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Abstract

Scatterometers have historically been designed and used for ocean wind measure-
ment. Scatterometer data has nominally low spatial resolution and until recently
has had limited land/ice applications. However, resolution enhancement techniques
can be used to broaden the applicability of scatterometer data. In particular, the
SIRF algorithm, which uses several passes of the satellite to enhance the e�ective
resolution, can increase the utility of scatterometer data. SIRF was originally de-
veloped for SASS which had di�erent sampling characteristics. In this report SIRF
is optimized for use with NSCAT data. Several parameters of the SIRF algorithm
a�ect the estimation of the A and B values which describe the properties of �o.
In this report SIRF initialization values are examined to determine optimum val-
ues. Accelerated B updates are used to decrease convergence time. Simulations of
synthetic data are performed to monitor statistical error and correlation properties
of the SIRF images. Incidence angle distribution factors are addressed. Optimum
SIRF parameters for NSCAT data are presented.

1 Introduction

The NASA scatterometer (NSCAT) aboard the Japanese Advanced Earth Observation
Satellite (ADEOS) was designed speci�cally to measure wind speeds and directions over
the ocean surface. The rapid repeat coverage of scatterometers such as NSCAT makes
them useful for the study of large scale phenomena. NSCAT is a dual polarization Ku-
band instrument that exhibits higher intrinsic spatial resolution as well as more surface
coverage than previous scatterometers [10]. While spaceborne scatterometers have been
used to study non-ocean surface parameters (e.g. [1] [2] [3] [4] [5]), the low resolution
is a limiting factor for land and ice studies. Resolution enhancement can make NSCAT
data even more useful in non-ocean studies.

The Scatterometer Image Reconstruction with Filtering (SIRF) algorithm was de-
veloped [6] to enhance scatterometer data resolution by combining data from multiple
passes of the satellite. This is done under the assumption that the observed surface re-
gion has minimal �o temporal variability during the observation period. This is generally
the case for land and ice regions. From an initial estimate, SIRF iteratively updates
estimates of �o until satisfactory convergence is reached. Since SIRF was originally
developed for SASS data, the algorithm needs to be \tuned" for NSCAT.

Several SIRF algorithm parameters in
uence its e�ectiveness in resolution enhance-
ment. Initialization values, update weighting, iteration number, and data incidence an-
gle sampling all in
uence the functionality of the SIRF algorithm. This paper describes
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the procedure taken to optimize SIRF for NSCAT data. Section 2 gives an overview of
the SIRF algorithm. Section 3 covers the generation of simulated data for optimization
tests. Section 4 discusses B value weighting and convergence in the algorithm. SIRF
initialization is examined in section 5. In section 6, nonhomogeneous simulated SIRF
images are created and statistical correlation and error analyses are performed. Inci-
dence angle sampling is addressed in section 7. Finally, section 8 gives the conclusions
drawn from this study.

2 SIRF Algorithm

The SIRF algorithm generates estimates for the A and B values for a given pixel from
NSCAT �o and incidence angle (�) measurements. Over a limited � range of [20�-58�],
�o is a approximately a linear function of �,

10 log10 �
o(�) = A+ B(� � 40�) (1)

where A and B are functions of surface characteristics, azimuth angle, and polarization.
A is the �o value at 40� incidence and B describes the dependence of �o on �. A and
B provide valuable information about the surface. An angle of 40 degrees is chosen as a
mid-swath value, though any interior swath angle can be used [9].

In this section, the method for obtaining enhanced resolution radar images of A
and B in Eq. (1) from the low resolution scatterometer measurements is described.
The method is based on the spatial overlap of the �o measurements from multiple
scatterometer passes and on image reconstruction techniques. In order to develop the
technique we �rst describe the enhanced resolution measurement model. We consider the
e�ects of the scatterometer measurement noise and then describe methods for resolution
enhancement of A and B. A sample image output from SIRF is shown in Figure 1.

An understanding of NSCAT swath and cell geometry is needed to implement the
SIRF algorithm using NSCAT data. NSCAT relies on six antennas (3 on each side
of the satellite) to collect �o measurements. Each antenna is oriented at a di�erent
azimuth angle making a fan beam footprint on the surface. All antennas operate at
vertical polarization and two of the antennas operate at both vertical and horizontal
polarizations. Figure 2 illustrates the antenna illumination patterns on the surface. As
the satellite travels forward, measurements are taken from two swaths, one on each side
of the subsatellite track. Both the right and the left side swaths are 600 km wide with
a gap of 350 km in between. The individual fan beam patterns are further resolved
through Doppler �ltering resulting in 25 individual cells within the footprint. Figure 3
shows the cell locations and geometries for 11 actual NSCAT measurements from each
antenna. The monitor cells at 10� incidence were not plotted since they are not used
in the imaging process. SIRF uses the overlap of these cells from multiple beams and
multiple orbital passes of the satellite to enhance the resolution.

2.1 Enhanced Resolution �
o Measurement Model

Consider a rectilinear grid of resolution elements on the earth's surface with a resolution
element size of Sx � Sy. The six-sided integrated resolution cells of the scatterometer
measurements are imposed on this small-scale grid of resolution elements (refer to Fig.
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4). Assuming a noise-free measurement, the value of �o measured by the scatterometer
(denoted by %k where k is the measurement number) is a weighted average of the �o's
of the individual resolution elements covered by the measurement cell, i.e.,

%k =
RkX

c=Lk

TkX
a=Bk

h(x; y; k)�o(x; y; k) (2)

where Lk, Rk, Tk, and Bk de�ne a bounding rectangle for the kth hexagonal �o mea-
surement cell, h(x; y; k) is the weighting function for the (x; y)th resolution element
(0 � h(x; y; k) � 1), and �o(x; y; k) is the �o value for the (x; y)th resolution element.
The incidence angle dependence of �o and h is subsumed in the k index. (Over a given
scatterometer measurement cell the incidence angle � is approximately constant.) h is
a function of the cell location and shape.

The dependence of �o on � can be expressed as [see Eq. (1)]

�o(�) = �Ao [�o(�)]
B (3)

with

�o = 101=10 (4)

�o(�) = 10(40��)=10: (5)

Using this relationship Eq. (2) can be written as

%k =
RkX

c=Lk

TkX
a=Bk

h(x; y; k)�A(x;y)o [�o(�k)]
B(x;y): (6)

The actual scatterometer measurements are noisy. Let zk denote the noisy measure-
ment of %k, then

zk = %k + �k (7)

where �k is a zero-mean Gaussian random variable with variance

Var[�k] = �%2k + �%k + 
 (8)

where �, �, and 
 are from the Kp equation

Kp = ��o2 + ��o + 
 (9)

where �, �, and 
 are known constants which depend on the measurement geometry (via
the radar equation and the SNR) as well as the instrument parameters and calibration
accuracy [10].

The resolution enhancement problem can then be posed as the following reconstruc-
tion problem: Given noisy measurements zk of %k for k 2 [1; N ], determine A(x; y) and
B(x; y) for each element of the enhanced resolution grid. The method for solving this
problem is described in the next section.

The key to successful resolution enhancement of A(x; y) and B(x; y) is taking ad-
vantage of the overlap in multiple measurements of the same general region. As will
be discussed further, the ultimate A and B image resolutions are determined by this
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measurement overlap. While measurements from the fore- and aft-facing antennas in a
single orbit provide some measurement overlap, this overlap is generally insu�cient to
adequately apply the technique; hence, data from multiple orbits must be used.

In order to use data from multiple orbits we must assume the radar characteristics of
the target region remain constant for each pass. Additionally, we assume that A and B
have no azimuthal dependence. These and other requirements and assumptions needed
(for SASS) are explored more fully in [8].

2.2 Reconstruction Approach

The Scatterometer Image Reconstruction algorithm (SIR) is based on multiplicative al-
gebraic reconstruction (MART). Conventional single-variable MART is a special case of
maximum entropy [7]. In MART, each measurement is compared to a predicted (forward
projection) value computed from the current image estimate. A multiplicative correc-
tion factor is then applied each pixel covered by the measurement causing the forward
projection to equal the measurement. Subsequent measurements further alter the pixel
values. Over multiple iterations, the correction factors ideally converge to a value of
unity and all the forward projections match the measurements. Unfortunately, MART
has limited noise tolerance. SIR is a modi�ed form of MART which has been optimized
for noisy scatterometer measurements and to estimate both A and B in multivariate
image reconstruction.

Initial estimates of A and B, Ainit and Binit images, are made by setting Binit= the
global average of B and Ainit= the global average of A. In the kth iteration of the SIR
algorithm, the previous B estimate image is used to normalize the �o measurements from
which an estimate of A is generated. Linear regression of the update terms (expressed
at the measurement incidence angle) is then used to update the previous estimate of B.
The new B estimate is determined as a weighted average of the previous B estimate and
the B estimate update. The multivariate SIR algorithm is given below [6].

We express the measurements zj in dB so the forward projection fkj is computed in
normal space while the A and B estimates are in log space, i.e.,

fkj = 10 log10

"
1

qj

NX
n=1

hjn10
akn=10

#
(10)

where qj is de�ned in Eq. (12) and

pi =
NX
l=1

hli (11)

qj =
MX
l=1

hjl: (12)

De�ne dkij as

dkij =

 
zj � bki (�j � 40�)

fkj

!w

: (13)
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The case with w = 1 will is unweighted MART while w = 1=2 is referred to as weighted
MART and is used in SIRF. The A estimate update term, ukij , is computed,

ukij =

8>><
>>:

"
1
2

1

fkj

 
1� 1

dkij

!
+ 1

aki d
k
ij

#�1
dkij � 1h

1
2f

k
j

�
1� dkij

�
+ aki d

k
ij

i
dkij < 1

(14)

with the A estimate, aki , updated according to

ak+1i =
1

pi

NX
j=1

hjiu
k
ij: (15)

To compute the B estimate, let

ri =
NX
j=1

hji�
2
j (16)

ti =
NX
j=1

hji�j (17)

and
�kij = ukij + bki (�j � 40�): (18)

Then, the linear regression of the A updates, ukij , provides an update for B,

cki =
1

piri � t2i

0
@pi NX

j=1

hji�j�
k
ij � ti

NX
j=1

hji�
k
ij

1
A : (19)

This update is only usable if the range of incidence angles (�j) used in Eq. (19) is
su�ciently wide. Since a wider incidence angle range implies greater con�dence in the
B estimate update [6], the B estimate is updated using a weighted average of cki and the
previous B estimate. The weighting factor is a simple function of the variance of �, i.e.,
let

xi =
pi

t2i

NX
j=1

hji�
2
j � 1 (20)

then the B estimate image is updated according to

bk+1i =
1

xi + 1

�
xic

k
i + bki

�
: (21)

This system of equations is iterated over k until convergence. Convergence is dis-
cussed in following sections.

The subjective quality of the �nal images can be improved by applying an edge-
preserving 3�3 median �lter to the A and B images. The image noise can be signi�cantly
reduced, with only a small reduction in the image resolution, by application of a hybrid
median-linear �lter to the image estimates at each stage of the iteration. The SIR
algorithm with the added �ltering is termed SIRF.
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In the hybrid �lter, the image values within a moving 3 � 3 window are ordered
and the median determined. If the di�erence between the second highest and second
lowest values within the window is less than 0.25, the center pixel is replaced with the
average of the middle seven values of the ordered window pixels. Otherwise, the center
value is replaced with the median value. E�ectively, this hybrid �lter acts like a linear
�lter when the algorithm is near convergence and the region is smooth but operates as
a median �lter otherwise. The edge-preserving properties of the median �lter maintain
resolution while providing noise suppression.

SIRF was originally developed for use with Seasat scatterometer (SASS) data [6].
The B updates were heavily damped in the original version of SIRF and may not be
appropriate for NSCAT data. For NSCAT B value convergence can be accelerated by
weighting these updates appropriately.

Equation (21) de�nes the iterative update for B based on a linear regression of the A
updates cki (Eq. (19)) and a weighting factor xi determined by the variance of incidence
angles (Eq. (20)). To facilitate convergence of the B values, the updates are further
weighted with an acceleration factor bacc. Using this approach, Eq. (20) becomes

xi = bacc

0
@pi

t2i

NX
j=1

hji�
2
j � 1

1
A (22)

where bacc is the acceleration factor (bacc > 1). The selection of bacc is described in a
later section.

2.3 AVE Algorithm

As described in [6], a very simple approach to simultaneous estimation of A and B may
be derived from the unweighted MART algorithm. For a constant initial value, the �rst
iteration of unweighted MART is

a1i =
1

pi

NX
j=1

hjizj : (23)

Remembering that hij is either one or zero, we see that a1i is the average of the mea-
surements covering the ith pixel. This averaging approach (which will be referred to as
AVE) provides a smoothed initial image estimate which, in e�ect, is improved by later
iterations of SIRF [6]. In AVE the A and B estimates for a given pixel are computed by
linear regression of the �o measurements (in dB) which cover the pixel. We note that the
AVE resolution is better than the measurement cell resolution and is signi�cantly better
than conventional \binning" where the minimum resolution element size is e�ectively
limited to the maximum size of the measurement cells, but AVE resolution is not as
good as SIR or SIRF.

3 Generating Simulation Data

The values of bacc, the number of iterations of SIRF, Ainit, and Binit a�ect the estimated
image accuracy and quality. In this section, simulations are used to select optimum
parameter values. To examine the e�ects of these parameters, synthetic A and B truth
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images are created. The images are created at higher resolution (approximately 4.5
km per pixel) than the nominal resolution of the satellite (25 km) with dimensions
of approximately 8��8�. Constant value images are used for both parameters. Two
simulations are performed. The �rst has truth values A=-10.0 B=-0.1 and the second
uses A=-20.0 B=-0.2.

NSCAT L1.5 data records contain geolocation, azimuth angle, incidence angle, �o,
and noise information for each measurement cell. Simulated data is generated using 10
days of actual NSCAT data (1996 JD 301-310) taken from the Amazon Basin (latitude
range of 2.0�S to 10.0�S, longitude range of 62.0�W to 70.0�W) combined with the truth
images. The actual data provides geolocation and incidence angle information and the
truth images are used to create synthetic �o and variance values. �o is computed from
e�ective A and B values in the measurement footprint (see Figure 4),

Aeff =
RkX

c=Lk

TkX
a=Bk

h(x; y; k)Atruth(x; y; k) (24)

Beff =
RkX

c=Lk

TkX
a=Bk

h(x; y; k)Btruth(x; y; k) (25)

where Lk, Rk, Tk, and Bk de�ne a bounding rectangle for the kth hexagonal �o mea-
surement cell, h(x; y; k) is the weighting function for the (x; y)th resolution element
(h(x; y; k)=0 or 1 for NSCAT), Atruth(x; y; k) is the A value for the (x; y)th resolution
element, and Btruth(x; y; k) is the corresponding B value. The noiseless �o then becomes

�onl = Aeff +Beff (� � 40�): (26)

Realistic noise is added to �onl by using actual variance values of the data. The variance
of �o is a function of �o , �, �, and 
. The simulated �o is given by

�o = �onl(1 +Kp�) (27)

where
Kp = ��o2nl + ��onl + 
 (28)

and � is a zero-mean Gaussian random variable with unity variance. This is performed
for all of the measurements cells in the study region during the time period 1996 JD
301-310.

4 B Weighting

The e�ects of B acceleration are studied by using the synthetic images described above.
The truth image is A=-10.0 and B=-0.1. SIRF is implemented repeatedly with di�erent
B weighting values bacc. Initialization values of A=-10.0, -30.0 and B=-0.1, -0.3 are used
to evaluate worst case convergence scenarios.

The �rst case considered is Ainit=-30.0 and Binit=-0.1 (the true B value). Figures
5-6 display the means and standard deviations of the A and B values for the SIRF
images at each iteration and B weighting. The A mean converges to its actual value
nearly identically regardless of the B weighting (bacc), achieving its true value after
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approximately 25 iterations. Increasing the B weighting slightly increases the A noise
level as indicated by the A standard deviation. The mean for the B images diverges
slightly from the true value for all B weights although the worst error after even 75
iterations is small (on the order of .0002 dB/deg). The B noise level also increases with
B weighting although the noise is small.

Another simulation is run with Ainit=-10.0 (the true A value) and Binit=-0.3 to
observe the e�ects of B convergence alone. Figures 7-8 plot the results. The mean A
value �rst diverges from its true value for the �rst several iterations. It then recovers and
begins to converge back to the desired value at a rate determined by the B acceleration
value. Higher B weights result in quicker convergence. The A standard deviation in the
images initially increases for the �rst 5-15 iterations, then decreases converging to the
same �nal value as in the Ainit=-30.0 Binit=-0.1 case. Convergence is achieved more
quickly for higher B acceleration values. From Figure 8 we see that B weighting is
required to achieve convergence in less than 75 iterations. Increased B weighting speeds
the convergence.

These simulations indicate that increasing the B weighting yields quicker convergence
though excessive acceleration can increase the noise level of the image. If 50 iterations
are used, a B update weight of 30 is su�cient to reach convergence in mean and standard
deviation.

5 SIRF Initialization

SIRF requires initial values of A and B. The algorithm iteratively updates the estimate
by comparing the previous estimate with raw data values. The algorithm continues for
N iterations. If a poor initialization value is used, the A and B values may not converge
su�ciently accurately to the desired value within a given number of iterations.

To study the e�ects of di�erent initialization values, simulated measurements are
used to produce enhanced resolution SIRF images. SIRF is implemented several times
for each image using di�erent initialization values. For Ainit, values from -30.0 to -1.0
are used while Binit is set to various values in the range -0.3 to 0.0. B update weighting
is set to bacc=30 to ensure proper convergence of the B values. The mean and standard
deviation of the resulting images are observed after each iteration.

The �rst case observed uses truth images with A=-10.0 and B=-0.1. Figures 9-10
illustrate the convergence trends of the means and standard deviations of the A and B
images with iteration using di�erent Ainit values. The mean A converges to the true
value for all Ainit's by the 30th iteration. In general, the further Ainit is from the true
value, the longer it takes to converge. However, when Ainit is less than the true value,
the updates approach the desired value more quickly than if Ainit is greater. The noise
level in the image behaves similarly for all Ainit values increasing with iteration number.
Mean B diverges slightly from the true value. The B image noise grows with iteration
until convergence.

Figures 11-12 show the results of various Binit for the same truth images. Ainit is
set to the true value while Binit ranges from -0.3 to 0.0. The mean A value of the SIRF
image initially diverges from the true value but returns to the true value by the 50th
iteration. The noise in the A image is signi�cantly higher during the initial iterations
when Binit is further away from the true B. However, the noise levels converge for
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later iterations. Similarly, the mean B converges to the actual value by about the 50th
iteration. The B noise level converges to a common value for all Binit values.

The same experiment is conducted for the case with true values of A=-20.0 and B=-
0.2. The results are shown in Figures 13-16. Behavior is the same observed in previous
cases.

Several conclusions are drawn from this portion of the project. First, it is desirable
for the initialization values to be close to the true values since they will converge more
quickly. By setting Ainit or Binit lower than the true value, convergence can be achieved
earlier in the process. However, this e�ect is small and insigni�cant. Noise level is
initially higher for these lower initialization values, but converges to a common value for
all initializations for later iterations. These simulations were performed for constant A
and B images. In a more realistic case the truth images will be nonhomogeneous with a
wide range of A and B values. In an e�ort to balance the trade-o� between convergence
time and noise level, it was decided to use the means of the observed A and B images
as the initial values.

To determine the optimum Ainit and Binit for NSCAT SIRF images, accelerated B
SIRF images are created for all land regions of the earth using NSCAT data during
the period 1996 JD 276-281 to determine average A and B values. The averages are
approximately A=-8.4 B=-0.14 (excluding polar regions). These values are chosen to
be the Ainit and Binit constant initialization images for SIRF.

6 Statistical Analysis of Simulated Images

With SIRF initialization values, number of iterations, and bacc selected, the next step
is to simulate SIRF using nonhomogeneous images and observe the statistical error
and correlation properties between the SIRF images and the true images. Synthetic A
and B truth images are created to emulate features that might be observed in actual
scatterometer observations of the earth. The A truth image is shown in Figure 17 (a)
while the corresponding B truth image is given in Figure 18 (a). The features of these
images simulate features in actual NSCAT data. The darker area simulates a river body
of water with characteristically low A or B values. The large feature in the top right
quadrant of the A image represents an area with gradually increasing �o to a common
center point. The two dots represent small features that SIRF will attempt to resolve.
The rest of the image is assigned an average background value. The B image features
are mirrored with respect to the A image to observe the e�ects of SIRF on A and B
individually. The images are 192x192 pixels with and span of 8��8� with a resolution
of approximately 4.5 km/pixel.

6.1 SIRF Statistics

NSCAT data is simulated by using 10 days of real NSCAT data records over the Amazon
Basin and replacing the �o values with synthetic �o values computed from the A and B
truth image according to Eq. (1). Noisy data sets are generated. SIRF is run using the
A and B initialization values determined previously (Ainit=-8.4, Binit=-0.14). Several
B weighting values are used and images are created after each iteration. Every image
is then statistically compared with the truth image to determine error and correlation
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properties. Metrics used in this development are mean error, standard deviation of the
error, RMS error, and correlation coe�cient.

Figures 19-22 depict the statistical error and correlation values for the SIRF A and B
images as a function of iteration number and B update weighting. In all scenarios, all of
the statistical metrics converge toward a �nal value as the algorithm iterates. The errors
decrease and the correlation rises reaching their �nal values by the 50th iteration. The
statistics for the A image behave similarly as iterations increase despite the di�erent
accelerated B values. On the other hand, the B image statistics are dependent on B
update weighting. The mean error, error standard deviation, RMS error, and correlation
coe�cient reach their �nal optimum values more quickly for higher B acceleration. After
50 iterations, the statistics are virtually the same if the B weighting is 30 or higher.

The correlation coe�cient for the A images approaches 0.95 while values of only
about 0.40 are reached for the B images indicating that SIRF has excellent ability to
estimate A but less accurate in determining B. B estimate error may be the result of
excessive �o noise or an insu�cient distribution of incidence angles of the samples to
accurately determine the �o incidence angle dependence. This problem is addressed in
the next section.

6.2 Comparison of SIRF with Other Reconstruction Methods

A and B images of the simulation region are created using other reconstruction methods
as well. Nonenhanced images are produced by gridding the NSCAT footprint �o values
onto a 25 km grid and doing linear regression. AVE images [6] are created on the same
high resolution grid that SIRF uses and is essentially equivalent to the �rst iteration of
SIRF [6].

Figure 17 illustrates the A value truth, nonenhanced, AVE, and SIRF images. The
SIRF image uses bacc=30, N=50 iterations, Ainit=-8.4, and Binit=-0.14. The nonen-
hanced image shows the general features, but does not de�ne the smaller features well.
The AVE image reveals more high frequency information but the edges still appear low-
pass �ltered. The SIRF image has sharper edges and more de�ned features. Still the
source of the distortion in the average and SIRF images is due to the �ltering of the sur-
face truth data by the aperture of the scatterometer antenna as well as by the inherent
scatterometer noise. Note that the dots stand out above the noise in the average and
SIRF images.

The reconstructed B images are shown in Figure 18. An interesting ghost image
phenomenon appears in all of the reconstructed images. That is, the A truth image
features appear in the reconstructed B images and vice versa. This occurrence is most
pronounced in the nonenhanced and AVE images with little e�ect in the SIRF image.
Since the AVE image is essentially the output of the SIRF algorithm after one iteration,
it is apparent that repeated iterations damp the distortion e�ects of A value on B. The
B images have lower correlation to the truth image since the slope of �o vs. � is very
sensitive to �o noise.

Statistical error and correlation metrics for each of these images are computed and
given in Table 1. SIRF has lower errors and higher correlation coe�cients for virtually
all of the metrics. In every case, SIRF has a higher correlation coe�cient and lower
RMS error indicating that it was most successful in reconstructing the A and B images.
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7 Sampling

The accuracy of SIRF A and B estimates is highly dependent on the number of �o sam-
ples for a given pixel. B contains incidence angle dependence information and cannot be
properly estimated unless several measurements are obtained from a variety of incidence
angles. Thus, incidence angle distribution as well as the number of measurements a�ect
the e�ectiveness of the SIRF algorithm.

The incidence angle dependence of �o is described by the B parameter. SIRF uses
several �o measurements of a pixel to estimate this value. To get a good estimate of
B SIRF requires a su�cient number of di�erent incidence angle (�) measurements as
well as a good distribution of �. An experiment is conducted in which SIRF is run
for a a simulation region with constant A and B values. Simulated �o measurements
are generated from the true values. A=-10.0 and B=-0.1 are used as the actual values.
The � values for measurements over a small 3 � 3 pixel subregion are set to have a
uniform distribution in the range [20�-58�]. SIRF A and B estimates are computed for
various numbers of measurements. Figure 23 displays example A and B mean values in
the subregion that SIRF predicts as a function of number of measurements. The plot
demonstrates that for a low number of measurements, the SIRF estimates are inaccurate.
When SIRF has about 5 �o samples or more, the estimates are close to the true value
with error a function of the noise in the measurements.

The incidence angle distribution of the measurements a�ect the accuracy of SIRF
estimates. The dependence of estimate error on this is examined by implementing a
similar simulation as described above but the incidence angles are modi�ed to various
distributions. Di�erent distributions of incidence angles are used and the estimates ob-
served. The true values are A=-10.0 and B=-0.1. For each simulation, 8 measurements
are used. SIRF computes A and B estimates for several measurement sets with di�erent
� distributions. For each � distribution set, SIRF is run 5 times (individual cases di�er-
ing only in random �o noise) to exhibit the general trends. Figure 24 shows a plot of A
estimates vs. B estimates for di�erent distributions. Nearly every SIRF A estimate is
within 0.1 dB of the actual value regardless of the � distribution. Similarly, all of the B
estimates have an error of less than 0.01 dB/deg. We conclude that SIRF yields good
estimates of A and B for NSCAT even if the � distribution is relatively narrow, at least
for a surface where the linear �o model applies.

8 Conclusion

The Scatterometer Image Reconstruction with Filter (SIRF) algorithm is an e�ective
method for high resolution image reconstruction. Several parameters of this algorithm
a�ect its ability to enhance intrinsically low resolution scatterometer data to make it
useful for non-oceanic studies. Through a non-linear procedure, SIRF iteratively updates
A and B estimates to describe �o normalized to 40� and �o dependence on incidence
angle.

Heavy damping of the B updates in the algorithm slow the convergence of B to the
true value. B update weighting is used to speed this process. Simulations show that
accelerating these updates reduces convergence time. Both A and B noise levels diverge
for several iterations and then decrease, converging to a �nal value. This convergence
occurs more quickly for higher B update weighting. After approximately 50 iterations,
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there is little di�erence in the error and noise properties of the reconstructed image as
long as the B acceleration is greater than or equal to 30.

SIRF initialization values strongly in
uence the convergence trends of the algorithm.
When the initial values are close to the true values, convergence occurs more rapidly.
When Ainit and Binit are set below the true values rather than above, convergence was
achieved slightly earlier in the iterations but noise level was increased. However, if
enough iterations were used, convergence is to a common value for all initializations.
This trade-o� motivated the choice of the mean A and B values of nonhomogeneous
regions for the initialization. Ainit=-8.4 and Binit=-0.14 were found to be the mean
global values for NSCAT land data (excluding polar regions) and thus chosen as the
optimum initialization values.

Nonhomogeneous synthetic images are used to study the error and correlation prop-
erties between SIRF images and their ground truth counterparts. The statistical metrics
continuously improve with increased iterations until a �nal value is reached after about
50 iterations.

In addition to these parameters, the measurement geometry can in
uence SIRF's
e�ectiveness in estimating A and B. In particular, the incidence angle distribution is
critical to achieving good B values. Assuming a uniform distribution of � in the e�ective
range of [20�-58�], SIRF requires about 5 or more samples to produce quality A and B
estimates. SIRF produces good estimates for relatively narrow � distributions as well
as wide distributions.
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Tables

Image Mean Error Error Std. RMS Error Corr. Coe�.

Nonenhanced A -0.09 1.09 1.10 0.86

AVE A -0.10 1.07 1.07 0.86

SIRF A -0.05 0.68 0.68 0.95

Nonenhanced B -0.00004 0.093 0.093 0.233

AVE B 0.004 0.140 0.140 0.187

SIRF B 0.0004 0.057 0.057 0.40

Table 1: Error and correlation statistics of reconstructed noisy images as compared to
the true images. SIRF was implemented using Ainit=-8.4, Binit=-0.14, bacc=30, and 50
iterations.
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Figure 1: A global image made by SIRF. The image shows A, the incidence angle
normalized �o . The ocean has been masked out.
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Figure 4: An integrated NSCAT �o cell overlaying the high resolution grid. Only the
shaded square grid elements have nonzero h(x; y; k). The bounding rectangle is also
indicated.
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Figure 5: A value means and standard deviations of the SIRF simulation images with
constant truth images A=-10.0 and B=-0.1. Initialization values are Ainit=-30.0 and
Binit=-0.1. Di�erent values of B update weight are used.
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Figure 6: B value means and standard deviations of the SIRF simulation images with
constant truth images A=-10.0 and B=-0.1. Initialization values are Ainit=-30.0 and
Binit=-0.1. Di�erent values of B update weight are used.
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Figure 7: A value means and standard deviations of the SIRF simulation images with
constant truth images A=-10.0 and B=-0.1. Initialization values are Ainit=-10.0 and
Binit=-0.3. Di�erent values of B update weight are used.
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constant truth images A=-10.0 and B=-0.1. Initialization values are Ainit=-10.0 and
Binit=-0.3. Di�erent values of B update weight are used.
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Binit is held at the true B value. bacc=30 for all plots.
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Binit is held at the true B value. bacc=30 for all plots.
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Figure 11: A value means and standard deviations of SIRF initialization simulation
images with constant truth images A=-10.0 and B=-0.1. Di�erent Binit's are used and
Ainit is held at the true A value. bacc=30 for all plots.
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Figure 12: B value means and standard deviations of SIRF initialization simulation
images with constant truth images A=-10.0 and B=-0.1. Di�erent Binit's are used and
Ainit is held at the true A value. bacc=30 for all plots.
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Figure 13: A value means and standard deviations of SIRF initialization simulation
images with constant truth images A=-20.0 and B=-0.2. Di�erent Ainit's are used and
Binit is held at the true B value. bacc=30 for all plots.
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Figure 14: B value means and standard deviations of SIRF initialization simulation
images with constant truth images A=-20.0 and B=-0.2. Di�erent Ainit's are used and
Binit is held at the true B value. bacc=30 for all plots.
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Figure 15: A value means and standard deviations of SIRF initialization simulation
images with constant truth images A=-20.0 and B=-0.2. Di�erent Binit's are used and
Ainit is held at the true A value. bacc=30 for all plots.
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Figure 16: B value means and standard deviations of SIRF initialization simulation
images with constant truth images A=-20.0 and B=-0.2. Di�erent Binit's are used and
Ainit is held at the true A value. bacc=30 for all plots.
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Figure 17: Reconstructed simulation A images with noise added. (a) Truth image,
(b) Nonenhanced image, (c) AVE image, and (d) SIRF image using optimum SIRF
parameters.

Figure 18: Reconstructed simulation B images with noise added. (a) Truth image,
(b) nonenhanced image, (c) AVE image, and (d) SIRF image using optimum SIRF
parameters.
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Figure 19: Mean error and error standard deviation of the SIRF A images for the
noiseless and noisy cases.
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Figure 20: RMS error and correlation coe�cient of the SIRF A images for the noiseless
and noisy cases.
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Figure 21: Mean error and error standard deviation of the SIRF B images for the
noiseless and noisy cases.
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Figure 22: RMS error and correlation coe�cient of the SIRF B images for the noiseless
and noisy cases.
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Figure 23: SIRF A and B estimates plotted vs. the number of measurements. The true
values are A=-10.0 and B=-0.1. The estimates may be poor unless there are at least 5
samples.
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