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Abstract 
Unmanned air systems (UAS) provide an excellent platform 
for synthetic aperture radar (SAR), enabling surveillance 
and research over areas too difficult, dangerous, or costly 
to reach using manned aircraft. However, the nimble nature 
of the small UAS makes them more susceptible to external 
forces, thus requiring significant motion compensation in 
order for SAR images to focus properly. SAR backprojec-
tion has been found to improve the focusing of low-altitude 
stripmap SAR images compared to frequency domain al-
gorithms. In this paper we describe the development and 
implementation of SAR backprojection appropriate for UAS 
based stripmap SAR that utilizes the unique architecture of a 
GPU in order to produce high-quality imagery in real-time. 

Introduction
Unmanned air systems (UAS) carrying synthetic aperture radar 
(SAR) can obtain high-quality high-resolution information 
over areas too difficult, dangerous, or costly to reach using 
manned aircraft. SAR systems are active radars that transmit 
and receive microwave signals. The received signals are used 
to create images of the surface and are able to operate regard-
less of illumination or weather conditions. The nimble nature 
of a small UAS makes it much more mobile but also more sus-
ceptible to external forces, thus requiring significant motion 
compensation in order for SAR images to focus properly. Low-
altitude operation further complicates motion compensation 
of stripmap SAR images, due to the large range of incidence 
angles and increased range cell migration. SAR backprojection 
inherently handles arbitrary aircraft motion and low-altitude 
geometry and can form images directly along known topogra-
phy making it a particularly effective algorithm for UAS-based 
SAR. However, backprojection is much more computationally 
demanding than frequency domain algorithms (Melvin and 
Scheer, 2012). Fortunately, backprojection processing is easily 
parallelized and computed efficiently on graphics processing 
units (GPU). Several studies have been conducted on imple-
menting backprojection on GPUs, most notably Fasih and 
Hartley (2010), Benson et al., (2012), Capozzoli et al. (2013), 
and Nguyen et al. (2004), but these papers focus on the sim-
plest form of spotlight mode SAR backprojection and are not 
directly applicable to stripmap SAR. In this paper we present 
the development and implementation of a highly efficient 
GPU-based SAR backprojection processor for stripmap imag-
ing. In particular, we develop a stripmap processor for linear 
frequency-modulated continuous-wave (LFM-CW) SAR systems 
operated on a UAS.

This paper is organized as follows. We begin with a back-
ground discussing the LFM-CW signal, stripmap SAR, and a 
brief introduction to the NVIDIA GPU architecture and Compute 
Unified Device Architecture (CUDA). Then, we develop a SAR 

backprojection method that accounts for motion during the 
pulse and the moving antenna pattern, which is suitable for 
UAS based stripmap SAR. This is followed by a discussion of 
the implementation of the SAR processor on a GPU. Finally, we 
use SAR data from CASIE 2009 (Long et al., 2010) to analyze the 
performance of the implementation and present the resulting 
imagery.

Background
LFM-CW Signal
Modern SAR systems can be very small, low-power, and 
lightweight such that they can be used on a small UAS. This 
reduction in size has greatly been made possible by technol-
ogy advancements and the use of LFM-CW technology. LFM-CW 
radars maximize the signal to noise ratio (SNR) achievable for 
a given peak transmit power by continuously transmitting, 
maximizing the energy of the received signal. To achieve 
high-resolution, the transmit signal is modulated over a wide 
range of frequencies.

The transmit signal of an LFM-CW radar can be described as 
the complex exponential:
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where f0 is the carrier frequency, kr is the chirp rate, ϕ is 
the initial phase of the system, and η and τ are respectively 
“slow-time” and “fast-time” which are typical SAR notation. 
Slow-time changes discretely with each pulse while fast-time 
ranges over the length of the pulse, Tp. The received signal 
from a single scatterer with position, x, can be described as 
an attenuated, time-delayed copy of the transmit signal. The 
received signal can be written as:
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where Ax is an amplitude function due to the antenna pattern, 
incidence angle, the distance to the scatterer, and the backscat-
ter from the target is σx, and τx (η,t) is the round-trip propaga-
tion time of the radar signal, which consists of the time for 
the pulse to travel from the transmit antenna to the position x 
plus the time for the backscatter to radiate back to the receive 
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antenna on the aircraft. Because the motion of the aircraft is 
many orders of magnitude slower than the speed of light c0 and 
the transmit and receive antennae are frequently only separated 
by a small distance the propagation time is approximated as:
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where p  is the position of the radar. The recieved signal is 
mixed with the transmit signal and low-pass filtered, which is 
mathematically equivalent to mixing the received signal with 
the complex conjugate of the transmit signal. The resulting 
“dechirped” signal is given by:
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Because LFM-CW SAR is typically operated from low altitude, 
the imaging scene is narrow enough that the dechirped signal 
occupies much less bandwidth than the transmit signal. This 
enables a significant reduction in the data storage require-
ments and the required speed of the instrument’s analog to 
digital converter (ADC).

Stripmap SAR
The most notable SAR operational modes are spotlight and 
stripmap (Curlander and McDonough, 1991; Melvin and 
Scheer, 2012). In spotlight SAR the antenna is controlled to 
point at the same patch of ground during the flight; whereas 
with stripmap SAR the side-looking antenna has fixed point-
ing. In spotlight mode, processing objects in the imaging scene 
are visible during the entire data collection (with the excep-
tion of shadowed objects obstructed by other objects in the 
imaging area), whereas in stripmap mode the imaged scene is 
constantly progressing. This leads to fundamental differences 
in the processing algorithms for the two operation modes.

Traditionally LFM-CW stripmap SAR image processing is 
performed with frequency domain algorithms such as the 
range Doppler algorithm (RDA), the frequency scaling algo-
rithm (FSA), and the Ω-k algorithm (Cumming and Wong, 
2005; Melvin and Scheer, 2012; Wu et al., 2012; Pfitzner et al., 
2013). Frequency domain algorithms use the assumption that 
the aircraft is travelling a straight line with constant veloc-
ity in order to process image sections in batches using FFTs. 
There are a number of modifications to these algorithms that 
compensate for non-linear motion (Moreira and Huang, 1994; 
Stevens et al., 1995; Zaugg and Long, 2007), but these meth-
ods complicate the original algorithms and their performance 
has limitations (Jakowatz et al., 1996). In contrast, the SAR 
backprojection algorithm described below is a time-domain 
algorithm that inherently compensates for non-linear flight 
paths and surface topography. The improved focusing capa-
bility of backprojection has been noted in a number of studies 
(Nguyen et al., 2004; Frey et al., 2009; Stringham and Long, 
2011). Backprojection increases the computational burden of 
generating SAR images. While there are methods for accel-
erating backprojection with some assumptions as noted by 
Ulander et al. (2003) and Moon and Long (2013) and others. 
As described in this paper, there are many cases in which SAR 
backprojection can be performed in real-time using the dra-
matic increase of signal processing power available on GPUs.

GPU Architecture
GPUs have anywhere from tens to thousands of processing 
cores, enabling the fast and efficient processing of billions of 
math operations per second on a single device. While there are 
several different GPU architectures, the key aspects important 
to our discussion can be found in nearly all recent GPUs. As an 
illustration we use an NVIDIA GTX 285 GPU shown in Figure 1. 

An NVIDIA GPU is broken into groups of processing cores which 
NVIDIA calls multiprocessors. The number of multiprocessors is 
dependent on the particular GPU. Multiprocessors contain three 
types of sub-processors including single precision units (SPU), 
special function units (SFU), and double precision units (DPU). 
Floating point operations including multiply, add, and fused 
multiply-add are performed by the SPUs and DPUs for 32-bit and 
64-bit values, respectively. The SFUs perform 32-bit transcen-
dental operations such as inverse, inverse square root, sine, 
cosine. The 64-bit transcendental operations are performed 
by software. The number of each type of processing units is 
also dependent on the GPU. Each multiprocessor includes an 
instruction unit which controls which processing units operate 
at a given time. All of the operating units execute the same in-
struction on different data, much like a single instruction mul-
tiple data (SIMD) architecture, but because the instruction unit 
controls which units are operating, the processing streams, or 
“threads,” are allowed to branch independently.

Figure 1. Illustration of the nvidia gtx 285 gpu architecture.

Table 1. Latency of gpu Operations in Number of Clock Cycles for the 
nvidia T10 Architecture (gtx 285) (Wong et al. 2010)

Operation
Latency  
(cycles)

Throughput  
(ops/cycle)

multiply 24 11.2

add,sub,max,min,mad 24 7.9

divide 137 1.5

square-root 56 2.0

sine,cosine 48 2.0

shared memory access 38 N/A

global memory access ∼ 436-443 N/A

In terms of memory, the GPU device has a large amount of 
dedicated off-chip memory, termed global memory. Each multi-
processor has a large bank of 32-bit registers, a block of shared 
memory, and constant and texture caches. These resources 
are shared among the processors within a multiprocessor. 
It is important to understand the types of memory available 
because with the vast amount of computing power of the GPU, 
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the achievable performance gains are frequently determined by 
the memory accesses of the threads. This is illustrated by the 
latency of different operations as shown in Table 1.

The texture cache is a unique GPU feature. It provides read-
only access to global memory, and is optimized for spatial 
locality for one-, two-, or three-dimensional arrays. It has hard-
ware built in to provide linearly-interpolated values with virtu-
ally no performance cost. The linear interpolation is performed 
using only 8 bits of fractional precision, but in many cases the 
reduction of memory access time warrants the lower accuracy. 
Later, we explain how the hardware linear interpolation can be 
used to greatly accelerate backprojection processing.

In order to utilize the computing capabilities of the GPU, 
NVIDIA provides the Compute Unified Device Architecture 
(CUDA) which augments the C programming language. CUDA 
adds a kernel construct which ties a groups of threads to multi-
processors, where each thread executes the same function vir-
tually in parallel. Each thread maintains its own program coun-
ter, and branches can diverge in the execution. If the branches 
diverge, the independent branches are executed serially. In this 
case the processor is not fully utilized. Thus it is important to 
avoid branch divergence to achieve optimal performance.

In the following section we develop SAR backprojection for 
LFM-CW stripmap SAR. Then we describe the real-time imple-
mentation of the backprojection algorithm using the GPU’s 
processing capabilities described in this section.

Derivation of Stripmap SAR Backprojection
In LFM-CW SAR, the motion of the aircraft during a pulse can be 
significant as noted by Ribalta (2011) and Meta et al. (2007). 
Ribalta (2011) derives a backprojection method for focusing 
spotlight-mode LFM-CW SAR data; following a similar meth-
odology we develop a backprojection method for stripmap 
LFM-CW SAR that includes an extension for ultra-wide-band 
(UWB) SAR. The received signal can be written as the integral 
of the dechirped signal, Equation 4, from a single target over 
the imaging area:
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where R is the imaging area, kr is the chirp rate, and I is the 
imaged area. The simplest method for reconstructing the SAR 
image, albeit highly computationally demanding, is discrete 
time-domain correlation, described as:
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where Î(x) is the reconstructed SAR image, sx is the reference 
signal for a target at pixel location x, W is an apodization 
window, N is the number of samples in a pulse, and M is the 
number of pulses over which the backprojection is calculated. 
Square braces are used to indicate discrete samples such that:

	 s[m,n] = s(ηm, tn) = s(mTp, n/fs)	 (7)

where Tp is the pulse length, and fs is the ADC sampling frequen-
cy. To simplify we use a phase-only reference signal yielding

	

, , ]

{ [ , ]
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Using no approximations Equation 8 generates the ideal 
reconstructed image; however it is computationally intensive, 
on the order of O(MNLI) where LI is the number of pixels in 
the image, M is the number of pulses, and N is the number of 
samples in each pulse.

To reduce computation we first range-compress the 
samples. In order to perform range compression, the range 
from the radar to the target is traditionally approximated as 
stationary during a pulse. However, because LFM-CW SAR uses 
a much longer pulse we approximate τx as having linear mo-
tion during the pulse, i.e.:

	 τ τ  
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where v is a vector of the component velocities. By selecting 
an apodization window that can be separated into range and 
azimuth windows Wa and Wr, Equation 8 can be written as:
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The t2
n terms in Equation 13 prevent us from replacing the 

second summation with the range-compressed data. Ribalta’s 
derivation accomplishes this task by noting that the linear 
terms 2πkrtnτx and 2πf0νxtn dominate the summation in many 
imaging scenarios, and discards the other terms. However, 
to improve upon this approximation we instead use the least 
squares approximation
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The error induced by the approximation in Equation 14 is 
minimal for low-altitude and typical aircraft speeds. Using 
Equation 14 in Equation 11 yields:
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where Sm is the Fourier transform of Wr [n]s[m,n], which is the 
range-compressed data. Range compression is accomplished 
using a Fourier transform of the dechirped data because each 
object is represented by a single frequency related to the time-
delay using the stop-and-hop assumption in the dechirped 
data, Equation 4. Using the range-compressed data instead of 
the dechirped data greatly reduces the computational com-
plexity to the order of O(ML1 + MNlog2(N)).

By analyzing a point at the far end of the range swath for a 
particular radar’s imaging parameters, further simplifications 
can be made. For example the fourth term phase is only ben-
eficial for extremely high-bandwidth and long pulses which 
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are difficult to realize in practice, and the third phase term 
and the last term on the range index can be neglected because 
νx << 1, which is a ratio of the aircraft speed and the speed of 
light. The third range index is only beneficial in for extreme 
ranges that are not typical in LFM-CW imaging. With this small 
approximation Equation 15 simplifies to:

	 	

(16)

The first term in indexing Sm is found in traditional backprojec-
tion methods, and the second term partially compensates for the 
motion during the pulse and was identified by Ribalta (Ribalta, 
2011). The third term, which we call the UWB correction, was 
not included in Ribalta’s study; however, we show that in ultra-
wide-bandwidth operation the third term can be significant.

Figure 2 illustrates the different indexing terms for the 
range compressed data for an UHF radar with 500 MHz band-
width and target at a 45° squint. We note that in a practical 
imaging scenario, the transmit signal at this frequency would 
be notched to avoid conflicting bands; however, the notching 
does not significantly alter the results of the simulation. The 
range-compressed signal received from a single point target 
with the aircraft moving during the pulse is represented by 
the thick plot. The thin plot represents the signal received 
as if the aircraft were stationary as assumed with “stop-and-
hop.” The dashed vertical lines represent the three indexing 
calculations discussed: from right to left the lines describe the 
indexing term using the stop-and-hop assumption, Ribalta’s 
correction, and the UWB correction described in Equation 16.

In this scenario the UWB correction described in Equation 

16 is needed in order to correctly index the peak of the range-
compressed data and properly focus the radar image. The 
ratio of Ribalta’s correction and the additional UWB correction 
is the ratio of the carrier frequency and the bandwidth of the 
radar. So for narrow band SAR imaging where the bandwidth 
is much smaller than the carrier frequency, Ribalta’s correc-
tion is sufficient for focusing the SAR image.

Compensated Backprojection
The phase-only backprojection described in Equation 15 
works well for data sets collected on platforms where the 
antenna attitude is fairly constant, such as satellites and large 
aircraft; however, a small UAS is very susceptible to external 
forces often resulting in undulating motion. Thus, some pixels 
are calculated using more samples and different antenna gains 
than others resulting in SAR images with varying intensity. 
In this discussion we do not address the effects of incidence 
angle which are addressed in detail in Frey et al. (2013).

In order to remove the variation of intensity due to the mo-
tion and attitude of the aircraft we examine the backprojec-
tion filter. The complex gain Ax from Equation 4 is given by 
the radar equation, which can be written as:
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where B is a constant that accounts for all the radar parameters 
that are independent of flight and position parameters such as 
the transmit power, receiver gain, system losses, etc., Gx(η) is 
the antenna gain (assuming mono-static operation), and σ0

x is 
the normalized backscatter. Using Equation 17 we relate the 
magnitude of Equation 16 to the normalized backscatter as:
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If all of the system parameters are precisely known this deri-
vation produces fully calibrated images and even when the 
full parameters are not fully known most of the variation can 
still be compensated for within a scale factor.

Interpolation
Note that Equation 8 uses continuous values of the range com-
pressed data; however, the range-compressed data is discrete, 
requiring that the range-compressed data be interpolated. The 
selection of the interpolation method can dramatically affect 
both the speed and accuracy of the processor. In order to pro-
duce high-quality images, backprojection implementations use 
some form of interpolation; although it is not always explicitly 
stated. Ideal interpolation is achieved using the DTFT of the 
dechirped data or Dirichlet interpolation of the discrete range-
compressed values. Both of these approaches are computation-
ally demanding. Because of the simplicity of implementation, 
some backprojection methods use linear interpolation (Fasih 
and Hartley, 2010) while others significantly zero-pad the 
range-compression FFT to approximately apply Dirichlet inter-
polation at discrete points (Stringham and Long, 2011; Benson 
et al., 2012). Combining zero-padding and polynomial interpo-
lation methods increases the accuracy; however, the non-equi-
spaced result FFT (NERFFT) provides even better performance. 
The NERFFT is related to the non-uniform FFT (NFFT or NUFFT). 
The NERFFT applies a window to the dechirped data prior to 
using the FFT such that the DTFT results can be obtained using 
only a small number of range-compressed samples (Fourmont, 
2003; Capozzoli et al., 2013). For completeness, details of the 
NERFFT are given in the Appendix.

Figure 2. An illustration of range-compressed data for a point 
target observed by a moving aircraft (thick plot) and a stationary 
aircraft (dashed plot) and the available indexing terms. The index-
ing terms are represented by the vertical dashed lines. From right 
to left, the lines respectively represent the indexing term using 
the stop-and-hop assumption, Ribalta’s correction, and the index-
ing term given in Equation 16. The simulation is for an uhf radar 
with a 500 mhz bandwidth and a target at a 45° squint.
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Sub-aperture Processing
Another important function of a SAR processor is to provide 
multi-looking to reduce speckle. In multilook processing, 
sub-aperture images are created using subsets of the data 
partitioned by the azimuth angle or Doppler frequency. The 
subsets can be created using azimuth filters, but, as discussed 
in the next section, in backprojection processing it is more 
effective to apply azimuth windows. The final multi-looked 
image is created by power summing the sub-aperture images. 
Each sub-aperture image is effectively created with a narrow-
er beamwidth than the physical antenna beamwidth resulting 
in a lower-resolution image. With the separate sub-aperture 
images formed from different portions of the phase history, 
the speckle statistics are independent for non-overlapping 
sup-apertures. Averaging the magnitude of the sub-aperture 
images reduces the image noise and makes it easier for users 
to interpret the images (Jakowatz et al., 1996).

GPU Implementation
As shown in Equation 16, backprojection image formation can 
be independently computed for individual pixels. This makes 
it easy to parallelize the computation; however, simple paral-
lelization does not lead to a real-time processor in most imag-
ing scenarios. Because the UAS is constantly moving and the 
antenna is not steered, different areas are illuminated during 
each pulse. As a result, each pixel of the backprojection image 
only needs a subset of the collected pulses in its calculation, 
but each pixel needs a unique subset. Therefore, if not careful-
ly implemented, the backprojection calculations are performed 
for pulses that do not contribute to a pixel’s final value. The 
ability to compute the backprojection image in real-time is 
largely achieved by reducing unnecessary computations.

Overall Implementation
The structure of the backprojection processor is outlined in 
the pseudo-code shown in Algorithm 1 (see Appendix). Strip-
map SAR collections frequently result in very long strip im-
ages. It is neither reasonable nor desirable to process a flight’s 
collection as a single image. Therefore, the backprojection 
processing is broken into multiple images. To begin, we take 
a section of data of reasonable size resulting in an image that 
fits in the GPU memory. The image is oriented along the flight 
direction allowing efficient use of the GPU thread structure to 
break up the backprojection calculation.

Each section is broken into small groups or batches of 
pulses. A window is applied to the dechirped data to provide 
the desired range apodization and the NERFFT window. Then 
the FFT is computed using the NVIDIA CUFFT library on the 
GPU. Concurrently, the CPU is used to calculate the three-
axis heading of the aircraft, simplifying the calculation of the 
azimuth angle that is used for the apodization window and 
multi-look processing. The azimuth bins that are visible dur-
ing the batch are determined using the first and last antenna 
positions. This information is used in the backprojection 
kernel to reduce the number of calculations performed for 
pixels outside of the radar beamwidth during a batch. The 
size of the batch has considerable effect on the performance 
of the algorithm. A large batch reduces the number of global 
memory accesses, but a small batch reduces the number of 
pixels included in the backprojection calculations that receive 
negligible contribution from a pulse. Finding the optimal 
batch size for a given velocity, PRF, and beam-width is found 
with some experimentation. The backprojection kernel is then 
executed for each batch of pulses.

At the beginning of the backprojection kernel, the antenna 
positions are copied to the shared memory so that each block 
of threads only accesses the global memory for the radar posi-
tions once. Using shared memory for variables accessed by 

multiple threads can greatly reduce the kernel runtime. The 
backprojection kernel calculates the distance and angle from 
the pixel to each antenna position. The angle is used to cal-
culate azimuth apodization windows for the full aperture and 
the sub-apertures. The distance is used to calculate the expect-
ed phase of each pulse’s contribution and to interpolate the 
range-compressed data. To further reduce the runtime, local 
variables are used to accumulate the pixel contribution so that 
writes to global memory only occur once during each batch.

In the following we describe key portions of the proposed 
backprojection algorithm, including the interpolation and 
sub-aperture processing steps.

Interpolation
In the backprojection kernel the range-compressed data is 
interpolated for every contribution to the pixel. Thus, the 
performance of the interpolator is critical to the backprojec-
tion computation. Our criteria for selecting an interpolator is 
based on the accuracy and runtime performance. The selec-
tion of the interpolator affects other implementation tradeoffs, 
which can have dramatic effect on its overall runtime perfor-
mance. In this section we compare the error of the interpola-
tion methods directly, but only discuss the runtime perfor-
mance in terms of computational complexity. We also present 
a method for accelerating nearly any interpolation method 
using the hardware linear interpolation on a GPU.

Accelerating Interpolation Using GPU Texture Cache
Sigg and Hadwiger (2005) demonstrate a method to acceler-
ate cubic interpolation by casting linear interpolation as part 
of the cubic interpolation. We use this same concept to show 
how linear interpolation can be used within any convolu-
tional interpolation scheme to accelerate the processing. The 
finite fractional precision of the GPU hardware linear inter-
polation incurs some accuracy loss; however, when used to 
accelerate the NERFFT, in many cases the resulting accuracy 
is greater than other common interpolation methods, includ-
ing nearest neighbor, linear, and cubic interpolation.

We define a convolutional interpolation scheme by:
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where h = x – ëxû, and the functions cm(h) are not necessarily 
linear. In the form of Equation 19, traditional linear interpola-
tion has the coefficient functions

	 c0(h) = (1 – h)	
(20)

	 c1(h) = h

Cubic spline interpolation can also be described in this form. 
In order to take advantage of the GPU hardware linear interpo-
lation we rewrite Equation 19 with linear interpolation as an 
intermediate step. We begin by describing the summation in 
pairs as follows:
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where ν = 2r – K + 1. With some manipulation, we then de-
scribe the pairs as a linear interpolation yielding:
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 and C(h) = cν (h) + cν+1(h). Equation 

22 effectively applies the window weightings cm for two mem-
ory accesses by shifting the h of the linear interpolation. Using 
the texture cache’s linear interpolation, a pair of memory 
accesses is aggregated into one, effectively cutting the memory 
accesses in half and reducing the overall processing times.

Error Comparison
In order to create a SAR backprojection processor that appro-
priately balances the tradeoff of speed and accuracy, we need 
to select an interpolator that balances computational accuracy 
and complexity. Up to this point we have generally discussed 
the error of the interpolators. In this section we quantify the 
interpolation error of several interpolators for use on a GPU. In 
order to capture the effects of the GPU hardware interpolation 
and single precision arithmetic accurately, we use a Monte 
Carlo approach to compare the RMS error of the interpolation 
schemes previously discussed.

The goal of the interpolator is to provide both magnitude 
and phase accurate range-compressed samples at non-integer 
indices. The data is simulated as a band-limited signal using a 
Gaussian random number generator. The points at which the 
range-compressed data is interpolated are simulated with a 
uniform random number generator, which closely matches the 
distribution of range samples. We then pass the data and the 
points to each of the interpolators and calculate the RMS error 
compared to the DTFT of the data at the points. We average the 
results of multiple realizations so that the error statistics do 
not significantly change with more realizations.

Figure 3 shows the RMS interpolation error for the inter-
polators on a log-log plot with the RMS error in dB on the 
y-axis and the zero-padding factor on the x-axis. The error of 
the nearest neighbor, linear, and cubic spline interpolation 
methods drops log-linearly with the zero-padding factor each 
with slightly steeper slope, which equates to lower error. 
The reduction in error for these methods is due to higher 
zero-padded data being smoother. In contrast the NERFFT er-
ror drops quickly with small zero-padding factors and then 
trends to leveling out. Thus, the motivation for higher zero-
padding factors is greatly reduced when using the NERFFT. 

With wider windows (higher K), the NERFFT is considerably 
more accurate. We note that the number of memory accesses 
for K = 1 and K = 2 is equivalent to linear and cubic interpo-
lation, respectively. The K = 1 NERFFT has lower error than 
linear at zero-padding factors less than 4; however, the NERFFT 
window applied to the raw data increases the quantization 
noise introduced during the FFT which limits the achievable 
accuracy gains for the NERFFT with higher zero padding.

Two versions of the NERFFT are used in Figure 3, the latter 
of them being accelerated using the hardware linear interpola-
tion. The accelerated versions are denoted “tex” in the legend. 
For the K = 1 NERFFT accelerated results are identical. The ac-
celerated K = 2 NERFFT only has slightly increased error com-
pared to the non-accelerated version, but the accelerated K = 
3 NERFFT has slightly higher error than the K = 2 NERFFT. This 
demonstrates the limited accuracy available from the texture 
cache’s linear interpolation. Note that the NERFFT K = 2 case is 
of the same computational complexity as the cubic spline and 
has dramatically lower error. Using the NERFFT both reduces 
the error and lowers the memory storage requirements.

NERFFT Implementation
Using the results of the error analysis given in Figure 3, we 
select the accelerated NERFFT K = 2 for the range compres-
sion because of its high accuracy, lower memory usage, and 
potentially lower computational cost. In order to optimally 
take advantage of the GPU resources described in the back-
ground, transcendental functions and memory accesses need 
to be reduced when possible. In the GPU implementation of 
the NERFFT described in (Capozzoli et al., 2013) each NERFFT 
access requires 2K memory accesses and 2K evaluations of 
the hyperbolic sine and square root operations. We reduce the 
required computations and increase the speed by approximat-
ing the combined Bessel functions C(h) and B(h) shown in 
Equation 22 using polynomials.

Sub-aperture Processing
Fasih and Hartley (2010) suggested that sub-aperture pro-
cessing can be achieved using the implementation used for 
full-resolution processing by running the backprojection kernel 
multiple times with different sections of the data. While such a 
method keeps the code cleaner, it is more efficient to calculate 
all of the sub-aperture images within the same thread. Calculat-
ing the sub-apertures within the same thread avoids duplicate 
memory accesses and recalculations for overlapping sub-
apertures. The inclusion of the sub-apertures in the processing 
adds another memory layout choice. The sub-aperture image 
pixels can either be assigned as discrete images or one con-
glomerate image with the sub-apertures for each pixel occupy-
ing a contiguous slot in memory. In our experiments, we find 
that with a significantly large batch size and a small number of 
sub-apertures, either layout performs equally well because the 
writing of the image pixels only occurs once during each batch.

Results
To demonstrate the performance of the GPU backprojection 
implementation, we use SAR data collected as part of the Char-
acterization of Arctic Sea Ice Experiment (CASIE) (Long et al., 
2010). The CASIE SAR data was collected using the microASAR, 
a small, LFM-CW, C-band SAR system on board the NASA SIERRA 
UAS (Zaugg et al., 2010; Stringham et al., 2011). During the 
CASIE mission the microASAR operated with a 160 MHz band-
width and an 11 degree beamwidth resulting in approximately 
1 m × 15 cm single-look resolution. To improve the visual 
quality of the image we reduce the speckle using seven sub-ap-
ertures with 50 percent overlap. The resulting images have 50 
cm × 50cm pixel spacing. For details about the CASIE imagery 

Figure 3. rms error for different range-compressed data interpola-
tion methods with several zero-padding factors. There are two 
versions of the nerfft used; the ones denoted “tex” are acceler-
ated using hardware linear interpolation.
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and for sample data see Long et al. (2010), Zaugg et al. (2010), 
Stringham and Long (2011), and Long and Stringham (2012).

Figure 4 is an example of the imagery produced using the 
backprojection implementation described in this paper. The 
data was collected over sea ice in the Arctic Ocean north of 
Svalbard Norway. The UAS travels along the top edge from left 
to right. The low-altitude of this image results in a very wide 
range of incidence angles as illustrated on the right side of the 
image, and the backscatter roll-off due to incidence angle can 
be seen in the far range.

To illustrate the effectiveness of the compensated backpro-
jection, a portion of an image created during a maneuver is 
shown in Figure 5. In this image the UAS is finishing a climb 
from an altitude of 270 m to 350 m. As with any maneuver, 
there are significant attitude changes which are typically unac-
counted with traditional SAR processing methods. In contrast 
to Figure 5a, the compensated image in Figure 5c has only a 
slight residual variation.

The image shown in Figure 4 was processed using a 2008 
Mac Pro desktop equipped with 2–3.2 GHz quad-core Intel 
Xeon processors, 16 GB of memory, and a NVIDIA GTX 285 Video 

card. The image collection time is 100 sec. Including the time 
to load the data and write the image to disk, the backprojection 
processing takes 85 sec using nearest neighbor interpolation 
without the texture cache, 70 sec for the K = 2 NERFFT imple-
mentation, and 60 sec using the K = 1 NERFFT implementation. 
Using the GPU’s texture cache to accelerate the interpolation, 
the NERFFT requires only one memory access in the K = 1 case 
and two in the K = 2 case. The runtime for both NERFFT imple-
mentations is better than the nearest neighbor implementation 
which only has one memory access. The improved runtime 
results from using the texture cache, which significantly 
reduces the latency of the memory accesses. We note that the 
GPU implementation of the processing is faster than real-time.

Conclusions
Using small LFM-CW SAR on unmanned air systems can pro-
vide unprecedented information for scientific and military 
missions. The low-altitude geometry and significant motion 
typical of small UAS operation requires significant motion 
compensation to generate high quality imagery. This work 

Figure 4. An example image of sea ice processed with the gpu sar backprojection. The left y-axis specifies the ground range in 
meters, and the right y-axis is the incidence angle.

(a) (b) (c)

Figure 5. An example of the improvement made using the compensated backprojection: (a) shows the uncompensated image, (b) 
shows the weighting function, and (c) shows the compensated image.
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presents an efficient backprojection processor that provides 
excellent motion compensation for UAS-based stripmap SAR 
using consumer-grade graphics processing units. We devel-
oped the stripmap backprojection algorithm from spatial 
coordinates accounting for the un-steered antenna and for the 
motion of aircraft during the long duration of an LFM-CW pulse. 
The processor takes advantage of the unique processing hard-
ware of the GPU to produce quality images faster than real-time 
for the CASIE mission. This work shows that SAR backprojec-
tion can be used effectively in real-time scenarios from a UAS.

For those interested in working with UAS SAR data, we pro-
vide a small sample of the CASIE data set with basic process-
ing scripts on-line (Long and Stringham, 2012).
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APPENDIX
NERFFT
The NERFFT reconstructs a non-equispaced Fourier trans-
form using a windowed and zero-padded discrete Fourier 
transform (Fourmont, 2003; Capozzoli et al., 2013). The key 
principle of the NERFFT is that the complex exponential in the 
DFT summation can be rewritten as:
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where ϕ and ϕ̂ are a window function and its Fourier transform, 
respectively, and  is the support of ϕ̂. Using Equation A1, the 
interpolated range-compressed data can be described as:
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where Sc is the FFT of 
[ ]

( )

s k
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φ π2  with a zero-padding factor c. A 

proof of Equation A2 is given in (Fourmont, 2003). To illus-
trate, let ϕ be a rect window so that ϕ̂ is the Dirichlet kernel. 
Equation A2 then yields Dirichlet interpolation. Note that the 
summation over k in Equation A2 is centered around 0 denot-
ing a centered FFT. This both simplifies the development and 
results in both ϕ and ϕ̂ being real, which reduces the number 
of multiplies required; however, most software routines for 
the FFT perform the uncentered FFT. The uncentered FFT can 
be performed by circularly shifting the input data.

In Equation A2, a Kaiser-Bessel window is used to concen-
trate the energy of the signal into a short summation over m. The 
Kaiser-Bessel window and its Fourier transform are given by:
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where
	 α = π (2 – 1/c) – 0.01,	 (A4)

and 2K is the length of the support of  ϕ̂. It has been shown by 
Capozzoli et al. (2013) and Fourmont (2003) that in the case 
c = 2, a six point window, K = 3, can reduce the interpolation 
error down to the precision of single floating point arithmetic. 
In the paper, we compare several interpolation methods with a 
range of zero-padding factors in order to navigate the tradeoffs 
of memory, speed, and accuracy of the interpolation stage.

Algorithms
Algorithm 1: Pseudo-code for GPU stripmap SAR backprojection

Break data collection into sections
For each section

Allocate memory for the image section
Allocate memory for a batch of pulses
For each batch of pulses

Copy batch of pulses to GPU memory
Apply apodization window
Apply NERFFT window
Compute FFT
Rotate position data
For each thread group

Copy position and attitude to shared memory
Call backprojection kernel
For each thread

For each pulse in batch
Calculate distance and angle
Calculate expected phase
Interpolate range-compressed
For each subaperture

Calculate azimuth apodization
Multiply sample by apodization and phase
Accumulate the results
Accumulate the apodization and antenna weights

Copy the image and apodization weights from the GPU
Save the complex image
Average the power of the pixels
Divide by weightings
Save the multi-looked image
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