equations (18) and (19)). For finer-range resolutions (i.e. the upper curves), a wider
azimuth beamwidth is permitted than at coarser resolutions. This is because finer-range
resolutions limit the maximum phase-centre displacement and thus decrease the maximum
residual phase. This means that it may not be possible to obtain fine azimuth resolution
simultaneously with coarse range resolution. As stated previously, in many imaging
scenarios, scattering-cells are treated as being distributed targets whose phase-centre is
near the physical centre. Therefore in practice, scattering-cells may not have the ‘worst
case’ phase-centre offset depicted here; however, for discrete targets, an individual point
target (e.g. a corner reflector) may be located anywhere within the scattering-cell and thus
may result in a maximum residual phase.

The examination above assumes ideal, linear motion of the antenna platform. When
non-ideal motion is present, the fluctuation from the linear path increases the magnitude
of the range residuals. This further constrains the azimuth beamwidth. Small incidence
angles (those near nadir) are affected more significantly by non-ideal motion. This is
shown in Figure 10(b)–(d), which illustrate the effect of non-ideal motion for varying
degrees of slant-range deviation.

International Journal of Remote Sensing 2031



In Figure 10(b), where the displacement is 0.1% of the height above the surface, there
is little difference except at low incidence angles (<10°) or very coarse range resolutions
(~ 200λ). When the non-ideal motion is 1% of the height, as in Figure 10(c), the effect of
non-ideal motion is more pronounced: the minimum acceptable incidence angle becomes
20°, with the exception of the 200λ resolution which has a minimum acceptable incidence
angle of 30°. By 30° incidence the maximum beamwidth is identical to that without non-
ideal motion for all but the 200λ case.

Figure 10(d) shows curves similar to the previous cases when there is 10% height-to-
lateral/elevation random path deviation. With this amount of motion the results are highly
dependent on the incidence angle. Incidence angles less than 10° are unacceptable at any
resolution. At phase-centre displacements of 200λ, only a very narrow beamwidth is
allowed over a small range of incidence angles.

In most imaging situations the limit on azimuth beamwidth is not an issue. However,
there are cases where this issue could arise, especially in low-altitude SAR. For example,
if a SAR platform is 500 m above the ground and is imaging at 40° incidence with a 20°
beamwidth antenna, then the aperture is 230 m wide. If the platform is travelling in the
along-track direction at 25 m s–1, then a 10 m s–1 cross-track velocity causes a residual

Figure 10. Maximum azimuth beamwidth as a function of incidence angle. In each subfigure, the
various curves indicate slant-range resolution in multiples of wavelength. In all cases, the phase-
centre of the scattering-cell is located in the corner away from the physical centre. Subfigure (a)
shows ideal motion. The remaining subfigures show random non-ideal motion in slant-range, with
standard deviation given as a percentage of range to the scattering-cell.
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phase error large enough that the pulses on the edge of the aperture add destructively for
any cells whose phase-centre is 20 or more wavelengths away from the centre of the cell.
While the effect may not be dramatic (as it may only affect a relatively small percentage
of pulses), it can limit the effective maximum azimuth resolution and potentially introduce
artefacts.

4.4. Squint

Squint-mode SAR is where the antenna pointing angle is not coincident with the zero
Doppler plane. Where the squint is zero, the antenna points directly at a target when at the
POC approach (i.e. when the target is in the zero Doppler plane).

As cited previously, frequency domain algorithms typically require special processing
in order to form images from squinted raw data. This arises for two main reasons. First,
squint shifts the azimuth chirp spectrum so that it is no longer centred at 0 Hz. This
necessitates modification of the azimuth-matched filter. Second, the range and azimuth
dimensions begin to couple and are no longer orthogonal, which has differing effects on
the algorithms depending on the nature of their treatment of orthogonality. The effects
become especially pronounced at larger squint angles (>30°).

Because back-projection models the propagation phase of the expected received signal
as part of the matched filter, squint-mode operation does not require special treatment. In
other words, back-projection natively forms images from even highly squinted geome-
tries; the Doppler-centroid shift needs no special handling even if aliased. For further
discussion on this, see Duersch (2013).

5. Discussion

Back-projection may be seen as an ideal two-dimensional, spatially varying matched filter.
It is particularly suited to low-altitude, high-motion scenarios. If the imaging geometry is
known exactly then back-projection is exact. Unfortunately, this is rarely the case since
the phase-centre of the scattering-cells is unknown and there is inaccuracy in the mea-
surement of the platform position. These uncertainties lead to phase errors that distort the
back-projection solution. Fortunately, however, these errors are generally small.

As shown in Section 4.1, for common slant-range resolutions, the effect of having the
phase-centre located away from the physical centre of the scattering-cell is minimal when
DEM error is small. Since high-quality DEMs are available over many parts of the Earth,
this requirement is often met. In addition, considering that many imaging scenarios
involve distributed targets whose phase-centre is near the physical centre of the cell,
this issue is further moderated for such targets (although discrete targets may still be
affected).

Another issue affecting system performance is the quality of position estimates from
the navigation system. Even when corrected using satellite data, navigation systems are
subject to drift in the position estimates. Because the synthetic aperture length increases
with height above the imaged scene, so does the magnitude of drift. Thus, a more precise
navigation system may be required at higher altitudes. This limitation, however, may be
relaxed through the use of autofocus techniques. Autofocus algorithms are commonly
used in SAR to remove phase errors due to uncompensated motion, hardware limitations,
or other non-ideal effects (Carrara, Goodman, and Majewski 1995; Mancill and Swiger
1981; Eichel, Ghiglia, and Jakowatz 1989; Werness et al. 1990; Wahl et al. 1994; Li,
Guosui, and Jinlin 1999; Fienup and Miller 2003).
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DEM and INS accuracy help determine whether back-projection is well suited to a
given situation. In addition, the imaging scenario helps determine suitability. In space-
borne applications, the platform motion is very regular (i.e. nearly ideal), has very large
range-to-target, and generally has a narrow enough range swath that the change in
incidence angle across the swath is minor. Thus, at high altitudes, frequency domain
methods are recommended since these are more computationally efficient. On the other
hand, at low altitudes there may be significant non-ideal motion, high range-migration,
dynamic imaging modes, etc. Thus, the highly parametrizable matched filter of back-
projection becomes advantageous when imaging at low altitudes, and particularly at very
low altitudes (i.e. tens or hundreds of metres above the ground).

6. Conclusion

This article explores time-domain back-projection for stripmap SAR from first principles.
The back-projection algorithm may be advantageous in imaging situations consisting of a
high degree of non-ideal motion (e.g. very low altitude, small platform). Several methods
of approximating the hyperbolic range-to-target are provided and compared. Using these
approximations, this article presents an analysis of the sensitivity of back-projection to its
geometric inputs as well as several performance considerations. It is seen that the
sensitivity to motion, range, etc. in a given dimension is higher the more the phase-centre
is displaced from the pixel centre in that dimension. Increasing the slant-range to target
desensitizes the residuals with respect to motion and phase-centre displacement. Narrow-
beam antennas are not as sensitive to small along-track phase-centre displacement. It is
seen that the required DEM accuracy for back-projection is dependent on the level of non-
ideal motion present: more non-ideal motion requires a more accurate DEM to produce
the same quality of imagery.
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