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Image Reconstruction and Enhanced Resolution
Imaging from Irregular Samples

David S. Early, Member, IEEE,and David G. Long, Senior Member, IEEE

Abstract—While high resolution, regularly gridded observa-
tions are generally preferred in remote sensing, actual observations
are often not evenly sampled and have lower-than-desired res-
olution. Hence, there is an interest in resolution enhancement
and image reconstruction. This paper discusses a general theory
and techniques for image reconstruction and creating enhanced
resolution images from irregularly sampled data. Using irregular
sampling theory, we consider how the frequency content in
aperture function-attenuated sidelobes can be recovered from
oversampled data using reconstruction techniques, thus taking
advantage of the high frequency content of measurements made
with nonideal aperture filters. We show that with minor modifica-
tion, the algebraic reconstruction technique (ART) is functionally
equivalent to Grochenig’s irregular sampling reconstruction al-
gorithm. Using simple Monte Carlo simulations, we compare and
contrast the performance of additive ART, multiplicative ART,
and the scatterometer image reconstruction (SIR) (a derivative
of multiplicative ART) algorithms with and without noise. The
reconstruction theory and techniques have applications with a
variety of sensors and can enable enhanced resolution image
production from many nonimaging sensors. The technique is
illustrated with ERS-2 and SeaWinds scatterometer data.

Index Terms—Irregular samples, reconstruction, resolution en-
hancement, sampling.

I. INTRODUCTION

I N TYPICAL microwave remote sensing applications,
observations of the surface properties are made with a

sampled aperture approach in which the measurements are
spatially filtered surface data sampled over a two-dimensional
(2-D) grid. The aperture function is defined by the antenna
pattern and/or signal processing techniques used to resolve
the antenna illumination pattern into smaller spatial elements.
Spatial sampling is typically obtained via pulsed operation and
antenna scanning. The resulting measurements are often on an
irregular grid and may have spatially varying aperture function
responses. At times, the sensor may not even be considered
an “imaging sensor” since the aperture filtered samples do
not completely cover the surface. Nevertheless, we desire
to generate the highest possible resolution images to aid in
understanding geophysical phenomena.

Gridded images can be generated with the “drop-in-the-
bucket” techniques by assigning each measurement to a grid
element in which its center falls. However, the resolution
of such images is limited by the aperture response and for

Manuscript received January 10, 2000; revised June 5, 2000.
D. S. Early is with @link Networks, Lousville, CO 80027 USA.
D. G. Long is with the Electrical and Computer Engineering Department,

Brigham Young University, Provo, UT 84602 USA (e-mail: long@ee.byu.edu).
Publisher Item Identifier S 0196-2892(01)01168-8.

many applications higher resolution is desired, leading to
interest in image reconstruction and resolution enhancement
algorithms. Under suitable circumstances, such algorithms can
provide improved resolution images by taking advantage of
oversampling and the response characteristics of the aperture
function to reconstruct the underlying surface function sampled
by the sensor. When single-pass sampling is inadequate, it
may be possible to suitably modify the sampling by com-
bining multiple observation passes to improve the sampling
density, resulting in oversampled observations. In application,
reconstruction/resolution enhancement algorithms can generate
images from the observations at a resolution better than the
mainlobe aperture resolution of the sensor.

In this paper, a tutorial approach is used to present and dis-
cuss fundamental theories for image reconstruction and reso-
lution enhancement from noisy irregular samples based on al-
gebraic reconstruction techniques. While motivated by use in
microwave remote sensing, the general theory applies to a va-
riety of other sensors. In Section II, the theory of image recon-
struction from irregular samples is considered. In Section III, we
show the equivalence of the algebraic reconstruction technique
(ART) [6], [7] and the irregular sampling/reconstruction theory
discussed in the first section. Using simulation, we demonstrate
that reconstruction can recover sidelobe information and con-
sider the practical use of the theory in the presence of noise in
Section IV. We compare the performance of additive and mul-
tiplicative ART algorithms with the scatterometer image recon-
struction (SIR) algorithm, a row-normalized derivative of mul-
tiplicative ART tailored to reduce the influence of noise on en-
hanced resolution image reconstruction [1], [2]. We discuss the
effects of the aperture function on the resolution enhancement,
concluding that for a fixed aperture area, an elongated aper-
ture with varying orientation can provide the best resolution
enhancement capability, depending on the sampling density. In
Section V, the utility of the technique is demonstrated using ac-
tual data. This introduction is concluded with a brief presenta-
tion of the system model used in this paper and a comparison of
traditional uniform sampling/reconstruction and irregular sam-
pling/reconstruction.

A. System Model

Let represent the true surface image at a point ().
The measurement system can be modeled by

noise (1)

where is an operator that models the measurement system
(sample spacing and aperture filtering), andrepresents the ob-
servations or measurements made by the instrument sensor. The
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set of measurementsare a discrete sampling of convolved
with the aperture function (which may be different for each mea-
surement) with a particular measurementwritten as

noise (2)

where is the aperture response of theth measurement.
For image reconstruction or resolution enhancement, we are

interested in the inverse problem

(3)

where is the estimate of derived from the measurements
. The inverse of the operator , , is exact only if is

invertible and the measurements are noise free, in which case,
.

For a fixed aperture function, aperture-sampled data is equiv-
alent to ideal sampling of the image function convolved with
the aperture function (which is also termed a point-spread func-
tion), which typically has low pass characteristics. The effects
of the aperture function are twofold. First, various frequencies,
particularly in the sidelobes, are attenuated. Second, the aper-
ture function may have nulls in its spectrum. While nulls can
lead to irretrievable loss of information, if the sampling density
is sufficiently high, data from even very low sidelobe levels can
be recovered with an appropriate algorithm. This is true even
when irregular sampling and variable aperture functions are in-
volved.

Compared to traditional (uniform sampling) reconstruction,
this irregular sampling reconstruction can be considered a form
of resolution enhancement since high frequency information
suppressed (but not nulled out) by the aperture function is re-
covered. We note that if there is noise in the system, a tradeoff
between the resolution enhancement and the noise level exists
since high frequency noise tends to be amplified in the recon-
struction process.

B. Sampling and Reconstruction

The traditional approach to sampling and reconstruction is
founded on uniform sampling and the well known Nyquist sam-
pling theorem [3]. Based on the Nyquist theorem, a bandlimited
function can be completely reconstructed from regularly spaced
samples if the sample rate exceeds the Nyquist sample rate of
twice the maximum frequency in the signal. In typical applica-
tion, signal reconstruction is accomplished with only a low pass
filter. In effect, the aperture function is treated as an ideal low
pass filter with no sidelobes and is ignored in the reconstruc-
tion [see Fig. 1(a)]. For this case, the recovered frequencies are
deemed limited to the width of the main lobe of the frequency
response of the aperture function. The aperture function also
acts as a prefilter to minimize high frequency components of the
signal that might otherwise cause aliasing in the reconstructed
signal.

Real-world aperture functions, however, are nonideal and
have sidelobes. The sidelobes still contain enough information
to recover at least some of the higher frequency content of the
original signal if the (possibly irregular) sampling is dense
enough. This requires inverting both the effects of the aperture

Fig. 1. Block diagram illustrating sampling and signal recovery with a
constant aperture function. The original surfacef is filtered by the system
aperture functionS(x; y) and sampled to obtain the measurementsz. In (a),
conventional low-pass filter reconstruction inverts only the sampling step. In
(b), full reconstruction inverts the operatorH , which includes both the aperture
function and the sampling.

function and the sampling [see Fig. 1(b)]. The reconstruction
compensates for the aperture filtering by amplifying attenu-
ated frequencies, though the aperture function may limit the
reconstruction due to nulls in its spectrum.

If the sampling is regular (uniform) with a fixed aperture
function, the reconstruction can be accomplished with Wiener
filtering, an inverse filtering technique that also accounts for
noise in the measurements [3]. However, inverse filter methods
are difficult to apply when the sample spacing is irregular or
when aperture functions vary with different observations. To ad-
dress these problems, the next section considers irregular sam-
pling and reconstruction theory in greater detail. We address the
variable aperture by the use of algebraic reconstruction, showing
that it is applicable for reconstruction from irregular samples.
We later demonstrate that suitable variation in the aperture func-
tion can eliminate nulls in the reconstruction.

II. I RREGULAR SAMPLING THEORY

While the theory of sampling and reconstruction is well
known when the sampling is uniform, irregular sampling
and reconstruction theory is less familiar. Irregular sampling
problems have been examined since the early 1960s (see [4]).
However, in most studies, restrictive requirements are placed on
the irregular sampling grid. Alternately, an arbitrary irregular
grid can be parameterized by, which describes the maximal
spacing in the grid. This approach places no restrictions on the
structure of the sampling grid and is preferred in this study
because it is a more general model of satellite sampling grids,
especially when multiple orbit passes are combined.

To consider the validity of reconstruction from such irregular
samples, recent work by Karl Gröchenig [5] is discussed. In
order to discuss the important lemmas and theorems, certain
formal definitions and groundwork are first presented. These
include definitions of the spaces and functionals used and some
auxiliary information not presented in the cited text but which
help clarify the development.

Let denote the Hilbert space of square-integrable
functions on with the norm .
Let be a compact set where denotes the cube

. The defines the extension of
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Fig. 2. Graphical illustration of�-dense in 2-D. (a) With� = (� ; � ), the union of the boxes around each sample point is too small to cover the image space.
(b) � = (� ; � ) is sufficiently large. For our purposes,�-dense corresponds to the smallest�, for which theR image space is spanned.

. Finally, let be a closed subset of such that
where is the Fourier

transform of . is, by definition, a Banach space. An
operator is bounded on the spaceif there exists a constant

such that . The operator norm, denoted
, is . The formal concept of-dense

parameterizes an irregular 2-D sampling grid according to [5]:
Definition 1 ( -Dense: 2-D): A sampling sequence

in ( ) is -dense
if where represents the square

centered at .
In two dimensions, for our purposes,-dense is defined as the

minimum-sized rectangle centered at each sample point such
that the union of the boxes completely fills the 2-D image space
(see Fig. 2). Since the sampling set is typically limited to some
finite space in , we assume that the sampling set and image
are periodic in space with a period determined by the dimen-
sions of the finite sample space. By extension, the entire
space is then covered by the union of the boxes for the periodic
grid.

With the preliminaries established, the main lemma and the-
orem may be considered [5].

Lemma 1 (Gröchenig’s Lemma: Iterative Reconstruc-
tion): Let be a bounded operator on a Banach space, such
that ( is the identity operator), where
denotes the operator norm on. Then is invertible on and

.

1) Moreover, every can be reconstructed by the iter-
ation

(4)

(5)

(6)

with convergence in .
2) Setting , the error is

(7)

Proof of this lemma is provided in [5]. The iterative procedure
is based on the series , the Neumann
expansion for the inverse of an operator. The only limitations on
the operator are that it be bounded (as defined above) and that

1, required for the Neumann expansion to be valid.
Thus, a wide variety of operators can be used. Theoperator
incorporates both the aperture function(s) and the sampling.

A specific operator and the subsequent relationship be-
tween the -dense sampling grid and the recoverable frequency
content of the original signal for 2-D sampling and reconstruc-
tion is [5] the following.

Theorem 1 (Gröchenig’s Theorem):Given
with linear extension and the appropriate
Banach space , choose such that

. If is a -dense
sampling set in , then every can be reconstructed
from its sampled values by the iteration in (5) and (6).
The operator is defined by

(8)

where is the partition of unity with the properties
[ as defined in Definition 1]; 0

1; 1; and is the orthogonal projec-
tion from onto .

The idealized operator in this theorem can easily be visu-
alized for a regular grid, a special case of an irregular grid. Con-
sider a regular Cartesian sampling grid with equal spacingin
the and directions. Such a grid is-dense with .
A particular choice for the partition of unity function is a
simple indicator function where at a point ,
on the square , and zero elsewhere. This
corresponds to a square aperture function. The operatoris an
ideal low pass filter with a bandwidth corresponding to.

Theorem 1 establishes a relationship between the sample grid
parameter and the recoverable frequency content () of the
original signal for this particular operator

(9)

The term in (9) is determined in the course of the proof of
Theorem [5]. If the spectrum of the original signal has a region
of support , and the -dense sample grid has

, then the sampling density must satisfy

(10)
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This requires the minimum sampling density to be higher than
the Nyquist sampling density for a given , or
1.44 times the Nyquist rate for uniformly spaced samples. This
“oversampling” is required to ensure reconstruction from the
irregular grid. While the sample rate requirements are higher
than the Nyquist rate for a uniform grid, this theorem establishes
that a function can be completely reconstructed from irregular
samples using this particular. The lemma suggests that a va-
riety of operators can be used. Thus, for irregular sampling
Gröchenig’s lemma and theorem are equivalent to the Nyquist
theorem for uniform sampling.

III. RECONSTRUCTIONALGORITHMS

The previous section establishes the validity of signal recon-
struction from irregular samples. As long as the signal sam-
pling is adequately dense within the Banach space supporting
the signal, the original signal can be completely recovered. To
apply these formal results in practice, we relate the frequency
response of the aperture function to the Banach space and show
that Gröchenig’s algorithm is equivalent to block additive alge-
braic reconstruction technique (AART) with a modified aperture
function. In this section, the relationship of AART to the mul-
tiplicative algebraic reconstruction technique (MART) is also
explored.

A. Bandlimited Banach Space

As previously noted, the observations can be viewed as ideal
samples of an aperture filtered image where the aperture filtered
image is the true image convolved with an aperture function. In
general, each observation can use a different aperture function
so multiple aperture filtered images may need to be considered.
For a given aperture function, nulls in the frequency response
of the aperture function introduce corresponding nulls in the
aperture filtered image. With a single aperture function, image
frequencies in the aperture function spectral nulls are lost and
cannot be recovered via reconstruction. However, with multiple
aperture functions, a net effective aperture function can be de-
fined from the appropriately averaged individual measurement
aperture functions. Nulls in the effective aperture function cor-
respond to the intersection of the nulls of individual aperture
functions. So long as the sampling density requirements are met
for the remaining frequencies, only frequencies corresponding
to the nulls in the net effective aperture function are lost. All
other frequencies can be recovered by the reconstruction, sub-
ject to the sampling considerations.

While the original image may include information in the nulls
of the effective aperture function, for the purposes of analysis,
we canredefinethe spectral region of support of the original
function to exclude the effective aperture function nulls. Within
the reduced image space, and subject to adequate sampling,
the image can be perfectly reconstructed based on Gröchenig’s
Lemma. Image frequencies above those supported by the sam-
pling density (i.e., greater than ) cannot be reconstructed and
are aliased. The low pass filtering included in theoperator fil-
ters out such frequencies and for the purposes of analysis, the
signal is redefined to exclude frequencies outside of the region
of support of the sampling.

Fig. 3. (a) Bandlimiting scheme that delimits the nulls in the aperture response
in (b). The subbands, which can be truncated or continue indefinitely, define a
Banach space. (b) Frequency response of a particular aperture function.

Because Lemma 1 requires the operator to be invertible on
a Banach space, a Banach space of appropriately bandlimited
functions must be established. A simple case is the space of ideal
low pass filtered images where the spectrum of the image is lim-
ited to . More generally, the spectral content can be lim-
ited by the nulls in the effective aperture function. For example,
Fig. 3 illustrates a set of truncated band limits imposed around
the nulls in the frequency response of a particular effective aper-
ture function. It can be shown that such a subband limited space
is a Banach space [10]. For adequately sampled data, the image
can be completely reconstructed over this space according to
Gröchenig’s Lemma, regardless of the aperture function, and
we conclude that, in effect, the aperture function’s role is to de-
limit the Banach space.

B. Equivalence of AART and Gröchenig’s Algorithm

ART algorithms have been extensively studied in the litera-
ture and have been used in reconstruction problems (e.g., [6],
[7], [14]). In this section, we compare AART and Gröchenig’s
algorithm and show that with an appropriate implementation
of AART, they are functionally equivalent in reconstructing
images from sampled observations. AART is thus a practical
method for image reconstruction from irregular samples.

Gröchenig’s iterative algorithm given in Lemma 1 can be
written in the form [5]

(11)

where
operator meeting the requirements of Lemma 1;
image to be recovered;
estimate of at the th iteration.

Gröchenig’s lemma is valid for a variety of operators with gen-
eral conditions and can thus be applied to either continuous or
sampled images. In practical application,can generally be
assumed to be piecewise continuous on a fine scale. This is
consistent with the requirement of a bandlimited (i.e., lowpass)
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original image. The image can then be treated as a finely sam-
pled or discrete image at this finer scale. We note that this finer
sampling is quite different than the measurement sampling grid.
It is primarily for computational convenience wherein the image

is assumed to consist of discrete uniformly sized pixels much
smaller than the measurement sampling. Each noise-free mea-
surement or observationcovers a number of these small pixels
[compare (2)]

(12)

where
elements of the vector of row-scanned image pixels
from ;
effective aperture response function for theth mea-
surement on theth pixel;
number of pixels in .

Block AART can be written as [14]

(13)

where is the th iterative estimate of , and is the back
projection

(14)

corresponding to theth measurement at theth iteration with
total measurements. In effect, all measurements that “touch”

a pixel are summed and normalized to create the per-pixel
update.

In (13), the normalized sum term on the right-hand side is a
function of the measurement vectorand the back projection
vector computed from the th iterative estimate. The vector
of measurements represents the sampled convolution of the
true image with the aperture function. This can be expressed as
a matrix multiplication , where (with elements )
is the sampled aperture function for each measurement. Noting
that , (13) can be written as

(15)

(16)

where the ’s are row-scanned image vectors, and is the
row-normalized transpose of with elements that
perform the summation and normalization in (13). Thus, (13)
can be expressed as

(17)

where . Thus, Gröchenig’s algorithm and AART
have the same functional form.

We now wish to show that block AART is equivalent to
Gröchenig’s algorithm. The normalized aperture functions in
the rows of correspond to the terms in (8). The aperture

function used in the reconstruction must have support on
the Banach space defined by both the observation aperture
function (which is the case by our definition of the Banach
space) and the-dense sampling. To ensure the latter, a low
pass filter with a cutoff frequency consistent with the-dense
sampling is applied to the aperture functions in the rows of

. If this is not done, artifact noise will be introduced in the
reconstruction. Hereafter, the aperture function matricesand

are assumed to include this low pass filtering. This is the
aperture function modification noted earlier. A generalized
operator is implicitly included in by this filtering and the use
of the fine sampling grid.

We must now show that meets the requirements of
Gröchenig’s Lemma. This requires showing thatis bounded
and invertible on the subband limited Banach space. The fre-
quency nulls in the effective aperture response lead to complete
loss of information at some frequencies. However, if as dis-
cussed earlier, is definedso that it has no frequency content at
the nulls and no information is lost, though there may be attenu-
ation due to the frequency response of the aperture function. We
note that while includes both the observation sampling and
aperture function characteristics, in the following discussion, we
assume that the sample spacing is adequate for signal recovery
and deal strictly with aperture function effects on invertability.
How the sample spacing affects the signal recoverability is fur-
ther discussed in Section III-C.

The domain of , consists of all functions with
a subband limited frequency response.maps into a range
space . While may null out certain frequen-
cies of an arbitrary input, the domain consists exclu-
sively of functions without these frequencies. Therefore, no in-
formation is lost for the new problem definition. So for ,

is the projection of onto the columns of , and while
may have attenuated frequency components, all the original fre-
quency components of are present in . The row normalized
transpose of , , is generated by multiplying each row by the
sum of the row elements and since elementary row operations
do not affect the rank of the matrix, . Left
multiplication of by , , is also within
the original Banach space. Thus,is a bounded operator on the
subband limited Banach space, meeting the first requirement of
Lemma 1.

Since the low pass filter has no effect on frequencies within
the Banach space, it does not affect invertability of. If is
full rank, then is full rank, and the operator is invert-
ible on the Banach space. However, it is not necessary that
be full rank for the signal to be recoverable. Since by definition
no information is lost in the process of applying to an ap-
propriately subband limited input function, an appropriate gain
function can be defined to compensate for any attenuation. This
gain function is the inverse of the attenuation imposed by
and thus, is invertible on the subband limited Banach space,
meeting the final requirement of Lemma 1.

We therefore conclude that the block AART reconstruction
in (17) (with the modified aperture function per the earlier dis-
cussion) is equivalent to Gröchenig’s algorithm in (11). Thus,
AART represents a valid algorithm for the complete recovery of
the original image for an appropriate choice of based



296 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 2, FEBRUARY 2001

on the aperture function nulls and the sampling density. This
result is valid both for irregularly and regularly sampled obser-
vations.

A complete reconstruction is only possible if the assump-
tion is made that the original function is contained in the space

spanned by the operator inverse . However, to avoid
having to solve for and explicitly compute within this space,
regularization techniques can be used to compute a unique so-
lution on the full space. The AART algorithm automatically in-
cludes regularization and produces the least squares minimum
norm solution. In principle, we can use any of a number of reg-
ularization schemes to generate an estimate of the signal for a
case where the original function is outside the space spanned by

. This is addressed further in the next section.

C. Signal Recoverability from-Dense Sample Spacing

Given a set of irregular samples that are-dense, the natural
question is: what frequency content can be recovered using this
grid and an algorithm such as (11) or (13)? While Gröchenig
assumed a particular operator in Theorem 1, other opera-
tors can be used including the generaldescribed. Because
the sampling and aperture may vary, generating a prediction of
frequency recoverability for a general can be difficult.

However, an upper bound to the frequency recovery is based
on the equivalent Nyquist sampling rate. For an arbitrary
operator, the recoverable frequency range using an irregular
-dense sampling grid is less than the frequency range re-

coverable by a regular-spaced grid as determined by the
Nyquist criterion or . A practical limit is the bound
determined in Theorem 1, .

D. Relationship of Additive ART to Multiplicative ART

With the equivalence of block AART and Gröchenig’s
algorithm established, we consider the relationship of AART
and a close relative, MART. The difference between AART and
MART is the regularization implicit in the algorithms. AART
is equivalent to a least squares estimate in the limit of infinite
iterations [6] based on the minimization problem

Minimize

Subject to
(18)

MART with damping is a maximum entropy estimate in the
limit of infinite iterations [6], [7] based on the maximization
problem

Maximize

Subject to

(19)

In effect, AART makes noa priori assumptions about the data
and fits the estimate strictly on the measurements available by
minimizing the error of the back projection of the measurement
onto the space in the mean-squared error (MSE) sense sub-
ject to . Thus, the reconstruction is strictly contained
within the subband limited Banach space spanned by the mea-
surements.

On the other hand, MART effectively assumes a maximum
entropy model for the data. In the frequency domain, the recon-
struction is not strictly restricted to the bandlimited frequency
domain spanned by the measurement space. Additional fre-
quency content in the null space may be added by the algorithm
to create a sharper image [8]. However, the constraint
remains, and the reconstruction is based on a projection of
measurements onto the space, just as in AART.

The choice of one method over another is a debatable issue.
We can, in principle, select any regularization to use in the re-
construction if the regularization fits witha priori knowledge.
As discussed in [6], this decision may be based on the nature of
the sampling mechanism (reflection, absorption or emission),
and the nature of the solution the algorithm produces for under-
determined systems. The choice is dependent on which regular-
ization provides the best results for the given application. Least
squares estimates (LSEs) produce a maximally smooth estimate
where edges tend to be softened and blurred. A maximum en-
tropy estimate produces a generally “sharper” image than least
squares, at least for images with high contrast [8].

AART and MART enjoy a fundamental relationship based on
the common constraint . Since both forms of ART have
the same constraint equation, the resulting solutionsare of the
general form

(20)

where is an element of the row space of, or equivalently,
the range space of the transpose of, , denoted ,
and is an element of the null space of, denoted .
Any solution derived from either additive or multiplicative ART
contains a component. However, the solution derived by using
AART results in 0, while the solution from MART gen-
erally will have a nonzero component [9]. Since the con-
straint is the same for both algorithms, the solutions for
both AART and MART are the same in the range space of
in the limit of infinite iterations. The only difference between
the AART and MART solutions is the component from the
null space of , i.e., the AART and MART solutions are the
same except in the nulls of the aperture function. If the aperture
function does not have nulls, the solutions are identical in the
noise-free case. We conclude that both AART and MART are
viable reconstruction techniques, with the understanding that in
the null spaces, AART and MART may produce slightly dif-
ferent results based on the different regularizations.

IV. THE EFFECTS OFMEASUREMENTNOISE

The previous section has shown that AART can completely
recover an arbitrary bandlimited function for the noiseless case
if the sampling is sufficiently dense. Given adequate sampling,
the reconstruction is essentially independent of the aperture
function. No matter how low the sidelobes of the aperture data
are, the original signal (less the nulls) can be recovered in the
limit, at least for noise-free measurements. We now consider
two additional issues for reconstruction with iterative algo-
rithms. The first is a finite number of iterations, and the second
is noise. The former is a practical limitation since no iterative
process can proceed indefinitely. Therefore, while a particular
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Fig. 4. (Top) Signal and aperture used in the single-aperture simulation. The
signal is a narrow sinc function. Dots show the sample values and the irregular
locations in the simulation. The arbitrary horizontal scale has been expanded
relative to later figures for clarity. (Bottom) Schematic illustration (vertical scale
is compressed for clarity) of the spectra of the signal and aperture functions. The
signal spectrum is a rect, while the aperture function spectra is asinc .

algorithm converges to a particular solution in the limit, the
limit may not be reached when the iteration is terminated. The
result is an approximation to the optimal reconstruction, but
may not be a complete reconstruction [6]. Truncation of the
iterations is ultimately another form of regularization [9].

While Gröchenig’s Lemma shows that complete reconstruc-
tion of an irregularly sampled signal can be made, it does not
consider the effects of noise. Experimental results show that
even highly attenuated frequency components are effectively re-
covered with finite iterations for noiseless observations. How-
ever, the addition of noise changes the problem because noise
is amplified along with the desired signal during the reconstruc-
tion. In effect, the reconstruction process can be thought of as a
high pass filter that removes the attenuation caused by the aper-
ture function, except in the nulls in the aperture function. The
high-pass nature of the reconstruction filter increases the noise
power. In Wiener filtering, the reconstruction filter response is
modified so that when a specified noise-to-signal ratio threshold
is exceeded, the response is set to zero to minimize noise ampli-
fication [9]. A similar approach can also be adapted with the
techniques discussed in this paper by suitably modifying the
filtered aperture function used in the reconstruction. Although
steps can be taken to minimize noise, it will, to one degree or
another, limit the number of iterations that can be executed be-
fore noise overtakes the reconstruction.

A. Algorithm Performance Comparison

Lacking a suitable theoretical analysis of the effects of noise,
a Monte Carlo approach is employed to examine the behavior
of the signal and noise power in the reconstruction. In the fol-
lowing discussion, a simple simulation is used to illustrate the
image reconstruction and resolution enhancement of the algo-

Fig. 5. (Bottom) Conceptual illustration of the aperture function and (Top)
Reconstruction filter responses.

rithms and compare their performance in the presence of noise.
For simplicity of illustration, a one-dimensional (1-D) signal
with a bandlimited spectrum is defined with densely sampled
measurements synthesized with a fixed aperture function whose
frequency response attenuates the high frequency components
of the signal spectrum (see Fig. 4). In this simple illustration, the
signal is a narrow sinc function, while the aperture function is a
wide rect or box-car function. The test signal is densely sampled
with an irregular sampling grid. A rectangular aperture function
is used in this study so that the first sidelobe of the aperture is
within the spectrum of the test signal, as illustrated in Fig. 4, al-
lowing the reconstruction of the attenuated frequencies within
the sidelobe to be easily evaluated. While the aperture function
used here is a constant (rect) window function, similar results
are obtained with other window-based aperture functions. Also,
though this simulation illustrates recovery of only a single side-
lobe, recovery of higher order sidelobes can be accomplished.
For each algorithm, both noisy and noise-free cases are consid-
ered. For the noisy cases, Monte Carlo white noise is added.

For this example, the spectrum of the ideal reconstruction is
the original frequency domain rect, punctuated by the aperture
nulls (see Fig. 5). In effect, this filter is applied to the noise
component of the measurements in the reconstruction. As illus-
trated in Fig. 5, as the wave number increases, the reconstruction
gain increases, resulting in a corresponding increase in the noise
power. Thus, increasing the bandwidth of the reconstruction re-
sults in greater noise power at high frequencies, lowering the
SNR. If the initial SNR is adequate, this is not a problem, but at
some point, the noise power may exceed an acceptable level.

While a variety of other related reconstruction algorithms
exist (e.g., [11]–[13]), we here consider only one additional
algorithm, the scatterometer image reconstruction (SIR) algo-
rithm. The algorithm is a derivative of MART developed for
multivariate scatterometer image reconstruction with noisy
measurements [1]. A single-variate form has been used for
radiometer resolution enhancement [2] and is the form consid-
ered in this paper. Although similar in performance to MART,
SIR is more robust in the presence of noise, particularly at low
SNRs, and is thus a useful alternative to AART and MART.



298 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 2, FEBRUARY 2001

Fig. 6. Comparison of AART, MART, and SIR outputs after 30, 100, and 1000
iterations for noiseless measurements. The ideal output is a sinc function.

B. Noisy Versus Noise-Free Observations

To evaluate the algorithm performance, both noise-free and
noisy measurements are used. Further, since the algorithms can
only be run a finite number of iterations, the performance as a
function of iterations is also considered.

Fig. 6 compares the output of the three algorithms at 30, 100,
and 1000 iterations without noise. There are two significant ob-
servations from these results: First, the algorithms are able to
provide good reconstruction of the original signal. Second, there
is an apparent lag (as a function of the number of iterations) of
the SIR and MART results compared to the AART output. This
lag is a result of the damped multiplicative update factor used
in the MART and SIR algorithms.

Fig. 7 illustrates the spectra of the output for 1000 iterations
of all three algorithms (compare the sidelobe levels in this figure
to those in Fig. 4). After processing, the full test signal band-
width (excluding the nulls) is essentially recovered. All three al-
gorithms successfully reconstruct the original signal within the
limits imposed by the aperture function nulls as predicted by the
theoretical development.

To evaluate the performance with noise added, Fig. 8 presents
the spectra of the output from AART, MART, and SIR at 30
and 1000 iterations for both noiseless and noisy cases. We note
that the performance of AART in the presence of noise is sig-
nificantly degraded. This observation originally motivated the
development of SIR [1]. For both MART and SIR, the multi-
plicative update factors are damped so that large update factors
do not overly magnify the noise at any one iteration. SIR incor-
porates a nonlinear damping, which can further reduce the noise
at the expense of slower reconstruction.

C. Reconstruction Error

We now consider the relationship between the number of it-
erations and the quality of the reconstructed image. In general,
iterative reconstruction suffers from two forms of error: recon-
struction error and noise amplification. The reconstruction error
is the difference between the iterative image estimate and the
noiseless true image. Noise amplification results from the in-
verse filtering of the noise, as previously noted [6], [9].

A graph of the RMS errors (RMSEs) versus iteration number
for the simulation is presented in Fig. 9. The graph shows the

Fig. 7. Frequency domain comparison of the outputs of AART, MART, and
SIR after 1000 iterations in the noiseless case. Vertical scale is linear. The ideal
spectrum is a rect. After additional iterations, MART and SIR results become
essentially identical to the AART results.

Fig. 8. Spectra of the output of AART, MART, and SIR at different iterations
for noiseless and noisy measurements. Vertical scale is linear.

Fig. 9. Comparison of the RMS errors for AART, MART, and SIR versus
iteration number. Each curve represents a separate application of the algorithm
to compute the RMS signal error (Es), the noise-only RMS error (En), and the
signal plus noise RMS error (E).
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noise amplification error (En), the reconstruction error (Es), and
the total error (E) for the signal plus noise for ARRT, MART, and
SIR. The errors are computed as the RMS of the pixel-by-pixel
difference between the true and the reconstructed images at each
iteration. In the simulation, separate reconstructions are run for
case to evaluate the RMS error.

Considering Fig. 9, we note that at any given iteration, the
reconstruction error is smaller and the noise amplification is
greater for ARRT than for MART and SIR. The total error for
AART reaches a minimum after just a few iterations but grows
rapidly as the iteration continues. SIR and MART reach minima
in the total error more slowly but eventually achieve lower levels
of total error.

The difference in noise amplification for the various algo-
rithms is further illustrated in Fig. 10. This graph shows a plot
of the noise amplification versus the reconstruction error. While
the overall performance of the algorithms are similar, at lower
reconstruction errors MART and SIR have lower noise ampli-
fication than AART. At the lowest reconstruction errors, SIR
has the smallest noise. In all cases, there is a tradeoff between
reconstruction error and noise amplification controlled by the
number of iterations. We note that the differences become more
apparent at lower SNRs.

It should be noted that while the RMSE is an indicator of the
accuracy of the reconstruction, the size and location of the error
changes over the course of the iteration depending on the regu-
larization [9]. Also, the quality of the resulting imagery may
not always be a direct function of total error [8]. The image
quality for SIR at a given reconstruction error level is subjec-
tively somewhat better than corresponding MART or AART
products when used with scatterometer data [1].

D. Multiple Aperture Functions

In the simulation example presented previously, irregular
sampling with a fixed aperture function was employed. The
single aperture function introduces a null in the estimated
signal spectrum. However, when the aperture functions exhibit
variability between measurements, this null can be eliminated
if the nulls of the various aperture functions do not intersect
and the sampling is adequately dense. To illustrate this, the
noise-free simulation previously described is modified so that
each measurement randomly uses either the original aperture
function or a wider (lower resolution) aperture function, as
illustrated in Fig. 11. Simulation reveals that the spectra of the
estimated signal does not exhibit data loss due to an aperture
null. The signal is completely reconstructed in the noise-free
case, as illustrated in Fig. 12. Noisy simulations yield con-
clusions regarding the relative performance of the algorithms
consistent with the previous section.

This result suggests a useful strategy in the design and ap-
plication of remote sensing instruments to optimize their reso-
lution enhancement capability during postprocessing. While a
minimum size aperture function yields the finest effective res-
olution, it is often possible to alter the “shape” of the effective
aperture. When adequately dense sampling is available, mea-
surements from elongated aperture functions with variable ori-
entations can prevent the occurrence of spectral nulls in the re-
constructed images. Including sampling and aperture function

Fig. 10. Plot of the noise amplification (RMS noise error, En) versus the
reconstruction error (rms signal error, Es) from Fig. 9.

Fig. 11. (Top) Signal and apertures used in the dual-aperture simulation
(cf. Fig. 4). The horizontal scale is expanded for clarity. (Bottom) Schematic
illustration (compressed vertical scale) of the spectra of the signal and aperture
functions.

Fig. 12. Frequency domain output of AART, MART, and SIR after 1000
iterations in the noiseless dual aperture function case. After additional
iterations, the MART and SIR outputs match the AART output. The ideal
spectrum is a rect. Vertical scale is linear. Note the absence of nulls in the
signal spectra (cf. Fig. 7) when multiple aperture functions are used.
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Fig. 13. Images generated from actual ERS-2 and SeaWinds scatterometer
data. (a) Gridded ERS-2 image, (b) SIR-processed ERS-2 image, and (c)
representative 3-dB instrument footprints to scale with images. The circle
corresponds to the ERS-2 50-km diameter footprint, while the other shapes are
representative SeaWinds slice footprints which vary in size and orientation.
(d) Gridded SeaWinds image, (e) SIR-processed SeaWinds image, and (f)
SIR with modified median filter-processed SeaWinds image. Images show the
normalized radar cross section adjusted to a 40incidence angle “A in dB.”

considerations in the design of the sensor system can result in
improved resolution.

We note that increased sampling density can be achieved
by combining multiple passes over the study area [1], [11].
Assuming that the study area does not change between passes,
combining multiple overpasses can provide a dense sampling
of the image area. Of course, accurate position information
for the individual samples is required. This approach can be
used to provide improved resolution images from sensors with
single-pass sampling otherwise inadequate for applying the
reconstruction algorithm to enhance the effective resolution.
Combining multiple passes has been successfully employed
with scatterometer data [1], [15]–[17] and is used in the next
section. The ultimate limits to such an application are the
sampling density, nulls introduced by the aperture function(s),
the acceptable noise level, and the temporal stability of the
study area [1].

V. ACTUAL DATA

The analysis presented thus far has been based on 1–D simu-
lations. We now illustrate the 2–D application of the reconstruc-
tion theory with actual data, considering two sensors, one with
a fixed aperture and one with a variable aperture sensor. While
the technique can be used for many types of sensors, data from
two microwave scatterometer systems are used: the C-band Eu-
ropean Remote Sensing Satellite (ERS-2) [18] and the Ku-band
SeaWinds on QuikScat [19]. Originally designed for wind mea-
surement over the ocean, these sensors measure the normalized
radar cross section of the ocean’s surface from which the wind
is inferred. Scatterometer data can also be used for land and ice
studies, e.g., [15]–[17]. In this analysis, the study area is a 868

Fig. 14. Center locations of ERS-2 measurements used in Fig. 13. SeaWinds
measurements have a similar but much more dense irregular sampling pattern.
A plot of the SeaWinds measurement locations is completely black and thus is
not shown.

km 668 km region of northern Mexico and southern Texas
centered at 102.5E, 27 N.

The ERS-2 scatterometer measurements have a Hamming
window aperture function with a 3-dB width of 50 km [see
Fig. 13(c)] [20]. While the ERS-2 scatterometer data is reported
on a 25 km satellite track-based grid, combining multiple passes
(and assuming the surface is constant) results in a much finer
surface sampling. A 30-day (JD 280-310, 1996) imaging pe-
riod is used for ERS-2 data, resulting in a-dense sampling of
approximately 10 km (see Fig. 14). The SeaWinds “slice”
measurements have variable aperture functions with an effective
size of approximately 7 km 30 km [see Fig. 13(c)] [19]. The
eight days (JD 230-237, 2000) of SeaWinds data used produce
a -dense sampling better than 1 km. In both cases, the scat-
terometer measurements are normalized to an incidence angle
of 40 . The noisy ERS-2 measurements have a normalized stan-
dard deviation of approximately 5%. The SeaWinds slice mea-
surements are generally much noisier than the ERS-2 measure-
ments.

Both gridded and SIR reconstructed images created from the
scatterometer measurements are shown in Fig. 13. The gridded
images are produced using the “drop-in-the-bucket” technique
with pixel sizes of 22 km and 11 km for ERS-2 and SeaWinds,
respectively. Each pixel value is defined as the average of all
the measurements that have a center location falling within the
grid element. Since the effective resolution of gridded images is
limited by the resolution of the measurements, the grid size is set
to about half the measurement resolution. The gridded images
are expanded to match the size of the reconstructed images. For
the SIR reconstructed measurements, the reconstruction is done
on a 2.225 km grid using 200 iterations. In Fig. 13(f), a modified
median filter [1] is incorporated in the SIR processing to reduce
the effects of the noise enhancement at the expense of some loss
of resolution.

Comparison of the gridded and reconstructed images in
Fig. 13 clearly reveals the improvement of the detail in the re-
constructed images. The reconstructed SeaWinds image shows
the noise enhancement effect of the reconstruction, though this
is ameliorated when the modified median filter is used. Noise
enhancement in the ERS-2 reconstructed image is less obvious
due to the lower noise level of the ERS-2 measurements.

Although the two sensors operate at different frequencies,
similar features are visible in the image sets, albeit at different
effective resolutions. The dark feature in the center of the study
area is a valley containing the lake Laguna de Mayran. To the
north of the valley are the Sierra de Los Alamitos mountains,
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part of the Sierra Madre Oriental range that makes up the near-
vertical light band. Due to the corner reflector effect, urban areas
show up as light dots in the images. For example, the white area
in the upper right corner is San Antonio, TX. This feature is
clearly visible in the SeaWinds images and in the reconstructed
ERS-2 image but is difficult to distinguish in the gridded ERS-2
image. Similarly, Monterrey, Mexico is to the lower-right of
image center. Though the resolution of the reconstructed images
is very coarse when compared to synthetic aperture radar (SAR)
images, scatterometer data is available over a multidecadal pe-
riod and has frequent global coverage.

VI. SUMMARY AND CONCLUSIONS

This paper has discussed the theory of image reconstruction
from irregularly sampled data. The relationship between the
aperture function, the measurement sampling, and the recon-
struction has been examined. Gröchenig’s lemma was presented
to demonstrate that a signal can be completely recovered from
irregular samples. When the sampling is sufficiently dense, the
attenuation introduced by the aperture function can be com-
pensated for, resulting in a complete reconstruction exclusive
of the spectral nulls in the effective aperture function. Addi-
tive ART with suitable modification was shown to be equiva-
lent to Gröchenig’s algorithm. MART and AART solutions were
shown to be identical in the Banach space defined by the effec-
tive aperture function’s spectral nulls. Simulation was used to
demonstrate the reconstructive abilities of AART, MART, and
SIR for noise-free and noisy cases.

The ART and SIR algorithms can be termed resolution en-
hancement algorithms because of their ability to fully recon-
struct attenuated signal components. SIR is more robust than
MART and AART in the presence of noise. Finally, when the
aperture area is fixed but a sufficiently high sampling density is
possible, elongated aperture functions with a diversity of over-
lapping orientations can yield the best possible resolution en-
hancement in postprocessing algorithms.

We conclude that for suitably designed or modified sampling,
image reconstruction and resolution enhancement algorithms
such as AART, MART, and SIR can be an effective way to
increase the effective resolution of remotely sensed imagery.
Since the algorithms are typically applied in postprocessing,
they can be an inexpensive method for achieving higher reso-
lution data products. We further note that improved reconstruc-
tion/resolution enhancement performance can be achieved if the
sampling and aperture function considerations for optimum res-
olution are included as part of the design process of the sensor
system.

APPENDIX

ALGORITHM DESCRIPTIONS

Because of the varying notation used in the primary ref-
erences, a brief summary of the block AART, block MART,
and radiometer SIR algorithms is provided in a consistent
notation. Finely sampled images are represented as vectors of
row-scanned pixels: in an image with pixels,
the pixel maps to element of the image

vector. The noise-free observations of the true image
are

(21)

where is the aperture response function for theth measure-
ment on the th pixel. The matrix with elements is formed
by applying the appropriate low pass filter (with bandwidth
defined by the -dense sampling) to each row of the matrix
such that the rows of are the low pass filtered rows of .
is the row-normalized transpose of. At the th iteration, the
forward projection is

(22)

The iterative AART, MART, and SIR algorithms require an
initial image , usually a constant. MART and SIR require that
all the measurements and image pixels (at all iterations) have
the same algebraic sign.

The block AART algorithm is

(23)

while block MART is

(24)

where is the damping factor, typically 1/2. SIR is

(25)

where

(26)

where . For the linearized form of SIR,
is used rather than (26).
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