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Abstract

High-resolution global measurement of the near-surface wind field over
the ocean’s surface is of critical importance in weather forecasting and
in many oceanographic and meteorological studies. Such measurements
can be provided by space-borne radar scatterometers. Scatterometers
make indirect measurements of the wind by first measuring the surface
radar backscatter from which the wind vector is “retrieved” or estimated.
A new model-based technique for wind estimation promises improved
measurement accuracy. This method is based on a mesoscale model for
the near-surface oceanic wind field. The wind field model represents a
trade-off between modelling accuracy and computational complexity in
the estimation procedure. [t is based on the geostrophic approximation
and simplistic assumptions about the wind field vorticity and divergence,
but includes ageostrophic winds. Simulation of oceanic wind fields and
the scatterometer measurement system played a key role in the develop-
ment and evaluation of the model. In this paper, the development and
evaluation of the wind field model is described. The role of simulation in
performing trade-offs between the model accuracy and the computational
complexity of the model-based estimation procedure is discussed. The
model development is an excellent case study of how modelling can be
applied to improve the performance of a complex measurement system.
and how simulation can be applied to develop and evaluate modelling
tochniques. A brief comparison of wind estimates made from simulated
measurements and estimates based on actual measurements made by the
SEASAT scatterometer is provided.
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1. Introduction

In the mid 1980s. the NASA-sponsored experimental satellite SEASAT
demonstrated, among other things, that winds over the ocean could be
ineasured from space using a wind scatterometer [2, 3. 11]. A scatterom-
oter measures the wind-dependent radar backscatter of the ocean’s sur-
face, from which the speed and direction of the wind over the ocean's
surface are estimated. Unfortunately, the pointwise estimation proce-
dures traditionally used result in nonunique estimates of the wind vector
[6]. Since asingle estimate of the wind is required for most oceanographic
and meteorological studies, the ambiguity in the wind vector estimate
is resolved using an error-prone dealiasing step to select a unique wind
field map (see also [9] and [13]).

A new model-based estimation procedure ameliorates the difficulties
associated with these traditional pointwise wind retrieval techniques and
can produce more accurate estimates of the wind field [4, 5]. Key to the
success of this method is the model of the near-surface wind field. The
model represents a tradeoff between modeiling accuracy and computa-
tional complexity. In this paper the derivation of the wind field model.
and the simulation methodology used to evaluate the modelling accuracy,
will be briefly described.

An outline of this paper is as follows: first, background information
in wind scatterometry is provided, followed by a brief description of
the traditional wind estimation approach. The derivation of the wind
field model is then described. The simulation methodology used for the
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evaluation of the wind field model and for selecting the model order is
then considered. Finally, the accuracy of the estimated winds using the
model-based and traditional pointwise techniques are compared using
simulated and actual SEASAT scatterometer measurements.

2. Background

The normalized radar backscatter (o°) (at Ku band) of the ocean’s sur-
face depends on the wind speed and the relative azimuth angle between
the radar ilumination and the wind direction, in a manner which varies
with the incidence angie of the radar on the ocean surface and the radar
polarization [11]. The relationship between o° and the wind is known as
the geophysical model function and will be denoted by M. A typical ex-
ample of M is the SASS-2 model function which relates o° to the neutral
stability wind at 19.5 m [12] (see also [6]). Figure 1 illustrates the char-
acteristics of the SASS-2 model function. Note the cos 2y dependence of
o° on the relative azimuth angle x between the radar illumination and
the wind direction.

Since M has a multivalued inverse, several measurements of ¢° from
different azimuth angles must be used in order to make inferences about
the wind field. The SEASAT scatterometer (SASS) obtained ¢° mea-
surements from only two azimuth angles on an irregular sampling grid.
Future scatterometers such as NSCAT [8] will obtain 0° measurements
from three or more azimuth angles on an equally-spaced grid of sample
points over the measurement swath. These noisy measurements of ¢°
provide an essentially instantaneous sample of the wind field across the
swath over the ocean’s surface. The problem is to estimate the original
wind field at the sample points from the noisy ¢° measurements.

In the traditional approach, the noisy 6° measurements are used in
a pointwise estimation scheme in which only the ¢° measurements for a
given grid cell are used to estimate the wind for that cell. An objective
function (typically based on the likelihood function) formulated using the
noisy 0° measurements, is minimized with respect to the wind speed and
direction at the sample point. Unfortunately, due to the nature of M, the
objective function is minimized by several wind vectors. This approach is
unable to uniquely estimate the wind vector and several ambiguous wind
estimates result for each cell [6]. To select a single wind estimate for each
cell, a post-estimation procedure known in the literature as dealiasing or
ambiguity removal is used [9, 10, 13]. Dealiasing procedures have used
various ad hoc measures and/or pattern recognition of significant weather
features to select a wind vector at each sample point of the wind field.

In model-based estimation, the entire wind field over the measure-
ment swath is estimated. By using a model for the surface wind field,
this new approach also provides more accurate wind field estimates by
taking advantage of the inherent correlation in the wind between differ-
ent sample points. To estimate the wind field an objective function is
formulated using the noisy o° measurements. The objective function is
based on maximum likelihood, and model parameters are estimated by
minimizing the function. Finally, the estimated wind field is computed
from the model parameters.

Crucial to the success of this method is a suitably accurate mathemat-
ical model for describing and /or representing the near-surface mesoscale
(~ 50 km resolution) wind field over the ocean. Since other data sources
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Fig. 1. (a) Incidence angle dependence of the SAS5-2 geophysical model function; (b) Relative azimuth
angle and wind speed dependence of the SASS-2 geophysical model function.

are not always available, the model must be based on only scatterometer
data. To be useful for wind field estimation, the model must be com-
putationally tractable, and lend itself to a model parameter estimation
formulation. Note that while the model formulation is based on physical
principles, the model does not necessarily have to be based on atmo-
spheric dynamics since the model is used only for describing a snapshot
of the near-surface wind field and not for propagating winds.

A particularly simple wind field model which is suitable for wind
retrieval can be derived based on the geostrophic equation and rather
simplistic assumptions regarding the divergence and curl of the wind
field.

3. Development of The Wind Field Model

The wind field model provides a description of the wind field over the
scatterometer measurement swath at a fixed instant of time and a resolu-
tion of 50 km (corresponding to the SASS spatial sampling). To simplify
matters, we restrict our attention to a limited-area swath segment with
a maximum spatial extent of approximately 500 km square.

We denote the near-surface horizontal wind field of interest by U =
(u,v)T. We are interested in a mathematical model which will provide
a reasonably accurate description of U over a (limited-area) region L.
The vorticity ¢ and divergence é of U are defined as

( = k-VxU (1)
§ = V.U (2)

Using the Helmholtz theorem, U may be defined by a streamfunction
¥ and velocity potential x, according to

U=kx Vy+Vx (3)

where k x V4 is a nondivergent vector field and Vx is a curl-free vector
field {see [7]).

Taking the divergence and curi, respectively, of equation (3), we ob-

tain Poisson equations for % and x:
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These equations appear in the classic problems of partitioning a given
wind field into its rotational and non-divergent components and recon-
structing a wind field from specified vorticity and divergence [1]. For the
latter problem, Lynch [7] argues that the reconstruction is not unique
over a limited domain; an arbitrary harmonic function may be added
to Y, provided ¥ is also altered, to produce the same wind field. From
this Lynch concludes that the boundary values of x may be set arbitrar-
ily. He shows that setting the boundary values of x to zero minimizes
the divergent component of the kinetic energy. Choosing x = 0 on the
boundary ensures a unique reconstruction of the wind field.

Following this line of reasoning, our first modelling assumption is
that x = 0 on the region boundary. This corresponds to wind fields
with minimum divergent kinetic energy. Assuming that xy = 0 on the
boundary, equations (4) and (5), the vorticity and divergence fields, and
the boundary conditions for ¥, are sufficient for describing the wind
vector field.

To obtain simple boundary conditions we make a second major mod-
elling assumption by attributing % to the geostrophic motion. This
second assumption is that the streamfunction % is proportional to the
geostrophic pressure field p,

1

¥ s (6)
where p, is the density and f is the Coriolus parameter. Note that in
a strictly geostrophic formulation, the wind field would be nondivergent
and x would be zero. In the more general formulation which we will
adopt, x corresponds to the ageostrophic component of the wind. This
generalization allows us to apply the model to mesoscale wind fields
which depart from strict geostrophy. Inclusion of the ageostrophic flow
permits the model to span a wider space in describing the wind field.

By making this second assumption, the boundary values for equations
(4) and (5) can be specified in terms of the geostrophic pressure field.
This avoids the difficulties of using velocity boundary conditions which
may yield an overdetermined system [7].

Our third modelling assumption is that over the region of interest,
psf is essentially constant (i.e., an f-plane approximation); we do this
to simplify the mathematics. We can then normalize the pressure field
by p, f so that ¢ = p, i.e., ¥ is then the normalized geostrophic pressure
field. Then, equation (3) can be written in component form as

- L

v o= 0y+31 (7
- o 0

v = 6z+ay (8)

These two equations, along with equations (4) and (5), form the basis of
the wind field model.

To complete the wind field model, descriptions of the vorticity and
divergence fields are needed. Our fourth and final assumption is that
the vorticity and divergence fields are relatively smooth and can be ad-
equately modeled by low-order bivariate polynomials over the region of
interest. Note that the coefficients of the polynomials will be derived
from the observed wind fields. For this paper, the following bivariate
forms for the vorticity and divergence fields will be assumed:

Mc Mc
Z Z cmna ™y form+n < Mc (9)
m=0n=0
Mp Mp
S Y dnaz™y" form+n < Mc (10)

m=0n=0

¢(z,9)

6(z,y)
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where M¢ and Mp are the model orders, and ¢y, ,, and d,, , are the model
parameters. The number of parameters in the vorticity and divergence
field models are N¢ = (Mc + 1)(Mc +2)/2,and Np = (Mp + 1)(Mp +
2)/2, respectively. Selections of M¢ and Mp will be made later based on
simulation. Typically, Mo = Mp = 2 is adequate for wind estimation.

To solve equations (4), (5) and (7) through (10), these equations are
discretized on an M x N equally-spaced grid with spacing A = 50 km
over the desired region £ corresponding to the 50 km sampling resolution
of SASS. M and N represent selectable model parameters. The swath
is also segmented into smailler regions in the along-track dimension ()
to reduce computational requirements. The pressure and velocity po-
tential fields can be eliminated from the discretized system of equations,
and the velocity field can be written directly in terms of the pressure-
field boundary conditions, and the parameters of the vorticity and di-
vergence fields. The resuiting equation relating the velocity-component
fields to pressure-field boundary conditions and the vorticity and diver-
gence model parameters can be expressed as

v -
[V]:FX (11)

where the MN-element vector U is the lexicographic-ordered u-compon-
ent wind field at grid sample points, V is the lexicographic-ordered v-
component wind field, and the X vectors contain 2M + 2N —2 pressure-
field boundary conditions and N¢ + Np vorticity and divergence field
parameters [4]. The full-rank rectangular matrix F consists of known
constants. The number of unknowns in the model can be further reduced,
at the expense of modelling accuracy, by parameterizing the pressure-
field boundary conditions using a periodic polynomial (see (4.

Equation (11) provides a parametric wind field model which relates
the model parameters (in X) to the wind field (in 7 and V). This wind
field model easily lends itself to the parameter estimation formulation:
the model parameters in X are directly estimated from the noisy o°
measurements and the wind field is then computed from the parameters
using equation (11). Estimation of X from the noisy ¢° measurements
is done using the maximum-likelihood (ML) principle: the negative log-
likelihood of the model parameters is minimized to estimate the model
parameters.

Unfortunately, minimization of the log-likelihood function is compu-
tationally intensive. For a fixed swath size, the computation required is
inversely proportional to the region area (i.e., M x N) and proportional
to a power of the number of unknowns in the model; hence, we desire
to minimize the number of unknowns while maximizing M and N. The
number of unknowns is a function of the region size (as determined by
M and N) and the model orders Mc and Mp. The number of unknowns
increases as these parameters increase. However, as shown below, the
modelling accuracy decreases with increasing M and N, but increases
for increasing Mc and Mp; hence. selection of the region size and model
orders must be made by trading-off modelling accuracy against the com-
putation required to minimize the ML objective function.

4. Wind Field Model Evaluation

To evaluate the capability of the model to accurately describe and model
mesoscale winds, we are forced to resort to simulation since there is
little conventional oceanic mesoscale data available. Simulated mesoscale
test wind fields were generated starting with a state-of-the-art numerical
weather prediction model at 1.875 deg resolution (see {10]). These fields
were then interpolated to 10 km, and small-scale variability with a ak~2
spectrum was added. For a given 2000 x 2000 km region, the value of
a was selected to be consistent with the spectrum within the region.
The wind fields were selected to span a wide range of meteorological
conditions [10]. These fields were used as the “true” wind fields for the
evaluation of the wind field model.

To select the vorticity and divergence model order, a grid size (M
and N) was chosen and the modelling error evaluated for different model
orders Mc and Mp. The modelling error was computed as follows. At
a given location, the model parameters X were computed, by

?:(FTF)-lFT[g] (12)

where:ﬁ is the simulated wind field. The “model” wind field computed
from X, is

[g] = FX. (13)

The root mean square (RMS) errors (in vector magnitude, speed, and
direction) between the true field and the model field were computed for
each segment of the wind field and summed. The resuits for M = N = 10
{a 500 x 500 km region £) and various M¢ and Mp are shown in table 1.
M = 10 (500 km) was chosen to correspond to the usable SASS swath
width. The effects of varying M = N but holding M¢ and Mp fixed
are illustrated in table 2. Finally, the effects of varying N but holding
M =10, Mc = 2, and Mp = 2 fixed are illustrated in table 3.

Table 1
Wind Field Modelling Error N = 12

Model Order RMS Error
Vector Magnitude | Direction | Speed
Mc | Mp (m/s) (deg) | (m/s)
N/AT I N/AT 0.299 15.359 0.173
0 0 0.153 7.901 0.089
1 1 0.099 5.444 0.059
2 2 0.086 4.769 0.050
3 3 0.084 4.610 0.049
4 4 0.079 4.391 0.046
1 Zero divergence and curl
Table 2
Wind Field Modelling Error Mo=Mp=2
RMS Error
Vector Magnitude | Direction | Speed
M=N (m/s) (deg) [ (m/s)
4 0.033 1.099 0.015
6 0.082 3.489 0.044
8 0.087 4.165 0.048
10 0.086 4.769 0.050
12 0.087 5.354 0.052
Table 3 .
Wind Field Modelling Error M = 10 & Mc=Mp=2
RMS Error
Vector Magnitude | Direction | Speed
N (m/s) (deg) | (m/s)
6 0.083 4.071 0.047
8 0.085 4.377 0.049
10 0.086 4.769 0.050
12 0.086 5.058 0.051
14 0.087 5.383 0.053

To summarize, for a fixed M and N, as the model orders are in-
creased, the RMS errors decrease, and the number of unknowns grows.
For fixed M¢ and Mp, the RMS errors increase as M and N increase
though the number of unknowns decreases. Finally, for fixed M, M¢ and
Mp, the RMS errors increase as N is increased, though relatively slowly.
Based on the requirements for scatterometer measurement accuracy (see
[4]) and the results of the next section, M = N = 10 and Mg = Mp = 2
keep the number of unknowns small while providing acceptable model
accuracy.

5. System Simulation

The accuracy of the scatterometer-derived wind using the model-based
estimation approach is a function not only of the model, but also of the
scatterometer 6° measurement accuracy and the observation geometry
(see [6]). Since the RMS errors due to the latter two effects can be large,
some modelling error can be tolerated in order to reduce the required
computation.

To evaluate the total measurement accuracy, two approaches have
been used using simulated SASS measurements and actual SASS mea-
surements. We will first consider the simulation case.
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Fig. 2. High-level block diagram of the simulation system (see text).

To make the simulation as accurate as possible, the simulated SASS
o° measurements were made using the actual SASS observation geometry
and sampling. The simulated wind fields described above were used with
this geometry and sampling and the SASS-2 modeli function to compute
o°. Monte Carlo realization of the system measurement noise was then
added.

A noisy measurement z of the true ¢° value may be expressed as
z=0"4v (14)

where v(k) is a zero mean Gaussian random variable whose variance is
dependent on the true o°. The variance of z (or v) can be expressed as

Var{z] = ao®? + B0° + v (15)

where o, 3 and 7 depend on the observation geometry and the instru-
ment design [11]. The general noise model for the measurements may be
expressed as,

2= 0%+ v =0[1 + wi] + Voouws + ws (16)

where w;, w; and w; are independent, zero mean Gaussian random vari-
ables with known variances a, 8 and 7, respectively. A more detailed
description of the system noise model is given in [6]. Values of the pa-
rameters a, J and 7y were determined from the actual SASS data.

Using the simulated measurements, the wind was estimated using
traditional pointwise and model-based estimation. In the case of point-
wise estimation, that wind estimate which was closest to the true wind
was selected from among the nonunique results as the estimate: thus, the
pointwise results will be overly optimistic since there will be errors in se-
lecting the closest estimate when the true wind vector is not known. For
model-based estimation, the regions were overlapped 50% in the along-
track direction, and were 500 km wide (M = 10). The parameters of
the wind field model were estimated separately for each region, and the
resulting wind field estimates averaged to obtain the wind field over the
swath. The RMS error between the true and estimated wind fields were
then computed for various model orders and region sizes, and averaged
over various noise realizations and swath observation geometries. This
can be repeated for each value of N, M, Mc and Mp. Figure 2 shows a
high-level block diagram of the simulation/analysis system. While it is
impractical to present all results here, table 4 illustrates the RMS errors
for both estimation algorithms for the particular case with the model
size M = N = 10, and the model orders Mo = Mp = 2. The error
statistics were computed separately in wind-speed ranges as indicated.

Some key observations summarizing the results include: (1) the point-
wise wind field estimates have many missing data points (see, for exam-
ple, fig. 3) since it is not possible to estimate the wind when there are
missing 0° measurements at a given point due the frequent occurrence of
instrument calibration cycles (which prevent making a o° measurement
at the point as the spacecraft passes over); and (2) region sizes of M = 10
and 8 < N < 14, with Mc = Mp = 2, produce acceptably accurate es-
timates of the wind with minimum computation. Regarding this latter

Tai)le 4
RMS Difference Between the Estimated and True Fields

Wind Speed Range (m/s) 24 48 812 12-20 20+ | All

Model-based :
Number of Wind Vectors 606 2148 2010 1409 300 | 6473
rms Speed Err (m/s) 041 042 0.55 0.71 0.88] 0.35

rms Direction Err (dir) 114 67 5.0 39 36} 52
rms Vector Mag. Err (m/s) | 0.74 0.80 1.01 124 161] 0.96

Pointwise

Number of Wind Vectors 466 1589 1504 1104 238 | 4901
rms Speed Err (m/s) 0.42 041 031 0.29 0.30] 0.32
rms Direction Err (dir) 154 85 4.9 38 40| 76

rms Vector Mag. Err (m/s) | 0.90 0.84 0.87 1.03 1.56 | 0.81

Note: Simulated o° measurements are used with M = N = 10 and
Mc = Mp = 2. The error statistics were separately computed for each
wind speed band.

point, comparison of the model-based and pointwise wind field estimates
using simulated data reveals that the model-based wind field estimates
(1) appear less “noisy,” (2) generally exhibit smaller RMS direction error
than the closest pointwise ambiguity (and therefore, from the result of
any dealiasing algorithm), and (3) have no missing measurements. The
RMS wind speed and RMS vector magnitude error may be slightly larger
for the model-based estimates.

6. Actual Performance

When using actual SASS measurements, the performance of the model-
based estimate is difficult to independently establish since the ground
truth wind field is not known. In order to evaluate the performance
of the model-based estimates, pointwise dealiased SASS winds must be
used. For this purpose the data set generated by Wurtele et al. [13)
has been used. The Wurtele data set consists of two weeks of manually
dealiased SASS winds. The data set is based on winds retrieved on a 100
km grid. Since the model-based wind estimates are at 50 km resolution,
a comparison data set has been generated by using pointwise estimation

"of the SASS winds on a 50 km grid, then selecting the ambiguity which

is closest to the corresponding Wurtele unique wind direction.

Figure 3 provides an illustration of this 50 km dealiased wind field
for a portion of SEASAT rev 1070 (Sept. 9, 1978). The correspond-
ing model-based estimate is given in figure 4 with M = 10, N = 14
and M¢c = Mp = 2. Comparison of the model-based and pointwise
wind field estimates reveals that the model-based wind field estimate
(1) appears to be less “noisy,” (2) has significantly fewer missing wind
measurements, and (3) covers a wider, uniform-width swath. Since the
actual, underlying wind field is not known, it is difficult to be quantita-
tive in evaluating the measurement accuracy. However, careful compar-
ison of the estimates using both techniques has revealed a few regions
where the methods differ significantly. In every case examined thus far,
these differences could be attributed to errors in the dealiased results.
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Thus, model-based estimation can also provide an accuracy check for
more traditionally-derived results. We note that while the Wurtele result
is based on many man-hours of expert dealiasing, model-based wind
estimation is inherently automated and therefore better suited for future
operational scatterometers.

7. Summary

The traditional approach to solving the wind estimation problem leads
to multiple solutions requiring ad hoc dealiasing techniques to produce a
unique solution. The model-based estimation technique, by imposing a
model on the underlying wind field, eliminates this error-prone dealiasing
step and yields more accurate estimates of the wind even when perfect
dealiasing is assumed. The improved performance can be attributed to
the fact that the model-based approach takes advantage of the inher-
ent correlation between the wind at different sample points to reduce
the noise in the final wind estimates. Because of this. the model-based
approach is more tolerant of noise in the 0° measurements than is the
pointwise wind estimate technique; the accuracy of the wind fields esti-
mated using a model-based approach degrade gracefully as the SNR of
the measurements is reduced. This may permit reductions in the size and
weight of future scatterometer instruments by reducing the requirements
on the SNR of the 0° measurements, permitting smaller transmitters.
antennas, etc.

Compared to the previously used wind retrieval /dealiasing algorithms,

model-based wind retrieval (1) generally produces more accurate direc-
tional estimates of the wind, (2) uses more of the available ¢° mea-
surements, including points at which only a single ¢° measurement is
available, (3) has fewer “holes” in the estimated wind field, (4) produces
a wider measurement swath for SASS, and (5) is less sensitive to the
noise level in the 0° measurements. These results validate the utility of
model-based wind estimation.

The methodology used in this research has applications in other areas
involving distributed parameter systems. In wind estimation we started
with a well-defined measurement equation for a parameter (o°) which
is related to the quantity of interest (the wind) via a model function.
Our approach to the estimation of the wind from measurements of o° is
to view the wind field as a distributed parameter system which can be
approximately modeled using partial differential equations. In effect, this
system of equations provides constraints on the estimate of the quantity
of interest, thus permitting more accurate estimates.

The partial differential equation system is solved by converting it to
a finite-difference system which is then arranged to express the quantity
of interest in terms of a set of unknown parameters. This yields a simple
model of the distributed parameter system with selectable order. Simu-
lation was then used to select the model order. The desired quantity is
estimated indirectly by first estimating the unknown parameters of the
model directly from the measurements, then using the model to compute
the quantity of interest from the estimated model parameters. -

As the results of this research indicate, this methodology can be
successfully used even when the relationship between the measured pa-
rameter and the desired quantity is non-unique as is the case with the
geophysical model function relating o° and winds.
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